Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 May 11;69(Pt 6):m303–m304. doi: 10.1107/S1600536813011951

Poly[1H-imidazol-3-ium [di-μ-nitrato-sodium]]

Chahrazed Trifa a, Amira Bouhali a, Sofiane Bouacida a,b,*, Chaouki Boudaren a, Thierry Bataille c
PMCID: PMC3684872  PMID: 23794974

Abstract

In the title compound {(C3H5N2)[Na(NO3)2]}n, the NaI ion is coordinated by eight O atoms from three bidentate nitrate anions and two O atoms from two monodentate nitrate anions, displaying a bicapped trigonal–prismatic geometry. The imidazolium cation is essentially planar (r.m.s. deviation for all non-H atoms = 0.0018 Å). In the crystal, the NaI ions are connected by bridging nitrate ligands, forming layers parallel to (010). The imidazolium cations are sandwiched between these layers. Weak C—H⋯O hydrogen bonds link the layers into a three-dimensional network. In addtion, π–π inter­actions between the imidazolium rings [centroid–centroid distance = 3.588 (3) Å] are observed.

Related literature  

For applications of imidazole and its derivatives, see: Huang et al. (2008, 2011). For the preparation and characterization of some metal complexes of imidazolium, see: Gao et al. (2009); Zhang et al. (2011); Zhu (2012); Han et al. (2007); Wenyan et al. (2011). graphic file with name e-69-0m303-scheme1.jpg

Experimental  

Crystal data  

  • (C3H5N2)[Na(NO3)2]

  • M r = 216.1

  • Monoclinic, Inline graphic

  • a = 3.5875 (3) Å

  • b = 24.8548 (17) Å

  • c = 8.819 (6) Å

  • β = 95.546 (4)°

  • V = 782.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 150 K

  • 0.52 × 0.15 × 0.13 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002) T min = 0.884, T max = 0.972

  • 9892 measured reflections

  • 1778 independent reflections

  • 1541 reflections with I > 2σ(I)

  • R int = 0.029

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.084

  • S = 1.10

  • 1778 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012) and CRYSCAL (T. Roisnel, local program).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813011951/lh5609sup1.cif

e-69-0m303-sup1.cif (27KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813011951/lh5609Isup2.hkl

e-69-0m303-Isup2.hkl (85.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Na1—O12 2.4321 (16)
Na1—O21 2.4639 (14)
Na1—O13i 2.5106 (13)
Na1—O23 2.5338 (13)
Na1—O13ii 2.5730 (14)
Na1—O11ii 2.5910 (19)
Na1—O11 2.6239 (17)
Na1—O21iii 2.6776 (14)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O23iv 0.95 2.50 3.438 (3) 168
C4—H4⋯O11v 0.95 2.41 3.355 (3) 173

Symmetry codes: (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

The authors thank MESRS and ATRST (Algérie) for financial support. They also thank Dr Thierry Roisnel, Centre de Diffractométrie X (CDIFX) de Rennes, Université de Rennes 1, France, for his technical assistance with the data collection.

supplementary crystallographic information

Comment

Knowledge of the detailed coordination behavior of imidazoles and their limitation in the possible use in complexes with specific catalytic activity is of great current importance. Imidazole, namely 1,3-diazacyclopenta-2,4-diene and its derivatives have found wide range of applications in coordination chemistry because of their multiple coordination modes as ligands to metal ions and for the construction of novel metal–organic frameworks (Huang et al. 2011; Huang et al. 2008). Recently, several complexes based on the imidazolium cation were reported (Gao et al. 2009; Zhang et al. 2011; Zhu 2012; Han et al. 2007; Wenyan et al. 2011). This paper describes the synthesis and crystal structure of the title compound.

The asymmetric unit of the title compound (I) (Fig. 1) contains one NaI ion, one protonated imidazole molecule and two coordinated nitrate anions. The Na centre is coordinated by eight O atoms from three bidentate nitrate anions and two O atoms from two monodentate nitrate anions, displaying a bicapped trigonal-prismatic geometry (Fig. 2). The Na—O bond distances range from 2.4321 (16) to 2.6239 (17) Å. The C—N distances lie in the range 1.328 (2)- 1.376 (2) A°. The imidazolium cation is essentially planar giving an r.m.s. deviation for all non-H atoms of 0.0018 A°, with a maximum deviation from the mean plane of -0.0028 (1)Å for the C4 atom. The crystal packing can be described by alterning two-dimensional polymecric layers and double layers of imidazolium ions. A two-dimensional layer structure is thus constructed parallel to (010) (Fig. 3). Weak hydrogen bonds are formed between imidazolium cation and the nitrate O atoms of adjacent layers (Fig. 3) further connect the two-dimensional layers into a three-dimensional network. In addition, π···π contacts between the imidazolium rings, [centroid-centroid distance = 3.588 (3) Å with ca 1.382 Å slippage] are also observed.

Experimental

All chemicals used (reagent grade) were commercially available. The compound was obtained by using hydrothermal method in Teflon-lined autoclave. The mixture of barium nitrate, imidazole, sodium hydroxide and deionized water in the molar ratio 1:1:3:264 was stirred for half an hour, and transferred in a Teflon-lined autoclave, then treated at 423 K for 4 d. After the mixture was slowly cooled to room temperature, colorless needles suitable for X-ray diffraction analysis were collected from the final reaction system by filtration, washed several times with distilled water and dried in air at ambient temperature.

Refinement

Approximate positions for all the H atoms were first obtained from the difference electron density map. However, the H atoms were situated into idealized positions and the H-atoms have been refined with the riding-model approximation. The applied constraints were as follow: Caryl—Haryl = 0.95 Å; Naryl—Haryl = 0.88 Å and Uiso(Haryl) = 1.2 Ueq(Caryl).

Figures

Fig. 1.

Fig. 1.

The asymetric unit of (I), with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The coordination of the unieque NaI ion.

Fig. 3.

Fig. 3.

A partial packing diagram of (I), showing alterning layers with hydrogen bond shown as dashed lines.

Crystal data

(C3H5N2)[Na(NO3)2] F(000) = 440
Mr = 216.1 Dx = 1.834 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 7048 reflections
a = 3.5875 (3) Å θ = 2.9–27.5°
b = 24.8548 (17) Å µ = 0.22 mm1
c = 8.819 (6) Å T = 150 K
β = 95.546 (4)° Stick, colourless
V = 782.7 (5) Å3 0.52 × 0.15 × 0.13 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer 1778 independent reflections
Radiation source: Enraf Nonius FR590 1541 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.029
Detector resolution: 9 pixels mm-1 θmax = 27.5°, θmin = 4.0°
CCD rotation images, thin slices scans h = −4→4
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) k = −32→32
Tmin = 0.884, Tmax = 0.972 l = −11→11
9892 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084 H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0303P)2 + 0.6068P] where P = (Fo2 + 2Fc2)/3
1778 reflections (Δ/σ)max = 0.001
127 parameters Δρmax = 0.19 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Na1 0.51191 (18) 0.19828 (2) 1.30182 (7) 0.02160 (17)
O21 0.9994 (3) 0.13952 (4) 1.42898 (13) 0.0229 (3)
N22 0.8825 (4) 0.09735 (5) 1.35908 (15) 0.0179 (3)
O23 0.6569 (3) 0.10118 (5) 1.24273 (13) 0.0236 (3)
O22 0.9921 (3) 0.05206 (4) 1.40834 (13) 0.0243 (3)
O12 0.0537 (3) 0.18850 (4) 1.08164 (13) 0.0221 (3)
N1 0.1514 (4) 0.22797 (5) 1.00369 (15) 0.0172 (3)
O11 0.3871 (3) 0.26060 (4) 1.06212 (13) 0.0228 (3)
O13 0.0153 (3) 0.23312 (5) 0.86783 (13) 0.0234 (3)
C4 0.5075 (5) 0.12044 (6) 0.74003 (19) 0.0223 (3)
H4 0.4512 0.1537 0.6896 0.027*
N3 0.6807 (4) 0.11445 (5) 0.87906 (16) 0.0208 (3)
H3 0.7619 0.1408 0.9403 0.025*
C2 0.7128 (5) 0.06034 (6) 0.91212 (19) 0.0212 (3)
H2 0.8252 0.0449 1.0039 0.025*
C1 0.5545 (4) 0.03354 (6) 0.78945 (18) 0.0207 (3)
H1 0.5348 −0.0044 0.778 0.025*
N5 0.4268 (4) 0.07172 (5) 0.68401 (15) 0.0203 (3)
H5 0.3101 0.065 0.5936 0.024*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Na1 0.0229 (3) 0.0196 (3) 0.0211 (3) 0.0029 (2) −0.0037 (3) −0.0020 (2)
O21 0.0284 (6) 0.0159 (5) 0.0235 (6) −0.0015 (5) −0.0022 (5) −0.0039 (4)
N22 0.0200 (6) 0.0169 (6) 0.0169 (7) −0.0007 (5) 0.0019 (5) −0.0006 (5)
O23 0.0273 (6) 0.0246 (6) 0.0178 (6) −0.0012 (5) −0.0046 (5) 0.0006 (4)
O22 0.0313 (7) 0.0153 (5) 0.0251 (6) 0.0018 (5) −0.0033 (5) 0.0009 (4)
O12 0.0297 (6) 0.0169 (5) 0.0188 (6) −0.0040 (4) −0.0019 (5) 0.0045 (4)
N1 0.0194 (6) 0.0157 (6) 0.0165 (7) 0.0024 (5) 0.0020 (5) −0.0005 (5)
O11 0.0225 (6) 0.0192 (5) 0.0263 (6) −0.0052 (4) 0.0001 (5) −0.0025 (5)
O13 0.0309 (6) 0.0239 (6) 0.0144 (6) 0.0022 (5) −0.0024 (5) 0.0022 (4)
C4 0.0246 (8) 0.0206 (7) 0.0219 (8) 0.0004 (6) 0.0035 (6) 0.0015 (6)
N3 0.0221 (7) 0.0190 (6) 0.0214 (7) −0.0022 (5) 0.0023 (5) −0.0045 (5)
C2 0.0222 (8) 0.0205 (8) 0.0210 (8) 0.0012 (6) 0.0022 (6) 0.0010 (6)
C1 0.0207 (8) 0.0195 (7) 0.0219 (8) −0.0003 (6) 0.0025 (6) −0.0012 (6)
N5 0.0202 (7) 0.0242 (7) 0.0161 (7) −0.0009 (5) 0.0003 (5) −0.0025 (5)

Geometric parameters (Å, º)

Na1—O12 2.4321 (16) O12—Na1iii 2.8874 (17)
Na1—O21 2.4639 (14) N1—O11 1.2467 (17)
Na1—O13i 2.5106 (13) N1—O13 1.2560 (19)
Na1—O23 2.5338 (13) N1—Na1v 2.9406 (16)
Na1—O13ii 2.5730 (14) O11—Na1v 2.5910 (19)
Na1—O11ii 2.5910 (19) O13—Na1vi 2.5106 (13)
Na1—O11 2.6239 (17) O13—Na1v 2.5730 (14)
Na1—O21iii 2.6776 (14) C4—N3 1.328 (2)
Na1—O12iv 2.8874 (17) C4—N5 1.329 (2)
Na1—N1 2.911 (2) C4—H4 0.95
Na1—N1ii 2.9406 (16) N3—C2 1.379 (2)
Na1—Na1iii 3.5875 (3) N3—H3 0.88
O21—N22 1.2668 (17) C2—C1 1.348 (2)
O21—Na1iv 2.6776 (14) C2—H2 0.95
N22—O23 1.2475 (19) C1—N5 1.376 (2)
N22—O22 1.2558 (17) C1—H1 0.95
O12—N1 1.2666 (17) N5—H5 0.88
O12—Na1—O21 134.38 (5) N1—Na1—N1ii 101.88 (5)
O12—Na1—O13i 131.96 (5) O12—Na1—Na1iii 53.22 (4)
O21—Na1—O13i 80.44 (4) O21—Na1—Na1iii 131.75 (3)
O12—Na1—O23 82.93 (4) O13i—Na1—Na1iii 134.17 (3)
O21—Na1—O23 51.55 (4) O23—Na1—Na1iii 103.01 (3)
O13i—Na1—O23 122.49 (5) O13ii—Na1—Na1iii 44.41 (3)
O12—Na1—O13ii 79.49 (5) O11ii—Na1—Na1iii 75.02 (3)
O21—Na1—O13ii 140.03 (5) O11—Na1—Na1iii 84.68 (3)
O13i—Na1—O13ii 89.76 (4) O21iii—Na1—Na1iii 43.36 (3)
O23—Na1—O13ii 146.94 (5) O12iv—Na1—Na1iii 137.57 (3)
O12—Na1—O11ii 125.84 (5) N1—Na1—Na1iii 69.08 (3)
O21—Na1—O11ii 90.37 (5) N1ii—Na1—Na1iii 60.11 (3)
O13i—Na1—O11ii 73.07 (4) N22—O21—Na1 94.69 (9)
O23—Na1—O11ii 127.91 (4) N22—O21—Na1iv 117.13 (10)
O13ii—Na1—O11ii 49.87 (4) Na1—O21—Na1iv 88.39 (4)
O12—Na1—O11 50.67 (4) O23—N22—O22 120.63 (13)
O21—Na1—O11 140.80 (5) O23—N22—O21 119.68 (13)
O13i—Na1—O11 81.31 (4) O22—N22—O21 119.69 (13)
O23—Na1—O11 114.77 (5) N22—O23—Na1 91.91 (9)
O13ii—Na1—O11 73.93 (5) N1—O12—Na1 98.90 (9)
O11ii—Na1—O11 116.76 (4) N1—O12—Na1iii 122.64 (9)
O12—Na1—O21iii 80.87 (5) Na1—O12—Na1iii 84.35 (5)
O21—Na1—O21iii 88.39 (4) O11—N1—O13 120.90 (13)
O13i—Na1—O21iii 141.34 (5) O11—N1—O12 119.46 (13)
O23—Na1—O21iii 74.30 (4) O13—N1—O12 119.62 (13)
O13ii—Na1—O21iii 75.42 (4) O11—N1—Na1 64.35 (8)
O11ii—Na1—O21iii 70.10 (4) O13—N1—Na1 170.21 (10)
O11—Na1—O21iii 126.07 (4) O12—N1—Na1 55.64 (7)
O12—Na1—O12iv 84.35 (5) O11—N1—Na1v 61.59 (8)
O21—Na1—O12iv 76.22 (5) O13—N1—Na1v 60.79 (8)
O13i—Na1—O12iv 72.38 (4) O12—N1—Na1v 166.49 (10)
O23—Na1—O12iv 67.45 (4) Na1—N1—Na1v 121.45 (5)
O13ii—Na1—O12iv 137.21 (4) N1—O11—Na1v 93.37 (9)
O11ii—Na1—O12iv 144.51 (4) N1—O11—Na1 90.29 (9)
O11—Na1—O12iv 65.26 (5) Na1v—O11—Na1 156.34 (6)
O21iii—Na1—O12iv 140.33 (4) N1—O13—Na1vi 119.68 (9)
O12—Na1—N1 25.46 (4) N1—O13—Na1v 93.99 (9)
O21—Na1—N1 142.68 (4) Na1vi—O13—Na1v 89.76 (4)
O13i—Na1—N1 106.51 (4) N3—C4—N5 107.85 (14)
O23—Na1—N1 97.92 (4) N3—C4—H4 126.1
O13ii—Na1—N1 77.26 (5) N5—C4—H4 126.1
O11ii—Na1—N1 126.91 (5) C4—N3—C2 109.07 (14)
O11—Na1—N1 25.36 (4) C4—N3—H3 125.5
O21iii—Na1—N1 104.68 (5) C2—N3—H3 125.5
O12iv—Na1—N1 71.53 (5) C1—C2—N3 106.99 (15)
O12—Na1—N1ii 104.05 (5) C1—C2—H2 126.5
O21—Na1—N1ii 115.36 (5) N3—C2—H2 126.5
O13i—Na1—N1ii 77.58 (4) C2—C1—N5 106.76 (14)
O23—Na1—N1ii 146.03 (5) C2—C1—H1 126.6
O13ii—Na1—N1ii 25.22 (4) N5—C1—H1 126.6
O11ii—Na1—N1ii 25.04 (4) C4—N5—C1 109.33 (14)
O11—Na1—N1ii 93.96 (5) C4—N5—H5 125.3
O21iii—Na1—N1ii 74.13 (4) C1—N5—H5 125.3
O12iv—Na1—N1ii 145.46 (4)
O12—Na1—O21—N22 −12.65 (12) O21—Na1—N1—O11 −102.52 (10)
O13i—Na1—O21—N22 −154.26 (9) O13i—Na1—N1—O11 −6.60 (9)
O23—Na1—O21—N22 −8.23 (8) O23—Na1—N1—O11 −133.96 (9)
O13ii—Na1—O21—N22 127.71 (9) O13ii—Na1—N1—O11 79.31 (8)
O11ii—Na1—O21—N22 132.99 (9) O11ii—Na1—N1—O11 74.35 (7)
O11—Na1—O21—N22 −90.93 (11) O21iii—Na1—N1—O11 150.27 (8)
O21iii—Na1—O21—N22 62.90 (10) O12iv—Na1—N1—O11 −71.01 (8)
O12iv—Na1—O21—N22 −80.21 (9) N1ii—Na1—N1—O11 73.79 (10)
N1—Na1—O21—N22 −49.51 (12) Na1iii—Na1—N1—O11 125.07 (8)
N1ii—Na1—O21—N22 134.48 (8) O21—Na1—N1—O12 85.90 (11)
Na1iii—Na1—O21—N22 62.90 (10) O13i—Na1—N1—O12 −178.18 (9)
O12—Na1—O21—Na1iv 104.45 (7) O23—Na1—N1—O12 54.46 (9)
O13i—Na1—O21—Na1iv −37.16 (4) O13ii—Na1—N1—O12 −92.27 (9)
O23—Na1—O21—Na1iv 108.86 (6) O11ii—Na1—N1—O12 −97.23 (10)
O13ii—Na1—O21—Na1iv −115.19 (7) O11—Na1—N1—O12 −171.58 (14)
O11ii—Na1—O21—Na1iv −109.92 (4) O21iii—Na1—N1—O12 −21.31 (9)
O11—Na1—O21—Na1iv 26.17 (8) O12iv—Na1—N1—O12 117.41 (10)
O21iii—Na1—O21—Na1iv 180 N1ii—Na1—N1—O12 −97.78 (8)
O12iv—Na1—O21—Na1iv 36.89 (4) Na1iii—Na1—N1—O12 −46.51 (8)
N1—Na1—O21—Na1iv 67.58 (8) O12—Na1—N1—Na1v −164.26 (12)
N1ii—Na1—O21—Na1iv −108.43 (5) O21—Na1—N1—Na1v −78.36 (8)
Na1iii—Na1—O21—Na1iv 180 O13i—Na1—N1—Na1v 17.56 (7)
Na1—O21—N22—O23 15.20 (14) O23—Na1—N1—Na1v −109.81 (5)
Na1iv—O21—N22—O23 −75.40 (16) O13ii—Na1—N1—Na1v 103.46 (6)
Na1—O21—N22—O22 −164.17 (12) O11ii—Na1—N1—Na1v 98.51 (7)
Na1iv—O21—N22—O22 105.23 (14) O11—Na1—N1—Na1v 24.16 (7)
O22—N22—O23—Na1 164.63 (12) O21iii—Na1—N1—Na1v 174.43 (5)
O21—N22—O23—Na1 −14.73 (14) O12iv—Na1—N1—Na1v −46.85 (5)
O12—Na1—O23—N22 −174.84 (9) N1ii—Na1—N1—Na1v 97.95 (7)
O21—Na1—O23—N22 8.34 (8) Na1iii—Na1—N1—Na1v 149.23 (5)
O13i—Na1—O23—N22 49.13 (10) O13—N1—O11—Na1v −14.00 (14)
O13ii—Na1—O23—N22 −116.69 (11) O12—N1—O11—Na1v 164.60 (12)
O11ii—Na1—O23—N22 −44.21 (11) Na1—N1—O11—Na1v 156.62 (6)
O11—Na1—O23—N22 144.67 (9) O13—N1—O11—Na1 −170.61 (12)
O21iii—Na1—O23—N22 −92.38 (10) O12—N1—O11—Na1 7.98 (13)
O12iv—Na1—O23—N22 98.36 (10) Na1v—N1—O11—Na1 −156.62 (6)
N1—Na1—O23—N22 164.52 (9) O12—Na1—O11—N1 −4.67 (8)
N1ii—Na1—O23—N22 −70.14 (13) O21—Na1—O11—N1 110.55 (10)
Na1iii—Na1—O23—N22 −125.23 (8) O13i—Na1—O11—N1 173.60 (9)
O21—Na1—O12—N1 −122.22 (9) O23—Na1—O11—N1 51.74 (9)
O13i—Na1—O12—N1 2.35 (12) O13ii—Na1—O11—N1 −94.12 (9)
O23—Na1—O12—N1 −125.70 (9) O11ii—Na1—O11—N1 −120.42 (7)
O13ii—Na1—O12—N1 82.42 (9) O21iii—Na1—O11—N1 −36.40 (10)
O11ii—Na1—O12—N1 101.91 (10) O12iv—Na1—O11—N1 99.07 (9)
O11—Na1—O12—N1 4.65 (8) N1ii—Na1—O11—N1 −109.62 (10)
O21iii—Na1—O12—N1 159.15 (9) Na1iii—Na1—O11—N1 −50.16 (8)
O12iv—Na1—O12—N1 −57.79 (9) O12—Na1—O11—Na1v −103.77 (14)
N1ii—Na1—O12—N1 88.16 (7) O21—Na1—O11—Na1v 11.44 (17)
Na1iii—Na1—O12—N1 122.21 (9) O13i—Na1—O11—Na1v 74.50 (12)
O21—Na1—O12—Na1iii 115.57 (6) O23—Na1—O11—Na1v −47.37 (14)
O13i—Na1—O12—Na1iii −119.86 (5) O13ii—Na1—O11—Na1v 166.77 (13)
O23—Na1—O12—Na1iii 112.09 (4) O11ii—Na1—O11—Na1v 140.47 (11)
O13ii—Na1—O12—Na1iii −39.79 (4) O21iii—Na1—O11—Na1v −135.51 (12)
O11ii—Na1—O12—Na1iii −20.30 (6) O12iv—Na1—O11—Na1v −0.03 (12)
O11—Na1—O12—Na1iii −117.56 (5) N1—Na1—O11—Na1v −99.10 (15)
O21iii—Na1—O12—Na1iii 36.93 (4) N1ii—Na1—O11—Na1v 151.28 (12)
O12iv—Na1—O12—Na1iii 180 Na1iii—Na1—O11—Na1v −149.26 (12)
N1—Na1—O12—Na1iii −122.21 (9) O11—N1—O13—Na1vi −77.90 (15)
N1ii—Na1—O12—Na1iii −34.05 (4) O12—N1—O13—Na1vi 103.51 (13)
Na1—O12—N1—O11 −8.72 (14) Na1v—N1—O13—Na1vi −92.00 (8)
Na1iii—O12—N1—O11 80.25 (15) O11—N1—O13—Na1v 14.11 (14)
Na1—O12—N1—O13 169.89 (11) O12—N1—O13—Na1v −164.48 (12)
Na1iii—O12—N1—O13 −101.14 (14) N5—C4—N3—C2 0.31 (19)
Na1iii—O12—N1—Na1 88.97 (9) C4—N3—C2—C1 0.00 (19)
Na1—O12—N1—Na1v 82.0 (4) N3—C2—C1—N5 −0.30 (18)
Na1iii—O12—N1—Na1v 170.9 (4) N3—C4—N5—C1 −0.50 (19)
O12—Na1—N1—O11 171.58 (14) C2—C1—N5—C4 0.50 (18)

Symmetry codes: (i) x+1, −y+1/2, z+1/2; (ii) x, −y+1/2, z+1/2; (iii) x−1, y, z; (iv) x+1, y, z; (v) x, −y+1/2, z−1/2; (vi) x−1, −y+1/2, z−1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C1—H1···O23vii 0.95 2.50 3.438 (3) 168
C4—H4···O11v 0.95 2.41 3.355 (3) 173

Symmetry codes: (v) x, −y+1/2, z−1/2; (vii) −x+1, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5609).

References

  1. Brandenburg, K. & Berndt, M. (2001). DIAMOND Crystal Impact, Bonn, Germany.
  2. Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Gao, X.-L., Lu, L.-P. & Zhu, M.-L. (2009). Acta Cryst. E65, m561. [DOI] [PMC free article] [PubMed]
  5. Han, W.-H., Dang, L.-L. & Zhang, W.-J. (2007). Z. Kristallogr. New Cryst. Struct. 222, 403–404.
  6. Huang, X.-F., Fu, D.-W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 1795–1797.
  7. Huang, Z.-J., Tang, J.-N., Luo, Z.-R., Wang, D.-Y. & Wei, H. (2011). Acta Cryst. E67, m408. [DOI] [PMC free article] [PubMed]
  8. Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  9. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  10. Sheldrick, G. M. (2002). SADABS University of Göttingen, Germany.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Wenyan, B., Guanghua, L., Xue, Q., Huo, Y. & Wang, G. (2011). Z. Kristallogr. New Cryst. Struct. 226, 121–122.
  13. Zhang, W., Chen, Y., Lei, T., Li, Y. & Li, W. (2011). Acta Cryst. E67, m569–m570. [DOI] [PMC free article] [PubMed]
  14. Zhu, R.-Q. (2012). Acta Cryst. E68, m389. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813011951/lh5609sup1.cif

e-69-0m303-sup1.cif (27KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813011951/lh5609Isup2.hkl

e-69-0m303-Isup2.hkl (85.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES