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Deletion of FPS1, Encoding Aquaglyceroporin Fpslp, Improves Xylose
Fermentation by Engineered Saccharomyces cerevisiae
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Accumulation of xylitol in xylose fermentation with engineered Saccharomyces cerevisiae presents a major problem that
hampers economically feasible production of biofuels from cellulosic plant biomass. In particular, substantial production
of xylitol due to unbalanced redox cofactor usage by xylose reductase (XR) and xylitol dehydrogenase (XDH) leads to low
yields of ethanol. While previous research focused on manipulating intracellular enzymatic reactions to improve xylose
metabolism, this study demonstrated a new strategy to reduce xylitol formation and increase carbon flux toward target
products by controlling the process of xylitol secretion. Using xylitol-producing S. cerevisiae strains expressing XR only,
we determined the role of aquaglyceroporin Fpslp in xylitol export by characterizing extracellular and intracellular xyli-
tol. In addition, when FPS1 was deleted in a poorly xylose-fermenting strain with unbalanced XR and XDH activities, the
xylitol yield was decreased by 71% and the ethanol yield was substantially increased by nearly four times. Experiments
with our optimized xylose-fermenting strain also showed that FPS1 deletion reduced xylitol production by 21% to 30%
and increased ethanol yields by 3% to 10% under various fermentation conditions. Deletion of FPS1 decreased the xylose
consumption rate under anaerobic conditions, but the effect was not significant in fermentation at high cell density. Dele-
tion of FPSI resulted in higher intracellular xylitol concentrations but did not significantly change the intracellular NAD*/
NADH ratio in xylose-fermenting strains. The results demonstrate that Fpslp is involved in xylitol export in S. cerevisiae
and present a new gene deletion target, FPSI, and a mechanism different from those previously reported to engineer yeast

for improved xylose fermentation.

he need to replace conventional fossil fuels with alternative

renewable fuels is increasing in the face of growing demand for
energy and rising concerns about greenhouse gas emissions (1).
Lignocellulosic biomass from nonfood stocks, such as agricultural
and forestry residues, has been recognized as a promising and
sustainable source for producing liquid biofuels (2-5). Xylose is
the second most abundant sugar in lignocellulosic biomass, com-
prising up to 35% of the total carbohydrates (6). Therefore, effi-
cient utilization of xylose has to be ensured for economically fea-
sible production of lignocellulosic biofuels.

Saccharomyces cerevisiae is a widely used microorganism for
biofuel production (7). However, wild-type S. cerevisiae cannot
metabolize xylose because of the lack of a pathway to efficiently
convert xylose to D-xylulose, which the organism can metabolize
via the pentose phosphate pathway after phosphorylation (6).
Two types of xylose-assimilating pathways have been identified
and used to engineer xylose-utilizing S. cerevisiae strains. One is
the redox cofactor-dependent xylose reductase (XR)/xylitol dehy-
drogenase (XDH) pathway (8-15), and the other is the redox-
neutral xylose isomerase (XI) pathway (16-23). Introduction of
the XR/XDH pathway into S. cerevisiae by metabolic engineering
approaches has been widely studied, but redox imbalance is a key
problem, because XR can use both NADPH and NADH, while
XDH uses NAD* exclusively (6, 24). The cofactor imbalance may
lead to substantial xylitol accumulation and low ethanol yields (8,
9, 25, 26). Expressing the XI pathway can avoid the cofactor im-
balance problem under anaerobic conditions, but xylitol accumu-
lation has also been observed in strains expressing XI (17, 18, 20),
because the nonspecific aldose reductase encoded by the GRE3
gene can produce xylitol from xylose (27). Various rational ap-
proaches have been used to reduce xylitol accumulation and im-
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prove xylose utilization, such as optimizing the expression levels
of xylose-assimilating reactions (26), engineering the cofactor
preference of XR/XDH enzymes (28-33), perturbing the pentose
phosphate pathway by gene knockout or overexpression (34-39),
or deleting GRE3 in strains expressing the XI pathway (21, 40, 41).
While extensive previous efforts focused on manipulating intra-
cellular metabolic reactions to improve xylose utilization and re-
duce by-product (e.g., xylitol) accumulation, controlling the xyli-
tol export process might also be a meaningful strategy for reducing
its formation and increasing carbon flux toward target products.
However, a xylose transporter in S. cerevisiae has not been re-
ported.

The major intrinsic protein (MIP) family is a group of integral
membrane channel proteins found in a wide range of organisms
from bacteria to humans (42). Fpslp has been identified in S.
cerevisiae as a yeast member of the MIP family and is known as an
aquaglyceroporin involved in glycerol transport by facilitated dif-
fusion (43). It has also been found that Fpslp is involved in the
uptake of acetic acid (44, 45) and arsenite and antimonite (45) and
the regulation of osmotolerance (46). Since xylitol and glycerol
share similar structures with linear polyols and Fpslp has shown
relatively broad transport capacity, we hypothesized that Fpslp
might be involved in xylitol transport. The Escherichia coli aqua-

Received 12 February 2013 Accepted 3 March 2013

Published ahead of print 8 March 2013

Address correspondence to Yong-Su Jin, ysjin@illinois.edu.

Copyright © 2013, American Society for Microbiology. All Rights Reserved.
doi:10.1128/AEM.00490-13

aem.asm.org 3193


http://dx.doi.org/10.1128/AEM.00490-13
http://aem.asm.org

Wei et al.

TABLE 1 Strains and plasmids used in this study

Strain or plasmid ~ Description Reference
Strains
D452-2 MATa leu2 his3 ura3 canl 70
D10 D452-2 leu2::LEU2 pYS10 53
D10-fps1A D10 fps1A::KanMX This study
SR6 D10 ura3::URA3 pSR6-X123 51
SR6-fpsIA SR6 fpsIA:KanMX
SR8 SR6 hisI::HISI pSR3-X23, evolved, and ALD6 51
deletion by ald6::AURI-C pAUR_d_ALD6
SR8-fpsIA SR8 fps1A:KanMX
D10F D10 his3::HIS3 p403-FPS1 This study
D10c D10 his3::HIS3 pRS403 This study
Plasmids
pYS10 pRS305 TDH3P-XYLI-TDH3T 11
pSR6-X123 pRS306 TDH3P-XYL1-TDH3T PGKI1P-XYL2- 51
PGKIT TDH3P-XYL3-TDH3T
pSR3-X23 PpRS403 PGKIP-XYL2-PGKIT 51
TDH3P-XYL3-TDH3T
pAUR_d_ALD6 pAURIO01 containing the truncated ALD6 gene 54
pRS403 Yeast integrative vector with HIS3 marker 70
p403-FPS1 pRS403 TDH3P-FPSI-CYCIT This study

glyceroporin GIpF has been reported to mediate the transport of a
range of linear polyalcohols, including glycerol and xylitol (47).
Also, a study has shown that expression of hyperactive Fps1-Al in
a gpdIA gpd2A S. cerevisiae mutant strain could mediate the up-
take of xylitol at a much lower rate than glycerol uptake, but the
wild-type Fpsl did not mediate detectable uptake of xylitol in the
same assay (48). A transport study using secretory vesicles pre-
pared from cells overexpressing Fpslp showed its capability for
xylitol transport at a rate 1 order of magnitude lower than that for
glycerol transport (48). However, the actual role of Fpslp in
xylitol transport in living yeast cells is unclear. This study
aimed to determine the role of Fpslp in xylitol transport in
engineered S. cerevisiae strains during xylose metabolism and
the effect of deleting the FPSI gene on xylose fermentation for
biofuel production.

MATERIALS AND METHODS

Plasmid and strain construction. The plasmids and strains used in this
study are summarized in Table 1. The S. cerevisiae FPSI gene, PCR ampli-
fied from the genomic DNA of the D452-2 strain using primer pairs
FPS1-fand FPSI-r, was cloned into the yeast integrative plasmid pRS403
under the control of the TDH3 promoter and CYCI terminator using Spel
and Sall restriction enzyme sites, yielding the plasmid pRS403-FPS1. The
TOPI10 E. coli strain for cloning was grown in Luria-Bertani medium at
37°C, and 50 pg/ml of ampicillin was added to the medium when re-
quired. Transformation of the plasmid constructs into S. cerevisiae strain
D10 overexpressing XYL was performed using the yeast EZ-Transforma-

TABLE 2 Primers for PCR amplification

tion kit (BIO 101, Vista, CA). Positive transformants were selected on
synthetic complete medium containing 20 g/liter glucose (SCD) with
amino acids or nucleotides added as necessary. A yeast strain overexpress-
ing the FPS1 gene (D10F) and a control strain (D10c) were obtained, and
introduction of the overexpression cassette was confirmed by diagnostic
PCR with primer pairs targeting the TDH3 promoter (TDH3-f) and FPS1
(Table 2). The loxP-KanMX-loxP cassette for FPSI gene deletion was PCR
amplified with primers that target the KanMX marker gene on the plasmid
pUG6 (49), with about 50-bp sequences homologous to sequence up-
stream (FK-f) and downstream (FK-r) of the FPSI gene (Table 2). Trans-
formation of PCR products into S. cerevisiae was performed using lithium
acetate (LiAc)-polyethylene glycol (PEG) methods (50). Positive transfor-
mants were selected on YP medium (10 g/liter of yeast extract and 20
g/liter of peptone) containing 20 g/liter of p-glucose (YPD) with 200
pg/ml of Geneticin G418. Diagnostic PCR with primer targeting ~750 bp
upstream of the FPSI gene (Fd-f) and the KanMX-specific primer
(KanMX-r) was performed to confirm successful deletion. All other
strains used in the study are listed in Table 1. Specifically, the recombinant
xylose-fermenting S. cerevisiae strain SR8 was constructed previously in
our laboratory (51) through (i) heterologous expression of XYL1 (coding
for XR), XYL2 (coding for XDH), and XYL3 (coding for XK) from Schef-
fersomyces stipitis in S. cerevisiae D452-2 and optimization of the expres-
sion levels of XR, XDH, and XK; (ii) laboratory evolution on xylose; and
(iii) deletion of ALD6, coding for acetaldehyde dehydrogenase.

Culture conditions and fermentation experiments. Yeast strains
were routinely cultivated at 30°C in YPD. Fermentation experiments un-
der oxygen-limited conditions were performed in 50 ml of fermentation
medium in a 250-ml Erlenmeyer flask at 30°C and 100 rpm. Anaerobic
batch fermentation experiments were performed at 30°C in serum bottles
sealed with butyl rubber stoppers. The media were prepared by flushing
with nitrogen that had passed through a heated, reduced copper column
to remove oxygen. Various fermentation media were used, depending on
the purpose of the experiments, including YP medium containing glucose
(20 g/liter) (YPD20), YP medium containing xylose (40 g/liter) (YPX40),
and YP medium containing glucose (20 g/liter) and xylose (20 g/liter or 40
g/liter) (YPD20X20 or YPD20X40, respectively). For experiment setup,
precultured cells in YPD medium were centrifuged and washed twice with
sterilized water. The harvested cells were inoculated into fermentation
medium, and initial cell densities were adjusted to around an optical den-
sity at 600 nm (ODy,) of 1 normally or an ODg, of 10 for high-cell-
density fermentations. All fermentations were performed in duplicate at
30°C and 100 rpm. Culture samples were taken from fermentation exper-
iments to measure the ODy, and metabolite concentrations. For anaer-
obic-fermentation experiments, samples were taken by sterile syringe and
with 26-gauge (26G) needles (BD, Franklin Lakes, NJ).

Intracellular xylitol and glycerol measurement. Extracts of intracel-
lular glycerol and xylitol were prepared in a way slightly modified from a
previous method (52). The SR8-fpsIA and SR8 strains were grown in
YPX40 medium under anaerobic conditions, and the D10-fpsIA and D10
strains were grown in YPD20X20 under oxygen-limited conditions, all in
duplicate. For each culture, four 10-ml samples were withdrawn during

Primer Sequence” Comment

FK-f TATTTTACCAAGTACGCTCGAGGGTACATTCTAATGCATTAAAAGACagctgaagcttcgtacgce FPS1 deletion cassette using
FK-r GCAGTATTTTTTTCTATCAGTCTATATTATTTGTTTCTTTTTCTTGTCTGTTTTCgcataggccactagtggatc a KanMX marker

Fd-f GTACATAACCGTAGGAAGGTACG FPS1 deletion confirmation
KanMX-r CTTTTCCTTACCCATGGTTGT

FPS1-f GCCACTAGTAAAAATGAGTAATCCTCAAAAAGCTC FPS1 overexpression
FPS1-r GCCCTCGAGTTATTTATTGCTGCCATTATATGAT

TDH3-f AGTTTATCATTATCAATACTCGCCATT

“ Nucleotide sequences in lowercase represent the sequence targeting the loxP-KanMX-loxP cassette used for FPS1 deletion. Underlined sequences represent restriction enzyme

sites.
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FIG 1 Fermentation profiles of the engineered S. cerevisiae D10 strain and D10-fpsIA strain in YP medium containing xylose (20 g/liter) and glucose (20
g/liter) (A and B) or YP medium containing glucose (20 g/liter) (C and D) under oxygen-limited conditions. The results are the means of duplicate
experiments; the error bars indicate standard deviations and are not visible when smaller than the symbol size. B, glucose; ®, xylose; A, xylitol; ¥, glycerol;

@, cthanol; O, ODyy.

the xylose consumption stage, as for the D10 and D10-fpsIA strains (at 24
h), or at mid-exponential phase in culture incubated with xylose, as for the
SR8 and SR8-fpsIA strains. The cells were pelleted and quickly washed
twice with 40 ml cold YP medium and centrifuged again at 4°C. The cells
were resuspended in 0.5 ml 50 mM Tris-HCI, pH 7.5. The cell pellets were
boiled for 15 min to extract intracellular glycerol and xylitol. As a control,
samples without boiling were also analyzed to consider potential contam-
ination of extracellular glycerol and xylitol. Samples were then centrifuged
to remove cellular debris, and the supernatant was used for measuring
glycerol and xylitol concentrations by high-performance liquid chroma-
tography (HPLC). The total protein in each sample was measured with a
bicinchoninic acid (BCA) protein assay kit (Pierce), and the value was
used to normalize the measured metabolite concentrations.

Intracellular NAD(H) and NADP(H) analysis. Intracellular cofactor
analysis was performed to compare strain SR8-fpsIA and strain SR8 in
anaerobic fermentation in YPX40. Yeast culture samples were taken
during the mid-exponential phase of cell growth. Intracellular NAD™,
NADH, NADP", or NADPH was extracted and measured using an
Enzychrom NAD*/NADH assay or NADP*/NADPH assay kit (Bioas-
say Systems, Hayward, CA) according to the manufacturer’s instruc-
tions.

Analytical methods. Xylose, glucose, glycerol, xylitol, acetate, and
ethanol concentrations were quantified by high-performance liquid chro-
matography (HPLC) (Agilent Technologies 1200 Series equipped with a
refractive-index detector). The Rezex ROA-Organic Acid H+ (8%) col-
umn (Phenomenex Inc., Torrance, CA) was used. The mobile phase
(0.005 N H,SO,) was eluted at a flow rate of 0.6 ml/min at 50°C. Cell
growth was monitored by the optical density at 600 nm using a UV-visible
spectrophotometer (Biomate 5; Thermo, NY).
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RESULTS

Effect of FPSI deletion on xylitol secretion. An S. cerevisiae strain
for producing xylitol was constructed by expressing only XR en-
coded by the XYLI gene from S. stipitis and was given the strain
name D10 (Table 1). Lacking the enzyme to further metabolize
xylitol (i.e., XDH), the D10 strain accumulated xylitol as the end
product from xylose metabolism, and a 1:1 molar ratio of produc-
tion of xylitol over xylose consumption was observed (53). Thus,
we deleted the FPSI gene in the D10 strain to evaluate how xylitol
excretion could be influenced. The D10-fps1A strain and the wild-
type D10 strain were examined for differential xylitol excretion in
YP medium with xylose and glucose, where glucose was necessary
to serve as the carbon and energy source and to provide cofactors
for the XR reaction, as xylose could not be metabolized beyond
xylitol. Both the D10 and D10-fpsIA strains fermented glucose to
ethanol and accumulated biomass first, followed by the conver-
sion of xylose to xylitol, where a considerable difference between
the two strains was shown (Fig. 1A and B). The D10 strain con-
verted all consumed xylose into xylitol within 80 h (Fig. 1A), butin
sharp contrast, the D10-fpsIA strain consumed xylose at an ex-
tremely low rate, and only 4 g/liter of extracellular xylitol was
produced at the end of the experiment (Fig. 1B). Glycerol concen-
trations in both cultures were not significant.

Notably, there was a significant delay in ethanol consump-
tion by the D10-fpsIA strain, while the D10 strain metabolized
ethanol immediately after glucose depletion and concurrently
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FIG 2 Intracellular xylitol concentration (g/g dry cell mass) normalized by
xylose consumption (g/g dry cell mass) in samples of strains D10 and D10-
fpsIA growing in YP medium containing xylose (20 g/liter) and glucose (20
g/liter) under oxygen-limited conditions (final unit after normalization, g/g
xylose). The results are the means of duplicate experiments; the error bars
indicate standard deviations.

converted xylose to xylitol. This observation gave rise to the
possibility that deficiency of xylitol production by the D10-
fpsIA strain might be due to FPSI deletion having negatively
affected ethanol uptake and thus resulted in a lack of carbon/
energy sources and cofactors for cell metabolism rather than
direct involvement of Fpslp in xylitol excretion. In order to
exclude this possibility, we tested the ethanol reassimilation
capability of the D10-fpsIA and D10 strains in medium con-
taining only glucose. When incubated with glucose under ox-
ygen-limited conditions, S. cerevisiae first consumes glucose
and then metabolizes ethanol produced from glucose fermen-
tation. If FPSI deletion hampered ethanol uptake, ethanol con-
sumption would be slowed, as observed in Fig. 1A and B. How-
ever, the experimental results showed that the D10-fpsIA strain
had an ethanol concentration profile and cell growth similar to
those of the D10 strain (Fig. 1C and D), suggesting that the
impaired xylitol production by the D10-fpsIA strain was not
due to the limitation in ethanol consumption, i.e., availability
of a carbon source and cofactors.

Intracellular xylitol concentrations were determined from cul-
ture samples taken at 24 h. Because the D10 strain and the D10-
fps1A strain consumed different amounts of xylose, the intracel-
lular xylitol concentration was normalized by xylose consumption
to illustrate the relative xylitol accumulation inside the cell. The
D10-fpsIA strain accumulated twice as much xylitol inside the cell
as the D10 strain (Fig. 2), indicating that FPSI deletion could
block xylitol export. Therefore, the most likely explanation for the
deficiency of xylitol excretion by the D10-fpsIA strain is that lack
of Fps1p hindered xylitol export and accumulation of intracellular
xylitol impeded the XR reaction.

Effect of FPS1 overexpression on xylitol secretion. In order to
cross-validate the role of Fps1p in xylitol excretion in S. cerevisiae,
we also investigated the effects of FPSI overexpression in the D10
strain. An FPSI overexpression cassette was integrated into the
D10 strain, resulting in the DI10F strain, and the control strain
D10c was also constructed by transformation with an empty inte-
grative plasmid (Table 1). As expected, the FPSI-overexpressing
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FIG 3 Fermentation profiles for the engineered S. cerevisiae strain D10F (A)
and the control strain D10c (B) in YP medium containing xylose (40 g/liter)
and glucose (20 g/liter) under oxygen-limited conditions. The results are the
means of duplicate experiments; the error bars indicate standard deviations
and are not visible when smaller than the symbol size. B, glucose; ®, xylose; A,
xylitol; ¥, glycerol; @, ethanol; O, OD.

strain (D10F) converted xylose into xylitol faster than the control
strain (D10c), as shown in Fig. 3. The specific xylitol productivity
by the D10F strain (0.152 = 0.002 h™"') was significantly higher
than that by D10c (0.091 = 0.001 h™'), suggesting that overex-
pression of FPSI enhanced the flux of xylitol secretion.

Effects of FPSI deletion on xylose fermentation under oxy-
gen-limited conditions. Based on the above observations, we hy-
pothesized that FPSI deletion might increase the yield of target
products (e.g., ethanol) from xylose fermentation by confining
xylitol inside the cell and might push the carbon flux in the desired
direction. To test this hypothesis, we used an engineered xylose-
fermenting S. cerevisiae strain, SR6, that accumulated substantial
amounts of xylitol during xylose fermentation because of unbal-
anced expression of S. stipitis XR and XDH. As shown in Fig. 4A,
the SR6 strain accumulated nearly 16 g/liter xylitol during fermen-
tation of 40 g/liter xylose, while ethanol production was extremely
low (ethanol/xylose yield [Yemanot/xylose] = 0-555 = 0.001 g etha-
nol/g xylose). When FPSI was deleted in the SR6 strain, xylitol
production by the SR6-fps1A strain was drastically reduced to less
than 5 g/liter when 40 g/liter xylose was depleted, and the ethanol
yield (Yethanolssylose = 0-206 = 0.002) was 4-fold higher than that of
the SR6 strain (Table 3). It is evident that elimination of Fps1lp can
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FIG 4 Fermentation profiles of engineered S. cerevisiae strain SR6 (A) and strain
SR6-fps1A (B) in YP medium containing xylose (40 g/liter) under oxygen-limited
conditions. The results are the means of duplicate experiments; the error bars
indicate standard deviations and are not visible when smaller than the symbol size.
W, xylose; A, xylitol; ¥, glycerol; @, ethanol; X, acetate; O, ODy,.

lead to more efficient operation of xylose assimilation through XR
and XDH reactions, despite the redox cofactor imbalance. In ad-
dition, the glycerol yield decreased from 0.079 = 0.001 g glycerol/g
xylose in fermentation by the SR6 strain to 0.014 = 0.001 g glyc-

Deletion of FPST in Yeast Improves Xylose Fermentation

erol/g xylose for the SR6-fpsIA strain. This result was consistent
with the known function of Fpslp in facilitating glycerol trans-
port. Interestingly, the SR6-fpsIA strain grew faster (Table 3) and
reached a higher ODyg, at the end of fermentation (Fig. 4) than the
SR6 strain, most likely because the consumed xylose was used
more efficiently with less xylitol secretion.

The effect of FPSI deletion for decreasing xylitol production
and increasing the ethanol yield was also demonstrated using a
different engineered S. cerevisiae strain (SR8). The SR8 strain was
rationally engineered and evolved to ferment xylose efficiently and
rapidly (51). The SR8 strain can finish complete fermentation of
40 g/liter xylose within 30 h with an initial inoculation at an OD of
1 under oxygen-limited conditions. An FPSI deletion mutant
of the SR8 strain consumed xylose at a rate similar to that of the
parental SR8 strain under oxygen-limited conditions but exhib-
ited a significantly higher ethanol yield and lower yields of xylitol
and glycerol (Table 3) (P < 0.005), which was consistent with the
results from the fermentation experiments with the SR6 strain
described in Fig. 4.

Effects of FPS1 deletion on xylose fermentation under anaer-
obic conditions. Xylitol accumulation during xylose fermenta-
tion through the XR/XDH pathway is more problematic under
anaerobic conditions than under oxygen-limited conditions due
to the lack of oxygen to regenerate NAD™. Despite the challenge,
anaerobic fermentation is preferred in industrial applications be-
cause of the prohibitively high cost of aeration. The SR8 strain is
capable of fermentation and growth on xylose alone under strict
anaerobic conditions, providing a platform to test the potential
effects of FPS1 deletion on improving anaerobic xylose fermenta-
tion. The SR8 strain was able to ferment xylose as the sole substrate
to ethanol under anaerobic conditions at a respectable rate and
with a yield of 0.320 = 0.001 g ethanol/g xylose (Table 3). When
FPS1 was deleted in the SR8 strain, the SR8-fpsIA strain showed
both a significant increase of the ethanol yield to 0.351 = 0.001 g
ethanol/g xylose and lower by-product accumulation (Table 3). In
particular, the xylitol yield in fermentation by the SR8 strain was
23% higher than that by the SR8-fpsIA strain. While anaerobic
xylose fermentation by SR8-fpsIA took longer than that by the
SR8 strain with a starting cell mass at an ODg, of 1; both the SR8
and SR8-fpsIA strains were able to consume 40 g/liter of xylose
within 20 h and had similar specific xylose consumption rates
(Table 3) when a higher starting cell mass (ODg, = 10) was used.

TABLE 3 Fermentation performances of the fpsIA strains and the reference strains under different conditions

Value (mean * SD)

Oxygen-limited conditions (initial OD = 1)

Anaerobic conditions

Initial OD = 1 Initial OD = 10

Parameter” SR6 SR6-fps1A SR8 SR8-fpsIA SR8 SR8-fpsIA SR8 SR8-fpsIA
Yiytitol (g/g) 0.378 £0.003  0.108 = 0.001 0.070 = 0.001  0.055 = 0.0008 0.12 %= 0.002 0.084 £ 0.002 0.111 = 0.001  0.089 %= 0.0006
Yglycem] (g/g) 0.079 £ 0.001 0.014 = 0.001 0.056 = 0.0005 0.047 = 0.001 0.131 = 0.002 0.112 = 0.002 0.647 = 0.001 0.611 = 0.001
Yothanol (8/8) 0.055 = 0.001  0.206 = 0.002 0.332 = 0.002 0.341 = 0.002  0.320 = 0.001  0.351 + 0.001  0.348 = 0.002  0.365 = 0.002
Vethanot (g/liter - h™1) 0.054 = 0.001  0.182 = 0.002 0.480 = 0.005 0.474 = 0.003 0.172 = 0.001  0.064 = 0.001  1.10 = 0.005 1.13 = 0.02

P anot” (h™") 0.012 £ 0.0006 0.027 = 0.001 0.216 = 0.002 0.215 *= 0.004 0.130 = 0.002 0.073 = 0.001  0.269 = 0.002  0.279 = 0.009
Momax (b7 0.022 £ 0.0005 0.025 = 0.001 0.125 = 0.001 0.118 = 0.001  0.040 * 0.0006 0.023 % 0.0005 0.042 = 0.0005 0.034 = 0.001
Teylose " (h™h) 0.217 £ 0.003  0.204 = 0.001 0.647 = 0.008 0.633 = 0.009 0.50 = 0.005 0.31 £0.02 0.781 £ 0.001  0.769 = 0.001

“ Yyytivon Xylitol yield (g xylitol/g xylose); Yy eron> glycerol yield (g glycerol/g xylose); Yeihanon €thanol yield (g ethanol/g xylose); Veianon volumetric ethanol productivity
(g-liter ™"+ h™1); Pespanor > Specific ethanol productivity (g ethanol g cell ™ - h™"); ..., maximum specific growth rate (h™'); Txylose > Specific xylose consumption rate (g xylose g

cell '-h™ 1),
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The intracellular concentrations of both xylitol and glycerol in
the SR8-fpsIA strain were considerably higher than those in the
SR8 strain (Fig. 5A), demonstrating again that FPSI deletion
could block xylitol export, as well as glycerol transport. NAD™,
NADH, NADP™, and NADPH from the culture samples of the
SR8 and SR8-fpsIA strains were also analyzed. While the NADP*/
NADPH ratio was slightly lower in the SR8-fpsIA strain than in
the SR8 strain, there was no significant difference in the NAD™"/
NADH ratio (Fig. 5B).

DISCUSSION

Accumulation of xylitol during xylose fermentation by engineered
S. cerevisiae with the XR/XDH pathway has been a problem for a
long time (6), especially when oxygen availability is limited for
NADH reoxidation. Thus, many studies attempted to optimize
the expression levels of the genes coding for the XR/XDH pathway
or to engineer XR and XDH proteins with balanced cofactor pref-
erences to reduce xylitol accumulation and increase the ethanol
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yield (19, 28, 54-60). While previous efforts to improve xylose
fermentation mostly focused on manipulation of enzymatic reac-
tions related to xylose metabolism, this study demonstrated an
innovative approach that controls the carbon flux by accumulat-
ing the intermediate product (i.e., xylitol) inside the cell to facili-
tate the reaction toward the target direction. It was suggested pre-
viously that increasing the intracellular xylitol concentration
could help conversion of xylitol to xylulose, and an unpublished
investigation regarding the possible role of Fps1p was mentioned
(61). The comprehensive experimental study reported here shows
the involvement of Fps1p in xylitol transport in S. cerevisiae, dem-
onstrating a new function of this MIP family protein. The results
revealed that deletion of FPSI can substantially reduce xylitol for-
mation and increase ethanol production from xylose fermenta-
tion by engineered S. cerevisiae. The strategy demonstrated here
will contribute to current efforts to develop efficient xylose-utiliz-
ing yeast strains for economically feasible production of cellulosic
biofuels.

The fpsIA strains in this study consistently exhibited lower
xylitol excretion than parental strains harboring the wild-type
FPS1, suggesting that Fps1p is involved in xylitol accumulation in
the medium regardless of strain background. Similar results were
also observed for glycerol production. Still, we found that both
xylitol and glycerol production by fpsIA strains was not elimi-
nated. A prior study showed that glycerol uptake by S. cerevisiae
could be attributed to two components: one is facilitated transport
mediated by Fpslp, and the other is free diffusion through the
phospholipid bilayer of the cell membrane (43). Similarly, free
diffusion may be a reason for xylitol excretion, as well as for glyc-
erol excretion, in the fpsIA strains here. Notably, the deletion of
FPS1 showed a more drastic effect in reducing xylitol production
when the redox imbalance was more severe. For example, the SR6
strain with unbalanced XR and XDH enzyme activities generated
xylitol as the major product and produced very little ethanol, but
the corresponding fpsIA mutant produced nearly 70% less xylitol
than a parental strain (SR6). In comparison, xylitol reduction by
FPS1 deletion in the SR8 strain, which has optimized XR/XDH
expression levels and evolved to ferment xylose with a low xylitol
yield, was not as significant as that in the SR6 strain under the
same fermentation conditions. These results indicate that FPS1p-
dependent facilitated diffusion may play a major role in xylitol
excretion when the intracellular xylitol concentration is relatively
high.

The effect of FPS1 deletion on xylose fermentation in recom-
binant S. cerevisiae with the XR/XDH pathway was evaluated un-
der both oxygen-limited conditions and strictly anaerobic condi-
tions. The fpsIA strains (e.g., SR6-fpsIA and SR8-fpsIA) did not
show a growth defect under oxygen-limited conditions compared
to the parental strains. In contrast, anaerobic experiments with the
SR8-fpsIA strain showed significantly reduced cell growth and
xylose consumption rates, even though increasing biomass inoc-
ulation could overcome this problem (Table 3). It is likely that
deletion of FPSI in engineered yeast strains here hampered the
glycerol production pathway, and the capability to deal with the
redox imbalance problem in xylose fermentation under anaerobic
conditions became less efficient. However, there was no signifi-
cant difference in the NAD*/NADH ratio between the two strains
SR8-fps1A and SR8, indicating that FPSI deletion might not dras-
tically influence the cofactor balance or that some alternative
pathway other than glycerol formation could contribute to redox
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balancing (62). The reason for slightly higher NADP*/NADPH in
the SR8-fps1A strain is unclear. One possible explanation might be
that increased carbon flux to the pentose phosphate pathway due
to less xylitol excretion produced more NADPH.

It is worth noting that the natural xylose-utilizing yeast S. sti-
pitis can ferment xylose to ethanol at near the theoretical yields
and produces negligible amounts of xylitol during xylose fermen-
tation (63-65). Unlike S. stipitis, most natural xylose-fermenting
yeasts produce considerable amounts of extracellular xylitol (64),
and two main reasons were reported in previous studies. For one
thing, XR in S. stipitis, as well as another xylose-fermenting yeast,
Pachysolen tannophilus, can use both NADH and NADPH as co-
factors, which alleviates the redox imbalance compared to yeast
strains whose XR is strictly NADPH specific (66). For another, S.
stipitis still produces less xylitol than P. tannophilus, although they
both have dual-cofactor-specific XR, which has been explained by
the existence of a complex oxidative respiratory system unique to
S. stipitis. There is a noncytochrome electron transport chain in S.
stipitis serving as a redox sink for reoxidizing surplus NADH and
reducing xylitol production (67). This may also be a reason for the
observation that recombinant S. cerevisiae expressing the same
level of XR and XDH enzyme activities as in S. stipitis produces
xylitol at a much higher level than S. stipitis (68). However, besides
these two well-known mechanisms, another possibility to account
for less xylitol production in S. stipitis is that the cell membrane of
the microorganism may not normally, or only very inefficiently,
export xylitol. A previous study investigated the distribution of
intermediates and products during D-{1-13C} xylose metabolism
in S. stipitis and revealed that xylitol was the major intermediate
accumulating inside the cell but that no xylitol was produced ex-
tracellularly (69). In addition, a BLAST search of FPSI against the
genome sequence of S. stipitis did not a show significant match.
Taken together, these findings suggest the need for future research
to investigate the xylitol excretion capability of S. stipitis com-
pared with other xylitol-excreting strains and to gain further in-
sight into how the natural xylose-fermenting yeast may possibly
use the strategy of limiting xylitol export to efficiently metabolize
xylose.
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