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SUMMARY

Understanding how drugs work in vivo is critical for
drug design and for maximizing the potential of
currently available drugs. 5-nitrofurans are a class
of prodrugs widely used to treat bacterial and
trypanosome infections, but despite relative speci-
ficity, 5-nitrofurans often cause serious toxic side
effects in people. Here, we use yeast and zebrafish,
as well as human in vitro systems, to assess the
biological activity of 5-nitrofurans, and we identify
a conserved interaction between aldehyde dehydro-
genase (ALDH) 2 and 5-nitrofurans across these
species. In addition, we show that the activity of
nifurtimox, a 5-nitrofuran anti-trypanosome prodrug,
is dependent on zebrafish Aldh2 and is a substrate
for human ALDH2. This study reveals a conserved
and biologically relevant ALDH2-5-nitrofuran interac-
tion that may have important implications for
managing the toxicity of 5-nitrofuran treatment.

INTRODUCTION

Drugs often have multiple targets in vivo that can lead to unin-

tended side effects. Identifying unintended drug targets and their

in vivo relevance is a fundamental challenge in chemical biology.

5-Nitrofurans are a class of drugs that save thousands of lives as

front-line treatments for parasitic trypanosome infections in Latin

America and Africa, and they are also effective antibiotics in

human and veterinary medicine (Castro et al., 2006; Coura and

Viñas, 2010; Nussbaum et al., 2010; Priotto et al., 2009). 5-Nitro-

furans are of such importance to human health that the World

HeathOrganization deems the 5-nitrofuran, nifurtimox, an essen-
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tial medicine and Bayer HealthCare provides nifurtimox free of

charge for trypanosome infections. 5-Nitrofurans are prodrugs,

and their relative specificity comes from parasitic and bacteria-

specific nitroreductases (NTRs) that reduce the 5-NO2 functional

group to a toxic anion radical, therebygenerating reactiveoxygen

species and inducing cell death. Despite their widespread use,

5-nitrofurans have serious toxic side effects (Castro et al.,

2006). For nifurtimox, toxic side effects lead to treatment cessa-

tion in over 30%ofpatientswithChagasdisease,which is caused

by Trypanosoma cruzi infection (Castro et al., 2006). Clinical side

effects are complex and can vary between populations, but they

include polyneuropathy, depression, forgetfulness, alcohol intol-

erance, and headaches, as well as gastrointestinal complica-

tions. There is currently no treatment strategy available to reduce

the off-target toxic side effects of 5-nitrofurans.

Over decades of research, scientists have identified multiple

human enzymes capable of 5-nitrofuran reduction in vitro, in

cells or tissues (Dubuisson et al., 2001; Rao et al., 1987; Rao

and Mason, 1987). However, the question of whether these

enzymes are relevant to 5-nitrofuran side-effect activity and

the potential for therapeutic intervention to inhibit their off-target

activity in vivo is unanswered. Drug mechanism of action is

readily examined in the zebrafish model system, in which clini-

cally active compounds can be directly assayed in the trans-

parent embryo (Zon and Peterson, 2005). Within 2 to 5 days of

development in zebrafish, most tissues and organs have formed,

thereby enabling the identification of tissue-specific drug activi-

ties and/or bioactivation. These features allow facile phenotypic

chemical screens within the whole animal. Phenotypic small-

molecule screens in zebrafish have enabled the identification

of new biological pathways, novel bioactive chemicals, and

unexpected potential for known drugs (Taylor et al., 2010). Drugs

often have multiple targets in vivo, and examining the effects of

small molecules on the developing zebrafish can also identify

unintended drug targets (Ishizaki et al., 2010; Ito et al., 2010;

Laggner et al., 2012; Rihel et al., 2010).
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Figure 1. 5-Nitrofurans Promote Melanocytotoxicity in Zebrafish
(A and B) Examples of zebrafish embryos treated at 2 dpf for 48 hr with DMSO as a control, plus 5 mM NFN1 and 5 mM NFN1.1 (A) or 50 mM nifurtimox (B). Black

melanocytes (red arrows) and melanocyte detritus (blue arrows) are indicated.

(C) Chemical structures of the four 5-nitrofurans (NFN1–4 [Maybridge compounds BTB05727, SEW00138, BTB13657, and BR00087]) identified in a chemical

screen for modulators of melanocyte development. The 5-NO2-furan functional group shared between the 5-nitrofurans, including nifurtimox, is indicated in red.

The chemical structure of NFN1.1. is identical to that of NFN1 but lacks the 5-NO2 functional group required for activity (blue).

See also Figure S1 and Movie S1.

Table 1. Derivatives of 5-Nitrofurans and Their Activity in

Zebrafish

Compound 0.2 mM 0.4 mM 0.8 mM 1.6 mM

NFN1 No activity No activity + +++

NFN1.1 No activity No activity No activity No activity

NFN5 No activity + ++ ++++

NFN5.1 No activity + ++ ++

NFN5.2 No activity + ++ ++++a

+Some melanocytes become dendritic, few are fragmented.

++Some punctate and fragmented melanocytes.

+++All melanocytes are punctate, many clearly fragmented, pigment

remains in eye.

++++All melanocytes are fragmented, with almost complete loss of

pigment in body and eye.
aAdditional nonspecific toxicity.
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Here, we use a multispecies approach to identify ALDH2 as

a mediator of 5-nitrofuran toxicity in yeast and zebrafish, and

we show that 5-nitrofurans are substrates for human ALDH2

in vitro. In a zebrafish phenotypic screen, we found that 5-nitro-

furans are melanocytotoxic. We exploited this highly visible

in vivo activity to generate a 5-nitrofuran probe, identify ALDH2

as a 5-nitrofuran target, and validate the interaction in vivo.

This interaction is conserved from yeast to human, and is also

relevant for the clinically active 5-nitrofuran nifurtimox. We

propose that this new interaction may be relevant to some of

the 5-nitrofuran toxicity observed in the clinic.

RESULTS

5-Nitrofurans Are Active in Zebrafish
Melanocytes are pigment-producing cells that generate black

melanin, and pigmented melanocytes are clearly visible in the

developing zebrafish beginning at 28 hr postfertilization (hpf;

Figure 1A). We identified four 5-nitrofuran compounds, NFN1

(Maybridge BTB05727), NFN2 (SEW00138), NFN3 (BTB13657),

and NFN4 (BR00087), in a chemical screen for modulators of

melanocyte development in zebrafish embryos (Figures 1A and

1C; see Methods). We also found that zebrafish were sensitive

to the clinically active 5-nitrofuran nifurtimox (Figures 1B and

1C). 5-Nitrofuran treatment directly affected the melanocyte

andmelanocyte progenitor viability in a dose-dependent manner

and was independent of tyrosinase activity (Figure S1 available

online; Movie S1). Thus, 5-nitrofurans are melanocytotoxic in

zebrafish, and unlike prodrugs that are bioactivated by pigmen-

tation enzymes (Jawaid et al., 2009; Yang and Johnson, 2006),

their activity is independent of tyrosinase. Altered pigmentation

is not a feature of 5-nitrofuran toxicity in humans, but melanocyte

specificity in zebrafish provided a rapid, convenient, and highly
884 Chemistry & Biology 19, 883–892, July 27 , 2012 ª2012 Elsevier
visible assay to study 5-nitrofuran activity in an animal model,

independent of trypanosome infection.

5-Nitrofuran Activity Requires the 5-NO2 Moiety
5-Nitrofurans are prodrugs, and the 5-NO2moiety is essential for

bioactivation in parasites and bacteria (Maya et al., 2007). We

modified NFN1 by replacing the NO2 moiety with a hydrogen

atom (Figure 1C, NFN1.1; Table 1; Supplemental Information).

In contrast to treatment with NFN1, NFN1.1 had no effect on

zebrafish melanocytes, and the melanocyte remained pig-

mented and intact (Figure 1A; Table 1). Nitrofuran activity in

melanocytes is therefore dependent upon the 5-NO2 functional

group. As in humans, zebrafish do not have NTRs (which are

present in trypanosomes) to process the 5-NO2 functional group,

and thus, the effects of NFN1 on zebrafish melanocytes may
Ltd All rights reserved



Figure 2. 5-Nitrofurans Bind Aldh2 in Zebrafish

(A) Biotinylated probes linked to a 5-nitrofuran (Pr-NFN)

and a control furan (Pr-FN). Biotin is labeled in blue and the

5-nitro or modification moiety in red.

(B) Silver stain of protein bands identified using Pr-NFN

probe, or streptavidin beads alone as a control (No Probe).

The red box indicates the region of the gel that was iso-

lated for mass spectrometry analysis (arrow) at 57 kD.

(C) Western blot of zebrafish protein bound to the no-

probe control, the furan (Pr-FN) control, or the 5-nitrofuran

probe (Pr-NFN), and probed with zebrafish anti-Aldh2

antibodies. A band corresponding to 57 kDa is indicated

(arrow). MW, molecular weight.

See also Figure S2 and Table S1.
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provide information about alternative methods of 5-nitrofuran

processing.

Nitrofurans Bind ALDH2 in Zebrafish
To identify the possible targets of the 5-nitrofurans, we per-

formed affinity purification to capture 5-nitrofuran interacting

proteins in zebrafish extracts. First, we generated a series of

5-nitrofuran derivatives and tested their activity in zebrafish

(Table 1; Supplemental Information). Importantly, 5-nitrofuran

derivatives containing a phenyl ring (NFN5, NFN5.1, NFN5.2)

effectively targeted zebrafishmelanocytes (Table 1). As substitu-

tion at the para position of the phenyl ring in NFN5.1 and NFN5.2

was tolerated, a 5-nitrofuran probe was generated by linking

to biotin through the para position of the phenyl ring (Pr-NFN;

Figure 2A). Next, the 5-nitrofuran probe was bound to streptavi-

din beads, and protein complexes captured from zebrafish

extract derived from 3-day embryos were subjected to tandem

mass spectrometry. A 57-kD binding protein was identified

as aldehyde dehydrogenase (Aldh) 2b (Figure 2B; Table S1).

Zebrafish have two aldh2 (Lassen et al., 2005; Song et al.,

2006) genes (a and b) that are orthologs of human ALDH2 (Fig-

ure S2); aldh2b is expressed in neural crest derived cells,

including presumptive melanocytes (Thisse et al., 2001). To

confirm the identity of the 57-kD protein, we repeated our affinity

purification protocol and performed western blotting with anti-

Aldh2 zebrafish antibodies raised against both a and b forms

of Aldh2 (Lassen et al., 2005) (Figure 2C). As a control, we gener-

ated a furan probe that was identical to the nitrofuran probe

except that it lacked the 5-NO2 functional group (Pr-FN; Fig-

ure 2A). Aldh2 (either a or b) bound more strongly to the 5-nitro-

furan probe than to the control probe, and not to streptavidin

beads alone (Figure 2C). These experiments validate Aldh2 as

a 5-nitrofuran binding protein.

Aldh2 Is Required for 5-Nitrofuran Activity in Zebrafish
Aldh2 catabolizes toxic aldehydes in the liver after alcohol

consumption (Druesne-Pecollo et al., 2009), in the heart after

ischemia (Chen et al., 2008), and in dopamine metabolism (Yao

et al., 2010). We asked if 5-nitrofuran toxicity was dependent

on Aldh2 in zebrafish. The natural product daidzin, found in the

Kudzu vine (Pueraria lobata), is a potent and specific inhibitor

of human ALDH2 and has long been used in traditional medi-

cines as an antidipsotropic (Keung and Vallee, 1993a, 1993b;

Lowe et al., 2008). More recently, ALDH2 inhibitors have been
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shown to reduce anxiety associated with treatment of cocaine

and alcohol addiction (Arolfo et al., 2009; Yao et al., 2010). We

reasoned that ALDH2 inhibitors were likely to prevent the toxicity

of 5-nitrofurans in zebrafish because (1) human ALDH2 is closely

related to zebrafish Aldh2 (a and b forms) (Figure S2), and (2)

computational modeling of zebrafish Aldh2b bound to daidzin

suggests that critical drug-protein interactions are conserved

between species (Figure 3A). Treatment of zebrafish embryos

with daidzin protected melanocytes from the cytotoxicity of the

coadministered 5-nitrofuran NFN1 (Figure 3B), as well as the

clinically active 5-nitrofuran nifurtimox (Figure 3C). Thus, coad-

ministration of the Aldh2 inhibitor daidzin abrogates the activity

of NFN1 and nifurtimox in zebrafish.

To provide additional evidence that the action of daidzin was

by inhibition of Aldh2 and not an additional unintended target,

zebrafish embryos were cotreated with NFN1 and a second

ALDH1/2 inhibitor, disulfiram (DSF). DSF, also called Antabuse

and Antabus, is used to treat chronic alcoholism by preventing

the ALDH2-dependent metabolism of alcohol and producing

enhanced sensitivity to alcohol. DSF also chelates copper, and

we and others have found that DSF prevents pigmentation of

zebrafish melanocytes prior to melaninization, most likely due

to inhibition of copper-dependent pigmentation enzymes (Fig-

ure S3; O’Reilly-Pol and Johnson, 2008). DSF treatment of

embryos 3 days postfertilization (dpf) that had fully pigmented

melanocytes had no effect on melanocyte integrity, while DSF

prevented melanocyte toxicity upon cotreatment with NFN1

(Figure 3B). Taken together, these experiments with two chemi-

cally independent ALDH2 inhibitors support a biological role for

Aldh2 in the bioactivation of 5-nitrofuran melanocytotoxicity in

zebrafish.

ALDH2 is regulated in a tissue-specific manner, and in partic-

ular, εPKC can directly modulate ALDH2 during ischemic pre-

conditioning in the heart (Chen et al., 2008, 2010). We identified

the PKC inhibitors PKC412 and Ro318220 as chemical suppres-

sors of 5-nitrofuran activity in zebrafish by screening a library

of 80 known kinase inhibitors. Treatment of 3 dpf zebrafish

embryoswith PKC412 or Ro318220 had no effect onmelanocyte

viability (Figure 3B). However, treatment with PKC412 or

Ro318220 prevented NFN1 activity in melanocytes (Figure 3B).

We tested a third PKC inhibitor, GF109203X, that can inhibit

ethanol or dopamine D2 receptor agonist NPA-induced intracel-

lular translocation of εPKC (Yao et al., 2008). GFX109203X had

no effect on melanocytes alone, but we found that it could also
883–892, July 27 , 2012 ª2012 Elsevier Ltd All rights reserved 885



Figure 3. Aldh2 Is Responsible for 5-Nitrofuran Activity in Zebrafish

(A) A predicted model of daidzin binding to zebrafish ALDH2b, based on key residues involved in the human ALDH2-daidzin (PDB 2vle) protein-ligand interaction

(Lowe et al., 2008). The equivalent residues in zebrafish Aldh2b are shown. Human ALDH2/Zebrafish Aldh2 2b (Phe-459/Phe-457; Phe-170/Phe-186;

Trp-177/Trp-193; Val-120/Val-136; Phe-296/Phe-312; Phe-292/Ile-308; Asp-457/Asn-473; Cys-303/Cys-319).

(B) Aldh2 and PKC inhibitors prevent 5-nitrofuran activity in zebrafish. Examples of zebrafish embryos treated at 2 dpf with 20 mM of the ALDH inhibitors daidzin

or DSF for 1 hr, or with 20 mM of the PKC inhibitors PKC412 or Ro318220, and then treated with 5 mM NFN1 or 0.1% DMSO alone for 2 days. Experiments were

repeated at least three times, with n > 10 embryos per condition.

(C) Examples of 2 dpf zebrafish embryos pretreated with DMSO, 30 mM of daidzin, or the PKC inhibitor GFX 109203X for 1 hr, and then treated with 50 mM

nifurtimox for 7 hr. Punctatemelanocytes are indicated. Experiments were repeated at least three times (n = 5–10 embryos per condition) and treatment-condition

cohorts blind scored.

(D) Daidzin alters background adaptation in zebrafish embryos. (Left) Images of fixed zebrafish embryos (5 dpf) treated with 0.1% DMSO or 10 mM daidzin, and

shifted from a dark environment to a light environment (light), or vice versa (dark). The average percentage of melanin coverage (within the area indicated by the

red dotted outline) for each treatment condition ± SD is indicated. (Right) Box plot of melanin coverage (y axis) for each embryo in different treatment conditions

(x axis). Individual values taken from one of three experiments are shown as red circles. The box depicts the lower quartile and the upper quartile, with the median

depicted by the intersecting line. Whiskers extend between the minimum and maximum of all the data. In DMSO-treated embryos, melanocytes are significantly

contracted in the light and expanded in the dark (p < 0.001, n = 20 for each condition; ANOVA, 95% confidence interval [CI] 11.081[5.966, 16.195]). Zebrafish

treatedwith daidzin contract their melanin in response to light environment but do not significantly expand their melanin in response to dark environments (95%CI

0.563[�4.552, 5.677]). The experiment was repeated three separate times with embryos at 5 dpf (n = 5–20 embryos per condition) and once with embryos at 4 dpf

(n = 10 embryos per condition).

See also Figure S3.
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suppress NFN1 melanocytotoxicity (Figure S3). GFX109203X

was also effective at preventing the activity of nifurtimox in

zebrafish melanocytes (Figure 3C). Although we do not know if
886 Chemistry & Biology 19, 883–892, July 27 , 2012 ª2012 Elsevier
PKC directly enhances Aldh2b activity or expression in zebra-

fish, these results suggest that PKC activity is important for

5-nitrofuran cytotoxicity within the melanocyte.
Ltd All rights reserved



Figure 4. Cross-Species Conservation of 5-Nitrofuran-ALDH2 Interaction in Yeast

(A) Yeast cultures were treated with NFN1 (red) or NFN1.1 (blue). OD values were normalized against DMSO-treated controls. The mean of two experiments with

three replicates is shown; error bars represent the SE.

(B) Daidzin-NFN1 drug interaction was assessed by combination matrix assays in 96 well plates. Cultures were treated with NFN1 (red) or with daidzin in the

absence (blue) or presence (black) of 50 mM NFN1. The average normalized growth of three experiments is shown; error bars represent the SE.

(C) Normalized growth in the presence of NFN1 was determined for wild-type (blue) and the Dald6 strain (red). Data points are the mean of four replicates; error

bars represent the SE.

(D) NFN1 dose response curves for Dald2Dald3 (red) and the Dald2Dald3Dald6 (black) strains, as well as wild-type control (blue), were generated and normalized

against DMSO-treated controls. The average of three replicates is shown; error bars represent the SE.

(E) Control (n = 24) or aldh2b splice-site morphants (n = 62) at 3 dpf without NFN1 treatment (left) or with 0.8 mMNFN1 treatment (right). Embryos were scored as

class I (strong) or class II (mild) sensitivity to NFN1 (bar graph). aldh2bmorphant embryos were less sensitive to NFN1 treatment compared to control morphants

(p = 0.007; 95% CI [0.139, 0.528]; Fisher’s exact test).

See also Figure S4.
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ALDH2 Contributes to Background Adaptation
in Zebrafish Melanocytes
We wanted to understand why zebrafish melanocytes were

sensitive to 5-nitrofuran treatment, when this is not a feature of

5-nitrofuran toxicity in patients. Unlike human melanocytes,

zebrafish melanocytes respond to environmental conditions by

concentrating or dispersing their melanosomes in light or dark

conditions, respectively (Logan et al., 2006). This effect is termed

background adaptation and is a dopaminergic response (Logan

et al., 2006). A role of Aldh2 in zebrafish background adaptation

has not been previously identified, but aldh2b is specifically

expressed in developing pigment cells (Thisse et al., 2001),

and ALDH2 is required for dopamine metabolism in mammals

(Chen et al., 2010). We tested the effects of ALDH2 inhibition

on background adapation in zebrafish and found that daidzin

treatment blocked dispersal of melanin in zebrafish melanocytes

in the dark (Figure 3D). These observations suggest that Aldh2

activity is required for regulation of zebrafish background adap-

tation, and they may explain the sensitivity of zebrafish melano-

cytes to 5-nitrofurans.

Multispecies Conservation of the 5-Nitrofuran-ALDH
Interaction
Chemical-genetic and chemical-chemical interactions identified

in yeast are often conserved in multicellular species including

zebrafish and mammals (Ishizaki et al., 2010). Budding yeast

have five ALDH genes (ALD2–6) that all share 42%–48% simi-

larity with human ALDH 1/2 (Figure S2). Yeast also have two

fungal-specific nitroreductase-like proteins, but these share little

similarity with the nitroreductases that are known to reduce nitro-

furans (de Oliveira et al., 2007). To establish that 5-nitrofurans
Chemistry & Biology 19,
also showed activity in yeast, liquid cultures were treated with

increasing concentrations of NFN1 (Figure 4A). Yeast were highly

sensitive to NFN1, which inhibited growth even at submicromo-

lar concentrations. In contrast, treatment with the control furan

compound, NFN1.1, had no effect on yeast growth, even at

100 mM. These data indicate that the toxicity of 5-nitrofurans in

yeast is dependent on the 5-NO2 moiety. To test whether

NFN1 toxicity was dependent on ALDH activity, we tested

drug combinations in yeast cultures. Increasing concentrations

of daidzin rescued the effects of 50 mM NFN1 on the yeast

growth rate in a dose-dependent fashion, whereas daidzin alone

had no effect on growth (Figure 4B).

Mutations that render yeast resistant to a specific compound

can provide direct links to the target pathway (Ishizaki et al.,

2010). We determined whether yeast strains bearing deletions

in each of the ALD genes (orthologs of human and zebrafish

ALDH1/2) were resistant to 5-nitrofuran treatment. The ald2D,

ald3D, ald4D, and ald5D deletion strains each exhibited the

same sensitivity to NFN1 as wild-type (data not shown). In con-

trast, an ald6D strain was significantly less sensitive to NFN1

treatment, as was an ald2Dald3D double-deletion strain (Figures

4C and 4D). These effects of different aldmutations appeared to

be additive, as a triple ald2Dald3Dald6D deletion strain was

almost completely resistant to 50mMNFN1 treatment (Figure 4D).

Once activated, 5-nitrofurans cause DNA damage, and consis-

tent with this observation, we find that chemical-genetic profiles

in yeast indicate that disruption of DNA damage repair pathways

causes hypersensitivity to 5-nitrofurans (Figure S4).

To further validate the genetic dependence of 5-nitrofuran

bioactivity on Aldh2, we used morpholino oligonucleotides

(MOs) to knockdown aldh2b in zebrafish. Single-cell embryos
883–892, July 27 , 2012 ª2012 Elsevier Ltd All rights reserved 887



Figure 5. 5-Nitrofurans Bind and Are Substrates for Human ALDH2 In Vitro

(A) Binding of purified human ALDH2 by 5-nitrofuran probe (Pr-NFN), a furan control probe (Pr-FN), or streptavidin beads alone (No Probe). Arrow indicates

ALDH2 protein, ALDH2 input lane (0.5 mg).

(B) Schematic overview of chemical reaction used to monitor recombinant human ALDH2 activity and experimental design. In experiment C (red arrow), ALDH2

was incubated with 1% DMSO, NFN1, and NFN1.1 or Nifurtimox for 10 min., and then ALDH2 activity was assessed. In experiment D (red + blue arrows), ALDH2

was incubated with 1% DMSO, NFN1, or Nifurtimox for 10 min., incubated with 0.5 mM TCEP or buffer alone for a further 15 min., and then ALDH2 activity was

assessed.

(C) Bar graph of spectrophotometric analysis of the rate of production of NADH (monitored at 341 nm) by ALDH2 (expressed as a percentage of DMSO control

treatment) with DMSO, NFN1, NFN1.1, and Nifurtimox.

(D) Bar graph of spectrophotometric analysis of the rate of production of NADHby ALDH2 after combined treatment of DMSO, NFN1, and Nifurtimoxwith TCEP or

buffer. Enzyme buffer = 50 mM sodium phosphate (pH 7.4). Error bars are SD; experiments were repeated in triplicate.

Chemistry & Biology

ALDH2 Mediates 5-Nitrofuran Activity
were injected with a splice-site-blocking aldh2bMO and at 2 dpf

were treated with NFN1. PCR analysis of the splice-site MO indi-

cated that aldh2b morphants had reduced levels of correctly

spliced aldh2b transcript in addition to a misspliced transcript,

indicating that the aldh2b morphants are hypomorphic for

aldh2b (Figure S4). We consistently found that the splice-site-

blocking aldh2b MO conferred partial resistance to a low treat-

ment dose (0.8 mM) of NFN1 melanocytotoxicity (Figure 4E). An

aldh2b-translation-block MO also conferred partial resistance

to a short NFN1 treatment (Figure S4). We conclude that there

is a genetic dependence on Aldh2b for 5-nitrofuran activation

in zebrafish, in line with genetic studies in yeast.

5-Nitrofurans Are Substrates for Human ALDH2
There are 19 ALDH enzymes in humans, each with specific

targets and additional activities (Marchitti et al., 2008). To deter-

mine whether the 5-nitrofuran-ALDH2 interaction is conserved in

humans we asked whether human ALDH2 could bind 5-nitrofu-

rans directly. Purified human ALDH2 was added to the 5-nitro-

furan probe (Pr-NFN), a furan control probe (Pr-FN), or streptavi-

din beads alone. In an analogous manner to the experiments

using zebrafish extracts, human ALDH2 binding was strongly

enriched in association with the 5-nitrofuran, while the control

furan and the streptavidin beads alone did not bind ALDH2

(Figure 5A).

Given our results with daidzin in yeast and zebrafish, we

proposed that NFN1 was probably a substrate of ALDH

enzymes. ALDH2 enzymes have reducing potential as well as
888 Chemistry & Biology 19, 883–892, July 27 , 2012 ª2012 Elsevier
dehydrogenase activity (Chen et al., 2002; Marchitti et al.,

2008), and it has been shown that in the absence of a reducing

agent, ALDH2 inactivates itself during the bioactivation of sub-

strates such as nitroglycerine (GTN) (Chen et al., 2010; Wenzel

et al., 2007). Consistent with this, we found that in the absence

of a reducing agent, NFN1, but not the no-nitro NFN1.1, inacti-

vated recombinant human ALDH2 in vitro (Figures 5B–5D). Like-

wise, we found that ALDH2 activity was reduced by 39.6%,

77.6%, and 96.5% following 10 min incubation with 5 mM nifurti-

mox, 16.7 mM nifurtimox, and 50 mM nifurtimox, respectively

(Figure 5C). Importantly, as with the zebrafish studies, these

experiments were performed with nifurtimox at concentrations

that are within the range of those recorded in the serum of

nifurtimox-treated patients (Paulos et al., 1989; Saulnier Sholler

et al., 2011). For both NFN1- and nifurtimox-inactivated ALDH2,

the subsequent addition of a reducing agent (TCEP) led to partial

reactivation of the enzyme, in line with literature studies using

the accepted substrate, GTN (Figure 5D). We observe that the

NFN1-ALDH2 interaction is stronger than the nifurtimox-ALDH2

in zebrafish and in our biochemical assay. This raises the

possibility that the mechanism of action of nifurtimox is more

complex than that of NFN1, or that NFN1 may in fact be a more

effective 5-nitrofuran substrate of ALDH2 than nifurtimox.

Daidzin Does Not Affect Nifurtimox Trypanocidal
Activity
In an attempt to develop a clinically testable hypothesis, we

examined the genome sequence of the trypanosomatids to
Ltd All rights reserved



Figure 6. ALDH2 in Trypanosomes

(A) Schematic of a 5-nitrofuran-daidzin combi-

nation-treatment strategy. ALDH2 can cause

5-nitrofuran bioactivtion in ALDH2-expressing

cells (e.g., zebrafish melanocytes), but not in

trypanosomes because they lack ALDH2 (see also

Figure S2). We propose that cotreatment with an

ALDH2 inhibitor such as daidzin could limit

5-nitrofuran toxicity without interfering with anti-

trypanosome activity.

(B) Viability of Trypanosoma brucei (bloodstream

form) at 37�C after 72 hr treatment with increasing concentrations of nifurtimox in the absence or presence of daidzin (100 mM). Experiments were conducted

twice in replicates of four; a representative set of data from one experiment containing four replicates is shown. ED, effective dose.
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identify possible ALDH enzymes in T. brucei, T. cruzi and

Leishmania (Figure S2) (Aslett et al., 2010; Cross, 2005; Lowe

et al., 2008; Marchitti et al., 2008; Sobreira et al., 2011). Given

the absence of an obvious ALDH2 in Trypanosoma we hypothe-

sized that while Aldh2 inhibition would protect the zebrafish

melanocytes and yeast cells from 5-nitrofuran activity, ALDH2

inhibitors might not protect trypanosomes from 5-nitrofuran

sensitivity (Figure 6A). We grew the bloodstream-form T. brucei

(strain 427) in HMI9 media and determined the trypanocidal

activity of nifurtimox in the absence and presence of daidzin.

Trypanosomes were stained with an Alamar Blue vital dye as

an indicator of Trypanosoma survival. We found that nifurtimox

was equally effective in the absence (ED50 = 2.12 ± 0.17 mM;

slope 1.00) and presence (ED50 = 2.18 ± 0.10 mM; slope 0.98)

of daidzin (Figure 6B). The trypanocidal effect of nifurtimox

against bloodstream T. brucei obtained in these assays was

comparable to previously observed effects (Priotto et al., 2009;

Sokolova et al., 2010). Daidzin treatment alone showed no trypa-

nocidal effect up to 100 mM (data not shown). We conclude that

daidzin does not interfere with 5-nitrofuran trypanocidal activity,

consistent with a lack of an ALDH2 in trypanosomes.

DISCUSSION

We have used a multispecies, chemical-biology approach to

identify 5-nitrofurans as substrates for ALDH2. We have identi-

fied a series of 5-nitrofuran compounds by phenotypic screening

in zebrafish and have shown that 5-nitrofuran-specific melano-

cytotoxicity in vivo is mediated at least in part by Aldh2 (Figures

1 and 3). Zebrafish gene products are usually conserved in

humans and are often sensitive to clinically active drugs at phys-

iological concentrations (Zon and Peterson, 2005). As shown

here, phenotypic chemical screens in zebrafish are effective

because (1) the rapid and cell-type-specific toxicity of 5-nitrofu-

rans can be visualized in real time (Movie S1), (2) the whole

animal is amenable to pharmacological studies (Figures 1A and

1B), and (3) initial structure activity relationships can be deter-

mined to enable the design of biologically relevant probes for

affinity purification (Figure 2; Table 1).

Despite the benefits of phenotypic screens in zebrafish, target

identification remains a challenge in chemical biology (Laggner

et al., 2012; Taylor et al., 2010; Zon and Peterson, 2005). Here,

we use parallel approaches to enable identification of an impor-

tant target of 5-nitrofurans. First, we used affinity chromatog-

raphy to identify Aldh2 as a 5-nitrofuran binding partner and

confirmed the dependence on the 5-NO2 functional group using
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an inactive furan probe (Figure 2). Second, we used computa-

tional modeling to predict that the ALDH2 inhibitor daidzin would

be active in zebrafish (Figure 3A), and used two chemically

distinct ALDH2 inhibitors (daidzin and DSF) to confirm the bio-

logical relevance of the 5-nitrofuran-Aldh2 interaction in vivo

(Figures 3B and 3C). Third, we showed cross-species conserva-

tion of the drug-drug interactions in the evolutionarily distant

budding yeast system (Figures 4A and 4B). Fourth, we used

genetic mutants in yeast and gene knockdowns in zebrafish to

validate a genetic dependence on ALDH activity for 5-nitrofuran

activity in vivo (Figures 4C–E). Fifth, we showed that the 5-nitro-

furan-ALDH2 interaction is maintained with human ALDH2 (Fig-

ure 5A). Finally, using a literature-precedent method, we showed

that 5-nitrofurans are direct substrates of human ALDH2 (Figures

5B–5D).

We find that zebrafishmelanocytes are sensitive to the 5-nitro-

furans because unlike human melanocytes, zebrafish melano-

cytes use ALDH2 to elicit a melanocyte background adaptation

response (camouflage; Figure 3D). While additional host

enzymes, possibly including other ALDHs, may bioactivate

5-nitrofurans in patients, we speculate that, in line with our

studies in zebrafish and yeast, daidzin may protect cells that

specifically express ALDH2, such as the liver and dopaminergic

neuronal cells (Figure 6A). Although 500million individuals world-

wide have an ALDH2-inactive variant (Druesne-Pecollo et al.,

2009), it is unknown whether these genetic variants contribute

to the variability of 5-nitrofuran-associated side effects; our

chemical-genetic data in yeast and zebrafish (Figure 4) suggest

that this hypothesis could be examined in the clinic. 5-Nitrofu-

rans have also recently become anticancer agents, and nifurti-

mox is currently in clinical trials for relapsed/refractory pediatric

neuroblastoma and medulloblastoma (Saulnier Sholler et al.,

2011). It is possible that 5-nitrofuran bioactivation by ALDH2

explains the sensitivity of these dopaminergic cancers to nifurti-

mox. We find that human melanoma cells are also sensitive to

nitrofurans, that DNA damage occurs, and that this activity is

dependent on the NO2 functional group present in NFN1 (Fig-

ure S4). Taken together with the hypersensitivity of yeast DNA-

damage mutants to NFN1, these results suggest that once acti-

vated, the cytotoxic effects of 5-nitrofurans arise through a

similar DNA-damage-dependent mechanism across species,

although it is unclear at this time whether NTR- and ALDH2-

mediated activation of 5-nitrofurans leads to exactly the same

toxic intermediates.

We argue that NFN1, but not the no-nitro NFN1.1, is a

substrate for recombinant human ALDH2 in vitro (Figure 5).
883–892, July 27 , 2012 ª2012 Elsevier Ltd All rights reserved 889
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Analogous observations have been made in ALDH2 bioactiva-

tion of nitroglycerin (Chen et al., 2010; Wenzel et al., 2007),

thereby raising the interesting question of how 5-nitrofurans

are bioactivated by ALDH2. ALDH2 enzymes have reducing

potential as well as dehydrogenase activity (Chen et al., 2002;

Marchitti et al., 2008), and we envision that ALDH2 may reduce

the nitro group of 5-nitrofurans, potentially generating nitroso-,

hydroxylamine, and/or amine intermediates with concomitant

oxidation of the enzyme. Interestingly, dithiothreitol (DTT) can

react with 5-nitrofurans, leading to oxidation of DTT to the corre-

sponding disulfide (L.Z. and N.W., unpublished data). As DTT

contains two thiols in close proximity, in an analogous manner

to the active site of ALDH2, we suggest that the reactions of

5-nitrofurans with ALDH2 and DTT may be linked by a common

mechanism.

5-Nitrofurans are important therapeutic agents, yet many

patients suffer from unacceptable drug-induced toxic side

effects. One approach to solving this problem is to identify new

antitrypanosome drug targets, such as the recently identified

N-myristoyltransferase inhibitors (Frearson et al., 2010) that

have been validated in mouse trypanosomiasis models. Based

on our studies in model systems and in vitro, we propose

a complementary approach that involves targeting and mini-

mizing the toxic side effects of current therapies, thereby allow-

ing more patients to benefit from approved treatment regimes

that are already available (Figure 6A). If the 5-nitrofuran-ALDH2

interaction is conserved in patients, then combination therapy

to treat 5-nitrofuran toxic side effects may be testable, because

(1) ALDH2 is a targetable enzyme; (2) the ALDH2 inhibitors daid-

zin and DSF are both currently available at low cost and show

activity in humans with limited toxicity; and (3) our analysis indi-

cates that T. brucei and T. cruzi do not have a close ALDH2

homolog (Figure S2), nor is T. brucei protected from nifurtimox

by daidzin (Figure 6B). Our findings provide impetus for address-

ing the role of ALDH2 in 5-nitrofuran activation in the preclinical

and clinical setting.

SIGNIFICANCE

Discovering how drugs work in vivo and identifying unin-

tended drug targets is a fundamental challenge in chemical

biology. Nifurtimox is one of only two drugs used to treat

Chagas disease, caused by Trypanosoma cruzi infection,

which is estimated to affect over 10 million people per year

and kills between 15,000 and 50,000 annually. Like other

5-nitrofurans, nifurtimox is a prodrug that is activated by

parasite-specific nitroreductases to a toxic form. Despite

the absence of nitroreductases in humans, 5-nitrofurans

cause significant clinical off-target toxic side effects that

interfere with patients’ ability to complete the treatment

course. There has been no significant improvement in

trypanosome disease treatment for 40 years, and there is

currently no treatment strategy in patients to reduce the

burden of these toxic side effects of existing drugs.

Here, we use model organism chemical genetics to

explore the basis for this toxicity. We use the zebrafish

model (1) to identify toxic effects of 5-nitrofuran compounds;

(2) as a platform for structure-activity relationships and

target identification; and (3) to show that the toxicity of
890 Chemistry & Biology 19, 883–892, July 27 , 2012 ª2012 Elsevier
5-nitrofurans in zebrafish can be prevented by cotreatment

with aldehyde dehydrogenase 2 (ALDH2) inhibitors. We

then show that the ALDH2-5-nitrofuran interaction is

conserved in yeast and with human ALDH2 and argue that

5-nitrofurans are a direct substrate of human ALDH2. We

extend these findings to show that the 5-nitrofuran nifurti-

mox also has Aldh2-dependent activity in zebrafish, and

that it is a direct substrate of human ALDH2. Thus, we

show in model systems that drug treatments combining

ALDH2 inhibitors with 5-nitrofurans block the 5-nitrofuran

unintended biological activity, and we propose that similar

treatments based on a readily available combination of inex-

pensive approved drugs may prevent some of the clinical

side effects caused by 5-nitrofurans.

EXPERIMENTAL PROCEDURES

Zebrafish Small-Molecule Screens and Treatments

All zebrafish work was done in accordance with United Kingdom Home Office

Animals (Scientific Procedures) Act (1986) and approved by the University of

Edinburgh Ethical Review Committee. The chemical library was a collection

of 1576 Maybridge compounds (Ishizaki et al., 2010). Two 4 hpf embryos

were arrayed in 96 well plates containing 10 mM of compound in 1% DMSO

in 300 ml of E3 embryo medium. Embryos were assessed and imaged for

phenotypic changes at 28, 36, 48, and 56 hpf. For the screening of The

Screen-Well Kinase Inhibitor Library (Enzo Life Sciences), five embryos

(24 hpf) were placed into each well of a 24 well plate (Corning) containing

20 mM NFN1 (BTB05727, Maybridge Screening compounds) and 5, 10, or

20 mM of a corresponding compound (total volume 1 ml per well). For cotreat-

ment experiments, five 36–48 hpf embryos were arrayed in 24 well plates in

600 ml to 1 ml of E3 embryo medium and pretreated with ALDH or PKC inhib-

itors (1–7 hr), and then treated with 0.5–5 mM NFN1 or 50 mM nifurtimox.

Affinity Purification and Coimmunoprecipitation

with 5-Nitrofuran Beads

Lysate was generated from approximately 900 3 dpf zebrafish in 300 ml of

RIPA buffer (2 M Tris pH 7.5, 5 M NaCl, 1% NP40, Na-deoxycholate, 10%

SDS, 0.5 M NaF, 1 M b-glycosyl phosphate and protease-inhibitor cocktail

tablet [Roche]), centrifuged at 4�C (25 min), transferred to a new tube, and

kept on ice. Protein capture was performed using a pull-down biotinylated

protein:protein interaction kit (Pierce) using the biotinylated chemical probe

(5 ml 10 mg/ml DMSO solution), and bead complexes were washed with

0.1 M NaCl TBS buffer four times to reduce nonspecific binding. Beads

were boiled in 33 Laemmli buffer with DTT for 5 min and run on 10% SDS-

PAGE gel for electrophoresis. Captured proteins were visualized with a

Silverquest silver-staining kit and/or Colloidal blue-staining kit (Invitrogen).

Themass spectroscopy was analyzed in the University of Dundee FingerPrints

Proteomics Facility. For western blotting, protein was detected using rabbit

anti-zebrafish Aldh2 (1:1000) and goat anti-rabbit antibody (1.5:5000;

Calbiochem).

In Vitro Binding Assay

ALDH2 human recombinant protein (ProSpec) was added to 4 ml 10 mg/ml of

chemical probe with 100 ml TBS buffer and incubated at room temperature for

1 hr. Streptavidin bead suspension (50 ml) was added to the mixture (room

temperature; 1 hr), the supernatant was removed, and beads were washed

with 4 3 0.1 M NaCl TBS buffer, boiled in 33 Laemmli buffer with DTT for

5 min, and run on 10% SDS-PAGE gel for electrophoresis. The bands were

detected by silver staining (Invitrogen).

Molecular Modeling

Using methods analogous to those used previously (Medda et al., 2009), the

zebrafish Aldh2b homology model was generated using the Swiss model

server using bovine ALDH2 (PDB code 2AG8). The daidzin structure was

generated using the PRODRG server. The docking studies were performed
Ltd All rights reserved
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using the program GOLD. All visualization and analysis was performed using

Pymol.

Yeast Growth Assays

Overnight S. cerevisiae BY4741 cultures in SC media were diluted

(OD600 0.025) and dispensed into 96 well Corning Costar assay plates. Quan-

titative growth curves were generated in Tecan Sunrise plate readers at 30�C
564 rpm with automated absorbance reads every 15 min. Growth-curve data

were used to determine when control cultures reached late log phase, and OD

values of the entire plate at that time point were used to calculate normalized

growth values. Data were analyzed with custom R scripts to generate plots.

For the deletion-strain growth curves, normalization was performed against

control wells for each strain.

Trypanocidal Studies

The trypanocidal activity of nifurtimox in the absence and presence of daidzin

(100 mM) against Trypanosoma brucei bloodstream form (strain 427) were

cultured at 37�C in HMI9 medium supplemented with 2.5 mg ml–1 G418, and

viability was determined using the Alamar Blue test, as described previously

(Mikus and Steverding, 2000). The data were fitted using GraFit software to

obtain ED50 ± SD and slope factors.

Supplemental Experimental Procedures

The synthesis of all theNFNs andNFN-based affinity probes is described in the

Supplemental Information.

SUPPLEMENTAL INFORMATION

Supplemental Information includes four figures, one table, Supplemental

Experimental Procedures, and one movie and can be found with this article

online at http://dx.doi.org/10.1016/j.chembiol.2012.05.017.
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