Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 May 4;69(Pt 6):o832. doi: 10.1107/S1600536813011574

2-Chloro-6-(2,3-di­chloro­benzene­sulfonamido)­benzoic acid

Ayesha Munir a, Hafiz Mubashar-ur-Rehman a,*, Abdullah M Asiri b,c, Islam Ullah Khan a, Muhammad Nadeem Arshad c,*
PMCID: PMC3684920  PMID: 23795022

Abstract

In the title compound, C13H8Cl3NO4S, the aromatic rings are oriented at a dihedral angle of 68.94 (1)° and the mol­ecule adopts a V-shape. An intra­molecular N—H⋯O inter­action generates a six-membered S(6) ring motif. In the crystal, pairs of O—H⋯O hydrogen bonds involving the carb­oxy group link the mol­ecules into inversion dimers with an R 2 2(8) motif. N—H⋯O and non-classical C—H⋯O inter­actions connect the mol­ecules, forming sheets propagating in (100).

Related literature  

For the synthesis, see: Arshad et al. (2012) For related structures, see: Arshad et al. (2009, 2011). For graph-set notation, see: Bernstein et al. (1995).graphic file with name e-69-0o832-scheme1.jpg

Experimental  

Crystal data  

  • C13H8Cl3NO4S

  • M r = 380.61

  • Monoclinic, Inline graphic

  • a = 9.0164 (3) Å

  • b = 18.6017 (5) Å

  • c = 9.8574 (3) Å

  • β = 111.653 (3)°

  • V = 1536.62 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 6.83 mm−1

  • T = 296 K

  • 0.38 × 0.20 × 0.18 mm

Data collection  

  • Agilent SuperNova (Dual, Cu at zero, Atlas, CCD) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) T min = 0.467, T max = 1.000

  • 11742 measured reflections

  • 3018 independent reflections

  • 2597 reflections with I > 2σ(I)

  • R int = 0.025

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.104

  • S = 1.04

  • 3018 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.60 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and X-SEED (Barbour, 2001).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813011574/hg5312sup1.cif

e-69-0o832-sup1.cif (22.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813011574/hg5312Isup2.hkl

e-69-0o832-Isup2.hkl (148.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813011574/hg5312Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3 0.86 2.55 2.940 (2) 108
C12—H12⋯O3i 0.93 2.59 3.425 (3) 150
O3—H3⋯O4ii 0.82 1.85 2.666 (2) 176
N1—H1⋯O2iii 0.86 2.30 3.128 (2) 162
C5—H5⋯O4iv 0.93 2.53 3.256 (4) 135
C10—H10⋯O1v 0.93 2.51 3.165 (3) 127

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

The authors would like to thank the Deanship of Scientific Research at King Abdulaziz University for the support of this research via the Research Group Track of Grant No. (3-102/428).

supplementary crystallographic information

Comment

In connection to synthesis of halogenated sulfonamide derivatives 2-Chloro-4-(2-iodobenzenesulfonamido)benzoic acid (Arshad et al., 2011) and 2-Chloro-5-(2-iodobenzenesulfonamido)benzoic acid (Arshad et al., 2009), we are reporting the crystal structure of title compound.

The two aromatic rings [(C1—C6) & (C7—C12)] in the structure of molecule are oriented at dihedral angle of 68.94 (1)°. The carboxylic group (C13/O3/O4) is twisted at 58.11 (1)° with respect to its mother aromatic ring (C7—C12) and its atoms C13, O3 & O4 are away by -0.1938 (35)Å , 0.6924 (39)Å , -1.1739 (39)Å repectively from the mean plane generating from atoms C7/C8/C9/C10/C11/C12 with the r.m.s deviation of 0.0183 (15) Å. The amino and carboxylic groups are involved in classical N1—H1···O3 intramolecular hydrogen bonding interaction and produce six membered ring motif S11 (6) (Bernstein et al. 1995) which is oriented at dihedral angles of 54.30 (11)° & 18.98 (12)° with respect to two aromatic rings [(C1—C6) & (C7—C12)], respectively. On the other hand the amino group get connected with oxygen of SO2 to form intermolecular N1—H1···O2 hydrogen bond. The carboxylic group gives typical inversion dimerization by generating eight membered ring motif R22 (8) (Bernstein et al. 1995) through O3—H3···O4 interaction. The non-clasical C—H···O type interaction have also been observed in the molecule (Fig. 2) for which symmetry detail are available in Table 1.

Experimental

The title compound was synthesised following the literature method (Arshad et al., 2012) and recrystallized from ethylacetate under slow evaporation at room temperature.

Refinement

All the H-atoms were positioned with idealized geometry with C—H = 0.93 Å, N—H = 0.86 Å, O—H = 0.82 Å and were refined as riding with Uiso(H) = 1.2 Ueq(K), where K = C, N & O for all H-atoms. The reflections (0 1 2), (1 3 1), (1 0 0), (2 1 0) & (0 2 0) are omitted in final refinement.

Figures

Fig. 1.

Fig. 1.

The labelled structure of (C13 H8 Cl3 N O4 S) with 50% probability of thermal ellipsoids.

Fig. 2.

Fig. 2.

A perspective view showing two dimensional network generating through O—H···O, N—H···O and C—H···O hydrogen bonds, drawn using dashed lines.

Crystal data

C13H8Cl3NO4S F(000) = 768
Mr = 380.61 Dx = 1.645 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybc Cell parameters from 5339 reflections
a = 9.0164 (3) Å θ = 4.8–73.0°
b = 18.6017 (5) Å µ = 6.83 mm1
c = 9.8574 (3) Å T = 296 K
β = 111.653 (3)° Prismatic, colorless
V = 1536.62 (8) Å3 0.38 × 0.20 × 0.18 mm
Z = 4

Data collection

Agilent SuperNova (Dual, Cu at zero, Atlas, CCD) diffractometer 3018 independent reflections
Radiation source: SuperNova (Cu) X-ray Source 2597 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.025
ω scans θmax = 73.1°, θmin = 5.4°
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) h = −10→11
Tmin = 0.467, Tmax = 1.000 k = −22→22
11742 measured reflections l = −12→11

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038 H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0471P)2 + 1.0131P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
3018 reflections Δρmax = 0.55 e Å3
201 parameters Δρmin = −0.60 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0022 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.21203 (15) 0.41272 (5) 0.58195 (14) 0.1161 (5)
Cl2 0.17428 (9) 0.55156 (5) 0.74492 (8) 0.0718 (3)
Cl3 0.94473 (9) 0.58369 (5) 1.01517 (11) 0.0797 (3)
S1 0.24536 (6) 0.70690 (3) 0.62789 (6) 0.03763 (17)
O1 0.1045 (2) 0.71147 (11) 0.6596 (2) 0.0562 (5)
O2 0.2792 (2) 0.76184 (9) 0.54279 (18) 0.0482 (4)
O3 0.5137 (2) 0.59728 (8) 1.02304 (19) 0.0460 (4)
H3 0.4816 0.5600 1.0473 0.055*
O4 0.6012 (2) 0.52066 (9) 0.8971 (2) 0.0572 (5)
N1 0.3928 (2) 0.70318 (10) 0.78616 (19) 0.0357 (4)
H1 0.3706 0.7032 0.8638 0.043*
C1 0.2524 (3) 0.62421 (13) 0.5405 (2) 0.0417 (5)
C2 0.2255 (3) 0.55805 (14) 0.5932 (3) 0.0510 (6)
C3 0.2403 (4) 0.49629 (16) 0.5195 (4) 0.0693 (9)
C4 0.2779 (4) 0.5009 (2) 0.3962 (4) 0.0843 (11)
H4 0.2867 0.4592 0.3476 0.101*
C5 0.3022 (5) 0.5663 (2) 0.3450 (4) 0.0804 (10)
H5 0.3269 0.5691 0.2615 0.096*
C6 0.2903 (4) 0.62797 (17) 0.4168 (3) 0.0583 (7)
H6 0.3078 0.6724 0.3823 0.070*
C7 0.5563 (2) 0.69989 (11) 0.8019 (2) 0.0327 (4)
C8 0.6539 (2) 0.64427 (11) 0.8821 (2) 0.0329 (4)
C9 0.8156 (3) 0.64584 (13) 0.9024 (3) 0.0418 (5)
C10 0.8775 (3) 0.69735 (14) 0.8382 (3) 0.0485 (6)
H10 0.9852 0.6970 0.8518 0.058*
C11 0.7777 (3) 0.74919 (15) 0.7535 (3) 0.0536 (7)
H11 0.8175 0.7829 0.7061 0.064*
C12 0.6188 (3) 0.75223 (13) 0.7376 (3) 0.0467 (6)
H12 0.5540 0.7892 0.6840 0.056*
C13 0.5870 (3) 0.58240 (11) 0.9374 (2) 0.0348 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.1280 (9) 0.0446 (5) 0.1266 (9) −0.0192 (5) −0.0106 (7) 0.0082 (5)
Cl2 0.0734 (5) 0.0782 (5) 0.0597 (4) −0.0271 (4) 0.0197 (3) 0.0177 (4)
Cl3 0.0502 (4) 0.0720 (5) 0.1115 (7) 0.0207 (3) 0.0236 (4) 0.0361 (5)
S1 0.0363 (3) 0.0420 (3) 0.0365 (3) 0.0046 (2) 0.0158 (2) 0.0039 (2)
O1 0.0388 (9) 0.0760 (13) 0.0587 (11) 0.0094 (8) 0.0238 (8) 0.0034 (9)
O2 0.0531 (9) 0.0456 (10) 0.0438 (9) 0.0048 (7) 0.0153 (7) 0.0123 (7)
O3 0.0692 (11) 0.0324 (8) 0.0514 (10) −0.0026 (8) 0.0397 (9) 0.0004 (7)
O4 0.0914 (14) 0.0287 (8) 0.0748 (13) −0.0047 (8) 0.0580 (11) −0.0055 (8)
N1 0.0380 (9) 0.0422 (10) 0.0303 (9) 0.0018 (7) 0.0167 (7) 0.0005 (7)
C1 0.0419 (11) 0.0449 (13) 0.0356 (11) −0.0006 (10) 0.0111 (9) −0.0023 (9)
C2 0.0446 (13) 0.0496 (15) 0.0468 (14) −0.0081 (11) 0.0027 (11) 0.0017 (11)
C3 0.0639 (17) 0.0444 (16) 0.072 (2) −0.0044 (13) −0.0075 (15) −0.0037 (14)
C4 0.095 (2) 0.070 (2) 0.070 (2) 0.0129 (19) 0.0098 (19) −0.0296 (18)
C5 0.108 (3) 0.078 (2) 0.0594 (19) 0.012 (2) 0.0362 (19) −0.0156 (17)
C6 0.0753 (18) 0.0590 (17) 0.0460 (14) 0.0016 (14) 0.0285 (13) −0.0020 (12)
C7 0.0369 (10) 0.0302 (10) 0.0325 (10) −0.0020 (8) 0.0148 (8) −0.0012 (8)
C8 0.0405 (10) 0.0270 (10) 0.0336 (10) −0.0026 (8) 0.0166 (8) −0.0021 (8)
C9 0.0396 (11) 0.0391 (12) 0.0474 (13) 0.0024 (9) 0.0168 (10) 0.0002 (10)
C10 0.0369 (11) 0.0556 (15) 0.0568 (15) −0.0089 (10) 0.0218 (11) −0.0030 (12)
C11 0.0518 (14) 0.0530 (16) 0.0602 (16) −0.0145 (11) 0.0257 (12) 0.0121 (12)
C12 0.0468 (13) 0.0401 (13) 0.0515 (14) −0.0042 (10) 0.0161 (11) 0.0126 (10)
C13 0.0418 (11) 0.0297 (10) 0.0357 (11) 0.0013 (8) 0.0174 (9) 0.0012 (8)

Geometric parameters (Å, º)

Cl1—C3 1.725 (3) C4—C5 1.366 (5)
Cl2—C2 1.725 (3) C4—H4 0.9300
Cl3—C9 1.724 (2) C5—C6 1.373 (4)
S1—O1 1.4179 (17) C5—H5 0.9300
S1—O2 1.4247 (17) C6—H6 0.9300
S1—N1 1.6357 (18) C7—C12 1.389 (3)
S1—C1 1.776 (2) C7—C8 1.399 (3)
O3—C13 1.279 (3) C8—C9 1.397 (3)
O3—H3 0.8200 C8—C13 1.493 (3)
O4—C13 1.238 (3) C9—C10 1.375 (3)
N1—C7 1.426 (3) C10—C11 1.372 (4)
N1—H1 0.8600 C10—H10 0.9300
C1—C6 1.384 (3) C11—C12 1.383 (3)
C1—C2 1.391 (3) C11—H11 0.9300
C2—C3 1.391 (4) C12—H12 0.9300
C3—C4 1.380 (5)
O1—S1—O2 119.37 (11) C5—C6—C1 120.3 (3)
O1—S1—N1 105.73 (10) C5—C6—H6 119.9
O2—S1—N1 108.47 (10) C1—C6—H6 119.9
O1—S1—C1 110.74 (12) C12—C7—C8 120.0 (2)
O2—S1—C1 106.38 (11) C12—C7—N1 119.82 (19)
N1—S1—C1 105.32 (10) C8—C7—N1 120.19 (18)
C13—O3—H3 109.5 C9—C8—C7 118.12 (19)
C7—N1—S1 123.33 (14) C9—C8—C13 120.35 (19)
C7—N1—H1 118.3 C7—C8—C13 121.44 (18)
S1—N1—H1 118.3 C10—C9—C8 121.9 (2)
C6—C1—C2 120.5 (2) C10—C9—Cl3 118.17 (18)
C6—C1—S1 116.6 (2) C8—C9—Cl3 119.94 (18)
C2—C1—S1 122.88 (19) C11—C10—C9 118.9 (2)
C1—C2—C3 118.2 (3) C11—C10—H10 120.5
C1—C2—Cl2 121.7 (2) C9—C10—H10 120.5
C3—C2—Cl2 120.2 (2) C10—C11—C12 121.2 (2)
C4—C3—C2 120.7 (3) C10—C11—H11 119.4
C4—C3—Cl1 119.1 (3) C12—C11—H11 119.4
C2—C3—Cl1 120.2 (3) C11—C12—C7 119.8 (2)
C5—C4—C3 120.4 (3) C11—C12—H12 120.1
C5—C4—H4 119.8 C7—C12—H12 120.1
C3—C4—H4 119.8 O4—C13—O3 123.6 (2)
C4—C5—C6 120.0 (3) O4—C13—C8 119.58 (19)
C4—C5—H5 120.0 O3—C13—C8 116.82 (18)
C6—C5—H5 120.0
O1—S1—N1—C7 −178.47 (17) S1—C1—C6—C5 178.3 (3)
O2—S1—N1—C7 −49.3 (2) S1—N1—C7—C12 55.1 (3)
C1—S1—N1—C7 64.24 (19) S1—N1—C7—C8 −125.01 (19)
O1—S1—C1—C6 132.5 (2) C12—C7—C8—C9 3.9 (3)
O2—S1—C1—C6 1.4 (2) N1—C7—C8—C9 −175.94 (19)
N1—S1—C1—C6 −113.6 (2) C12—C7—C8—C13 −172.5 (2)
O1—S1—C1—C2 −49.0 (2) N1—C7—C8—C13 7.6 (3)
O2—S1—C1—C2 179.83 (19) C7—C8—C9—C10 −4.4 (3)
N1—S1—C1—C2 64.8 (2) C13—C8—C9—C10 172.1 (2)
C6—C1—C2—C3 1.0 (4) C7—C8—C9—Cl3 173.60 (17)
S1—C1—C2—C3 −177.45 (19) C13—C8—C9—Cl3 −9.9 (3)
C6—C1—C2—Cl2 −178.7 (2) C8—C9—C10—C11 1.0 (4)
S1—C1—C2—Cl2 2.9 (3) Cl3—C9—C10—C11 −177.0 (2)
C1—C2—C3—C4 −1.1 (4) C9—C10—C11—C12 3.0 (4)
Cl2—C2—C3—C4 178.6 (2) C10—C11—C12—C7 −3.4 (4)
C1—C2—C3—Cl1 178.77 (19) C8—C7—C12—C11 −0.2 (4)
Cl2—C2—C3—Cl1 −1.5 (3) N1—C7—C12—C11 179.7 (2)
C2—C3—C4—C5 0.4 (5) C9—C8—C13—O4 −56.9 (3)
Cl1—C3—C4—C5 −179.4 (3) C7—C8—C13—O4 119.5 (2)
C3—C4—C5—C6 0.4 (6) C9—C8—C13—O3 124.7 (2)
C4—C5—C6—C1 −0.5 (5) C7—C8—C13—O3 −58.9 (3)
C2—C1—C6—C5 −0.2 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O3 0.86 2.55 2.940 (2) 108
C12—H12···O3i 0.93 2.59 3.425 (3) 150
O3—H3···O4ii 0.82 1.85 2.666 (2) 176
N1—H1···O2iii 0.86 2.30 3.128 (2) 162
C5—H5···O4iv 0.93 2.53 3.256 (4) 135
C10—H10···O1v 0.93 2.51 3.165 (3) 127

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x+1, −y+1, −z+2; (iii) x, −y+3/2, z+1/2; (iv) −x+1, −y+1, −z+1; (v) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5312).

References

  1. Agilent (2012). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Arshad, M. N., Danish, M., Tahir, M. N., Aabideen, Z. U. & Asiri, A. M. (2012). Acta Cryst. E68, o2665. [DOI] [PMC free article] [PubMed]
  3. Arshad, M. N., Khan, I. U., Rafique, H. M., Asiri, A. M. & Shafiq, M. (2011). Acta Cryst. E67, o1327. [DOI] [PMC free article] [PubMed]
  4. Arshad, M. N., Tahir, M. N., Khan, I. U., Siddiqui, W. A. & Shafiq, M. (2009). Acta Cryst. E65, o281. [DOI] [PMC free article] [PubMed]
  5. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
  6. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813011574/hg5312sup1.cif

e-69-0o832-sup1.cif (22.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813011574/hg5312Isup2.hkl

e-69-0o832-Isup2.hkl (148.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813011574/hg5312Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES