[=N] Strycture

4 N\

ia Documents for more

Titstop

Download FREE software now

View this PDF in Utopia

interactive functionality

Biochem. J. (2013) 449, 695-705 (Printed in Great Britain) ~ doi:10.1042/BJ20121314

695

27line ad™

The dynamic action of SecA during the initiation of protein translocation
Vicki A. M. GOLD', Sarah WHITEHOUSE, Alice ROBSON and lan COLLINSON?

School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K.

The motor ATPase SecA drives protein secretion through the
bacterial Sec complex. The PPXD (pre-protein cross-linking
domain) of the enzyme has been observed in different positions,
effectively opening and closing a clamp for the polypeptide
substrate. We set out to explore the implicated dynamic role
of the PPXD in protein translocation by examining the effects of
its immobilization, either in the position occupied in SecA alone
with the clamp held open or when in complex with SecYEG with
the clamp closed. We show that the conformational change
from the former to the latter is necessary for high-affinity
association with SecYEG and a corresponding activation of
ATPase activity, presumably due to the PPXD contacting

the NBDs (nucleotide-binding domains). In either state, the
immobilization prevents pre-protein transport. However, when
the PPXD was attached to an alternative position in the associated
SecYEG complex, with the clamp closed, the transport capability
was preserved. Therefore large-scale conformational changes
of this domain are required for the initiation process, but not
for translocation itself. The results allow us to refine a model for
protein translocation, in which the mobility of the PPXD
facilitates the transfer of pre-protein from SecA to SecYEG.

Key words: ATPase, membrane—protein dynamics, protein—trans-
location, SecA, Sec complex.

INTRODUCTION

Protein secretion and membrane insertion occur through the
ubiquitous SecY/61 complex, driven by associated ribosomes or
motor proteins. Secretory proteins are recognized by virtue of
cleavable signal sequences at the N-terminus and by elements
contained in the mature protein [1,2]. In bacteria, the ATPase
SecA targets pre-secretory proteins to SecYEG at the cytosolic
membrane and drives translocation through it [3]. The structures
of these components are known [4—7], but major questions lie in
the nature of the dynamic interaction between the translocation
machinery and its substrate.

The protein channel is formed between two pseudo-
symmetrical halves of SecY, comprising TMSs (transmembrane
segments) 1-5 and 6-10 [5]. This arrangement also allows the
movement of membrane protein segments laterally into the lipid
bilayer, by passing between TMSs 2b and 7 of SecY; this lateral
gate also forms the signal-sequence-binding site [5,8]. Protein
translocation proceeds through one of the SecYEG complexes
contained in the functional dimeric translocon, whereas the other
copy helps to provide a high-affinity binding platform for SecA
[9,10]. Recent work in vivo suggests that this dimeric interaction
may change or be lost during translocation [11].

In solution SecA is dimeric [12]. Each monomer can be divided
into five domains: two NBDs (nucleotide-binding domains;
NBDI1 and NBD2), between which ATP is bound and hydrolysed,
an HSD (helical scaffold domain), coupling the NBDs to the HWD
(helical wing domain) and the PPXD (pre-protein cross-linking
domain) [6,13—-15] (Figures 1A and 1B). The latter is thought
to play a dynamic role during the activation of the enzyme [16].
Monomer formation results in PPXD relocation towards the NBDs

[17], resulting in the perturbation of the signal-sequence-binding
site formed between the PPXD and the HWD [14].

The association of SecA with SecYEG has major consequences
on the structure and activity. Dimers dissociate and the PPXD
swings all the way from the HWD to contact NBD2 [7,18]
(Figures 1A and 1B). Another result is the penetration of a 2HF
(two-helix finger) of SecA into the protein channel [7]. These
events correspond to a major shift in the kinetic properties of
the enzyme: a 160-fold reduction in the affinity (increase in
K,,) for ATP and a 30-fold stimulation in the ATPase activity
by alleviation of the rate-limiting step, the release of ADP [19].
The distance between distinct signal-sequence-binding sites in
SecA and SecYEG is approximately 60 A (1 A=0.1nm) [7]
(Figure 1B) and the mechanism of its transfer from one to the
other is unknown.

The route for translocating pre-protein has been mapped by
cross-linking the substrate proOmpA to SecY [20] and SecA
[15]. The path runs through two coincident channels formed
by a ‘clamp’ between the PPXD and NBD2 of SecA and the
channel through the centre of SecY. The PPXD has been proposed
to assist in translocation by successively trapping and releasing
polypeptide in the clamp during ATP hydrolysis, together with
the concerted insertion and retraction of the 2HF [7,21].

In the present study we devised a series of experiments to
evaluate the dynamic action of the PPXD throughout the ATP
hydrolysis cycle and protein translocation. On the basis of the
structure of SecA and its complex with SecYEG, cysteine pairs
were designed to immobilize the PPXD in the position occupied
in the SecA dimer with the clamp in the open position [6], and in
the SecYEG-bound state with it closed [7] (Figures 1A and 1B).
Engineered proteins incorporating intramolecular SecA disulfide
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cross-links, or intermolecular SecA-SecYEG cross-links were
used to correlate the consequences of the position and mobility
(or immobility) of the PPXD to ATP hydrolysis and pre-protein
transport. The results of the present study demonstrate that the
relocation of the PPXD towards NBD2 is necessary for the initial
activation of the ATPase high-affinity association with SecYEG
and intercalation of pre-protein. The present study complements
our recent analysis of the role of the 2HF in protein translocation
[22].

MATERIALS AND METHODS
Chemicals and biochemicals

All lipids were purchased from Avanti. Detergents were from
Glycon. BioBeads and gel-filtration standards were from Bio-
Rad. NuSep pre-cast gels were supplied by Generon, and all
chromatographic material was from GE Healthcare Life Sciences.
The QuikChange® kit was from Agilent Technologies and all
other reagents were acquired from Sigma.

Cloning, expression and purification of the wild-type translocation
components

Cloning, expression and purification of the translocation
components and specific mutants thereof were conducted as
described previously [9,23]. Reconstitution of SecYEG into total
Escherichia coli polar lipids has been well documented [9].
The proOmpA used was a cysteine-less construct [19] designated
proOmpA 4ys.

Cross-linking and purification of SecA with the clamp in open or
closed positions

Double-cysteine mutants SecApsscmsosc  (clamp  open) and
SecApssrckasac (clamp closed) were introduced into cysteine-
less SecA in the plasmid pT7N95-SecA(C98S) [17] using the
QuikChange® site-directed mutagenesis kit. After expression
in E. coli using the standard protocol [23], the intramolecular
cross-links were present at approximately 50% of the total
material. Following the nucleotide-stripping procedure [23],
cross-links were further oxidized by incubation with 1 mM
copper phenanthroline for 1h at room temperature (21°C).
This procedure was also followed for the SecA,., control as
a mock treatment. To purify the cross-linked material away from
the uncross-linked material, SecA was exchanged into 20 mM
Mes (pH 6) and 100 mM KCI and subjected to cation exchange
(Mono S HR 16/10). Proteins were eluted with a 200 ml linear
gradient of 0.1-1 M KCI at 2 ml/min and resolved on 4-20 %
NuSep pre-cast gels. The copper-phenanthroline-treated cross-
linked material (and the SecA ., mock preparation) were then
subjected to size-exclusion chromatography (Superdex 200 HR
26/60) in gel-filtration buffer [20 mM Tris/HCl (pH 7.5) and
100 mM KCl]. The uncross-linked material (and the remaining
half of the SecA,., mock preparation) was treated in the same
way, but with the inclusion of 10 mM DTT (dithiothreitol) in the
final chromatographic buffer.

Analytical size-exclusion chromatography of SecA with the clamp
in open or closed positions

Size-exclusion experiments were conducted on a Superose 6
10/300 GL column in SecA gel-filtration buffer, with or without

© 2013 The Author(s)

10 mM DTT. The column was calibrated in both buffers using gel-
filtration standards to gain values for apparent molecular masses.

Purification of cross-linked SecA3g—Y356EG

Total membranes extracted from 12 litres of E. coli overexpressing
SecYsscEG were resuspended in 100 ml of TSGM buffer
[20 mM Tris/HCl (pH 8), 130 mM NaCl, 10 % glycerol and 2 mM
MgClL,]. In each case 100 nmol of SecAg;pc Was added together
with 25 uM p[NH]ppA (adenosine 5'-[8,y-imido]triphosphate),
before oxidation with 0.6 mM copper phenanthroline for 45 min
at 4°C. The oxidizing agent was then removed by dialysis before
the membranes were re-isolated by centrifugation. The oxidized
membranes were then washed twice in 100 ml of TSG to help
remove the uncross-linked excess SecA. The membranes were
then solubilized in TSGM buffer including 2% (w/v) DDM
(dodecyl maltoside) for 1 h at 4°C, and the insoluble material
was removed by centrifugation. The cross-linked complexes were
then purified by successive Ni**-chelating Q-Sepharose high-
performance and size-exclusion chromatography in a manner
similar to that used previously for the wild-type and mutant
SecYEG complexes [19]. As before, the uncross-linked SecYEG
complexes washed through the Q-column (GE Lifesciences; XK
16/10, ~20 ml bed volume) in TSGM buffer with 130 mM NaCl
and 0.1% C,;E, [nona(ethylene glycol) dodecyl ether]. The
bound cross-linked SecA—SecYEG and free SecA were eluted
separately by a NaCl gradient (130-1000 mM in 100 ml) in
TSGM buffer with 0.1 % DDM. The appropriate fractions were
pooled and further purified by gel filtration using a Superdex
200HR XK16/60 in TSGM buffer (130 mM NaCl) with 0.1 %
DDM (see Figures 6A and 6B).

Steady-state ATPase and protein translocation assays

Steady-state SecA ATPase measurements were performed as
described previously [9,19]. Briefly, activity was assayed using
a Lambda 25 spectrophotometer (PerkinElmer) in TKM buffer
[S0 mM triethanolamine, 50 mM KCIl and 2 mM MgCl, (pH
7.5)] containing 1 unit of pyruvate kinase, 1.4 units of lactate
dehydrogenase, 0.2 mM NADH and 2 mM phosphoenol pyruvate,
with or without 10 mM DTT in 100 ul cuvettes at 25°C.
Detergent solution experiments used 0.03 % C,E,. Other reaction
components were at concentrations stated in the text.

Depending on the K, data were fitted either to a one-site ligand-
binding equation (eqn 1), or to a one-site quadratic tight
ligand-binding equation (when the enzyme concentration
approaches the binding affinity; eqn 2), defined as:

Vmax : [L]

v = ——— + background 1
K.+ [L] g W

where v is equal to the enzyme velocity, V., is the total capacity
of the ligand-associated ATPase stimulation, [L] is the ligand
concentration and K, is the dissociation constant for SecA-ligand.
The ‘background’ is the ATPase activity without added ligand.

[L]+ [Eo]l 4+ Ky — /(LT + [Eo] + Kg)* — 4 - [E,] - [L]
2-[Eo]
+ background )

V= ‘/max .

where [E,] is the total SecA concentration. All data were fitted
using GraFit (Erithacus).

Protein translocation assays were performed as described
previously [19]. Briefly, SecA, ATP and proOmpA,., were
incubated with vesicles reconstituted with purified SecYEG.
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Figure 1 Interactions of the PPXD

SecA protomer from a structure determined as (A) a dimer [6] and (B) a monomer bound to SecYEG (white) [7], viewed from the side of the membrane, with the «-helices shown as
cylinders. NBD1 is shown in blue, NBD2 in pink, the HSD including 2HF in yellow, the PPXD in green and the HWD in red. The signal-sequence-binding sites are shown for SecA [15] and
SecY [20]. Specific residues used for cross-linking are shown in space-fill representation, and labelled according to the E. coli residue numbers: SecApsszc/esosc (Clamp open; depicted in A),
SecAnsszckasac (clamp closed; depicted in B), SecAsp—SecYsssEG (clamp closed; depicted in B). (C) Gradient SDS/PAGE was used to resolve the intramolecular cross-links in the presence
of oxidizing (1 mM copper phenanthroline) or reducing (10 mM DTT) agent. Lanes 1 and 2, SecAacs; lanes 3-5, SecAnsarokasac; 1anes 6-8, SecApssrosesosc. S denotes the starting material,
which contained both species [cross-linked (top band) and uncross-linked (bottom band)]. (D—F) The corresponding size-exclusion chromatography analysis for each sample is shown below:
(D) SecAqys+DTT; (E and F) cross-linked and uncross-linked mutants (black continuous traces or grey broken traces respectively) used to trap the clamp in the closed and open states. A vertical

broken line shows the elution volume of SecA s in all three traces. CuPh, copper phenanthroline.

Successful translocation of the substrate into the interior was
monitored by protease protection and Western blotting for
proOmpA 4.

Insertion of the SecA 2HF into SecY43r EG

SecY s EG was made by covalent modification of SecYk,sscEG
with fluorescein [24]. Fluorescence quenching of SecY »63 EG was

© 2013 The Author(s)

monitored in a Jobin Yvon Fluorolog (Horiba Scientific) using an
excitation wavelength of 495 nm, and an emission wavelength of
515 nm. SecY,55EG (5 nM) and 1 mM p[NH]ppA were added
to 1 ml of fluorescence buffer [20 mM Tris/HCI (pH 8), 130 mM
NaCl, 10 % glycerol, 2mM MgCl, and 0.03 % C,,E]. SecA s,
SecApssrcmsosc OF S€CApsszekasac and their corresponding released
counterparts (+ 10 mM DTT) were titrated in over a 0-1 uM
concentration range, and fluorescence readings were taken 200 s
after each SecA addition.
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Figure 2 Analysis of SecA ATPase activity and binding affinity for SecYEG

Steady-state ATPase activity of 0.15 .M SecA in TKM buffer in the presence of 1 mM ATP and increasing concentrations of purified detergent-solubilized SecYEG. Data were fitted to a ligand-binding
equation and the parameters are shown in Supplementary Table S1 (at http://www.biochemj.org/bj/449/bj4490695add.htm), columns 1and 2. (A) SecA s in the absence (broken trace) and presence
(continuous trace) of 10 mM DTT. (B) SecAnsszcikasac Cross-linked with the clamp closed (broken trace; no DTT) and with the clamp released from the closed (c) state (continuous trace; 10 mM
DTT). (C) SecApsszc/esosc Cross-linked with the clamp open (broken trace; no DTT) and with the clamp released from the open (o) state (continuous trace; 10 mM DTT). (D—F) Experiments shown in
(A—C) were repeated in the presence of 40 M CL. (G) The end point k¢ values under the conditions described, along with the Ky of SecA binding SecYEG, are shown in the histogram (also

in Supplementary Table S1, columns 3 and 4).

Results were presented as the percentage fluorescence quench
relative to baseline, and fitted according to a one-site ligand-
binding equation with linear phase (eqn 3) using GraFit
(Erithacus).

F=F[L]/(Ke+[LD+m[L] 3

© 2013 The Author(s)

where F is the percentage signal change, F,, is the
maximum signal change, [L] is the ligand concentration
and K, is the dissociation constant for SecA-ligand.

m represents the gradient of a non-saturable linear
increase which was subsequently subtracted from the
data.
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SecA was titrated into a solution containing 5 nM SecYasr EG and the fluorescence quench expressed as the percentage fluorescence decrease. (A) SecAagys in the absence (broken trace) and
presence (continuous trace) of 10 mM DTT. (B) SecApsszcxasoc in the absence (broken trace; clamp closed) and presence [continuous trace; clamp released from closed (c)] of 10 mM DTT. (C)
SecAnsszc/esosc in the absence (broken trace; clamp open) and presence [continuous trace; clamp released from open (0)] of DTT. (D) Parameters from the fits are shown in the histogram (also in
Supplementary Table S1 at http://www.biochemj.org/bj/449/bj4490695add.htm, columns 7 and 8).

Supplementary online data

The Supplementary Online Data (at http://www.biochem;j.org/
bj/449/bj4490695add.htm) describes determination of K, and k.,
for the mutants (Supplementary Figure S1). A further explanation
of the model (see Figure 7) shows how the translocation process
is affected by the various cross-links (Supplementary Figure S2).

RESULTS
The PPXD of SecA moves freely within SecA dimers

In order to understand the connotations of the mobility of the
PPXD we immobilized it by various intramolecular disulfide
bonds. Site-specific cysteine residues were incorporated into an
otherwise cysteine-free background to lock the clamp in the open
(SecApssrcesosc) or closed (SecApssycokasac) positions (Figures 1A
and 1B). SDS/PAGE resolved the intramolecular cross-links,
which were present at approximately 50 % of the total purified
protein (Figure 1C, lanes 3 and 6); in both cases the PPXD could
be predominantly cross-linked or released, by exposure to either
oxidizing or reducing agents. Thus the two different cross-linked
forms of SecA, with the clamp held open and shut, could be
effectively purified for further analysis (Figure 1C, lanes 4 and 7)
and compared with their counterparts released by reduction with
DTT (Figure 1C, lanes 5 and 8).

SecA without cysteine residues (SecA ,.,,) behaves similarly to
the wild-type [25] and was used as a control. The SecA Ay, protein
had the same gel mobility under either oxidizing or reducing
conditions, and was indistinguishable from the reduced forms of
the double-cysteine mutants (Figure 1C, lanes 1, 2, 5 and 8).

Size-exclusion chromatography was then used to distinguish
large changes in the globular structure or oligomeric state of the
cross-linked enzyme. In all cases when the clamp was released by
DTT (Figure 1C, lanes 5 and 8), or in the control (Figure 1C, lanes
1 and 2), the proteins eluted at the same position (Figures 1D-1F,

© 2013 The Author(s)

broken lines), with an apparent molecular mass of ~250kDa,
characteristic of SecA dimers. When the clamp was fixed in
either the open or closed states (Figure 1C, lanes 4 and 7)
the decrease in elution volume indicated a large conformational
change (Figures 1E and 1F, continuous lines). These effects
are incompatible with the formation of SecA monomers, which
instead would have resulted in an increase in the elution volume.
Therefore the location of the PPXD is apparently not dependent
on the oligomeric state of SecA.

The transposition of the PPXD from the HWD to NBD2 increases the
ATPase activity of SecA and its affinity for SecYEG

The ATPase activity of SecA and its stimulation by SecYEG
were tested with the clamp fixed in the open and closed positions.
The activation and apparent affinity of the SecA,.,, control for
SecYEG was similar to the wild-type [19] and unaffected by
DTT (Figures 2A and 2G). However, when the clamp was held in
the closed position, the basal ATPase activity (without SecYEG)
was increased ~5-fold compared with the SecA,.s control
(0 uM point in Figure 2B, and Figure 2G). In the presence of
saturating SecYEG, the stimulation reached the same level as the
control; however, the apparent affinity was considerably higher,
~500-fold (Figures 2B and 2G and Supplementary Table S1
at http://www.biochemj.org/bj/449/bj4490695add.htm, columns
1 and 2). The effects on both basal activity and affinity for SecYEG
were reversed on release of the clamp by DTT. In contrast, the
basal activity of the mutant with the clamp locked open was
unchanged; its activation by SecYEG was reduced and the binding
affinity was unaffected (Figures 2C and 2G and Supplementary
Table S1, columns 1 and 2).

The SecYEG-stimulated ATPase activity of SecA (increased
ke) is also accompanied by a decrease in affinity for ATP
(increased K,) [19,23]. When the PPXD was fixed adjacent
to NBD2, with the clamp closed, the kinetic parameters
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Figure 4 Analysis of the effect of proOmpA on the binding affinity hetween SecA and SecYEG

The steady-state ATPase activity of 80 nM SecA in TKM buffer was measured in the presence of 1 mM ATP and increasing amounts of either empty vesicles (@ and =1, bottom axis) or vesicles
reconstituted with purified SecYEG (O and [J, top axis) in the absence or presence of 0.6 M proOmpAags (circles compared with squares respectively). (A) SeCAags, (B) SecAags +10mM
DTT, (C) SecApssoskasoc With the clamp locked closed, (D) SecAnsszkasoc With the clamp released from closed (c) + DTT, (E) SecApsszcresosc With the clamp locked open, (F) SecApsszc/esosc
with the clamp released from the open state (0) + DTT. (G) Data were fitted to a ligand-binding equation and the parameters are shown in the histogram (also in Supplementary Table S1 at

http://www.biochem.org/bj/449/bj4490695add.htm, columns 9-12).

(Kn~1.7 uM and k.~9 min~") corresponded to the uncross-
linked enzyme bound and activated by SecYEG (K ,,~1.8 uM and
key~8.5 min~") (Supplementary Figure S1 and Supplementary
Table S1 at http://www.biochemj.org/bj/449/bj4490695add.htm).
Upon release of the cross-link, the kinetic properties returned

© 2013 The Author(s)

to the ground state (K,,~0.1 uM and k.~0.5min~") and the
dependence on SecYEG for activation was re-established. When
the PPXD was fixed adjacent to the HWD, with the clamp
open, the kinetics mirrored the inactive enzyme (K,,~0.1 uM and
key~0.4 min~"') (Supplementary Figure S1 and Supplementary
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Table S1). Therefore the relocation of the PPXD and contact with
NBD2 communicates a change in turnover and affinity for ATP,
corresponding to the activation by SecYEG.

The action of CL (cardiolipin) (diphosphatidylglycerol) with respect
to PPXD

CL is a ubiquitous negatively charged phospholipid, required
for protein translocation and a range of other essential energy-
transducing membrane-transport systems (see [26] and references
therein). It stabilizes SecYEG dimers to form a high-affinity
binding surface for SecA and confers its ability to activate the
ATPase activity. These effects were re-investigated with respect
to the different positions occupied by the PPXD within SecA.
As expected, exposure of SecA, to CL increased the ATPase
activity and tightened the affinity for SecYEG (Figures 2D and
2G and Supplementary Table S1, columns 3 and 4).

SecA with the clamp fixed closed was fully activated in
the presence of only CL and the ATPase activity was not
further stimulated by the addition of SecYEG (Figures 2E
and 2G). When the clamp was fixed open, the basal activity
remained low and there was no stimulation by SecYEG
(Figures 2F and 2G). Releasing the constraints with DTT restored
the wild-type (SecA,.s) behaviour: tight binding of SecYEG
causing stimulation of the ATPase activity (Figures 2E-2G and
Supplementary Table S1).

The results show that closing the clamp in the presence of CL
is sufficient to prime the ATPase for translocation, even in the
absence of SecYEG.

The insertion of the 2HF of SecA is not dependent on the location of
the PPXD

The insertion of the 2HF into SecYEG was monitored
by fluorescence. The ATP-dependent conformational change
reported by SecY 3 EG [24] was induced by all versions of SecA,
irrespective of the position of the PPXD (Figure 3). Therefore the
positioning of the 2HF in the channel is independent of the state of
the clamp. The mock oxidized and reduced SecA ., controls both
bound with the same affinity (Figures 3A and 3D). However, in
the active state when the clamp was locked closed, the affinity was
~4-fold tighter compared with the counterpart released by DTT
(Figures 3B and 3D). Conversely, when the clamp was locked
in the open state the affinity was unchanged with respect to the
unleashed enzyme (Figures 3C and 3D).

Immobilization of the PPXD disables protein translocation

The effect of restraining SecA was assessed with respect to
ATP-driven translocation of pre-protein. Vesicles reconstituted
with or without SecYEG were titrated into reaction mixtures
containing SecA, ATP and, where indicated, the pre-protein
substrate proOmpA (Figure 4). The ATPase activity of SecA
(or SecA,s) is stimulated by vesicles harbouring SecYEG
much more effectively than the detergent-solubilized complex
(Figures 2A, 4A and 4G, and Supplementary Table S1), as
expected [19]. In the presence of proOmpA there was a further
~5-fold increase in the affinity of SecA (SecA,.) for SecYEG
and added stimulation of the ATPase activity, associated with
translocation into the vesicle interior [19]. This was true of both
oxidized and reduced versions of the control SecA ,, (Figures 4A,
4B and 4G, and Supplementary Table S1, columns 9-12).

SecA with the clamp shut associated with membrane-bound
SecYEG more tightly than the corresponding reduced form and
the controls (Figures 4A, 4C and 4G), consistent with the increase
in affinity also seen in solution (Figure 2B). However, the presence
of proOmpA had little further effect on the ATPase activity or the
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Figure 5

Steady-state ATPase activity of 80 nM SecA in TKM buffer in the presence of 1 mM ATP and
1.08 M SecYEG reconstituted into E. coli polar lipids, and increasing amounts of purified
proOmpAags. (A) SecAaqs in the absence (broken trace) and presence (continuous trace) of
10mM DTT. (B) SecAnssrokasec in the absence (broken trace; clamp closed) and presence
[continuous trace; clamp released from the closed state (c)] of 10 mM DTT. (C) SecApsszc/esosc
in the absence (broken trace; clamp open) and presence [continuous trace; clamp released from
the open state (0)] of DTT. Data were fitted to a ligand-binding equation and the parameters
are shown in Supplementary Table S1 at http://www.biochemj.org/bj/449/bj4490695add.htm,
columns 13 and 14. (D) In vitro translocation reactions were carried out from end point ATPase
assays. Successfully translocated proOmpA was detected via immunablot analysis.

affinity for SecYEG (Figures 4C and 4G, and Supplementary
Table S1, columns 9 and 11). Release of the cross-link by DTT
restored the expected effect: a large stimulation in the ATPase
activity and increased affinity of SecA for SecYEG (Figures 4D
and 4G). The version of SecA with its clamp locked open, as
expected, did not respond appreciably to vesicles containing
SecYEG or to pre-protein (Figure 4E), but was reactivated upon
release of the PPXD with DTT (Figure 4F).

Next, the translocation-associated ATPase activity of the
preformed SecA-SecYEG membrane-bound complex was
monitored following the addition of proOmpA ., (Figure 5A).
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dimers (and other higher aggregated states) were run as additional gel markers (not as representatives of the input to the cross-linking experiment). (C) Steady-state ATPase activity of 0.3 M
wild-type SecA or SecAsgge with saturating (1 M) wild-type SecYEG or SecYssecEG proteoliposomes, or the cross-linked complex SecAsg—Yas6EG reconstituted into phospholipid vesicles,
with and without 0.7 ..M proOmpA. The results were averaged from four independent experiments. (D) Top panel: relative levels of translocation for wild-type SecA or SecAggoe With SecYssscEG
proteoliposomes, or the cross-linked complex (SecAsg—Y3s5EG) proteoliposomes over 25 min, analysed by anti-proOmpA immunoblot. t = ‘0" represents translocation achieved after initial mixing
of reaction components, approximately 10's. The blot is representative of n =5, which were quantified using ImageJ (NIH) software (bottom panel).

Without addition of proOmpA (0 uM point), with the clamp
locked closed, the ATPase activity was elevated (Figure 5B),
whereas it was low when locked open (Figure 5C, as seen before in
Figures 4C and 4E). In both cases the activity did not significantly
change following addition of the substrate (Figures 5B and 5C,
and Supplementary Table S1, columns 13 and 14). Stimulation of
the ATPase activity by substrate was again rescued upon release
of the clamp with DTT.

Finally, the different SecA forms were tested for their ability
to transport proOmpA across the membrane. Cross-linking the
clamp in either the closed or open position abolished transport
activity, whereas release of the PPXD with DTT restored it
(Figure 5D). Therefore, in spite of the activation achieved by
intramolecular cross-linking the PPXD to NBD?2, its formation
prevents the productive association of SecA with the pre-protein.

Isolation and analysis of the SecA-SecYEG complex with the PPXD
locked in the activated state

Next, we investigated the behaviour of the SecA-SecYEG
complex with the PPXD immobilized in the activated position,

© 2013 The Author(s)

adjacent to the NBDs [7], by an intermolecular disulfide bridge
to the fifth cytosolic loop of SecY (C5; SecAsspoc and SecYssec;
Figure 1B). Purified SecAgsoc, pINH]ppA and crude membranes
containing overexpressed SecYp;s6cEG were mixed and oxidized
to form the cross-linked complex, which was purified successively
by successive Ni**-chelating, ion-exchange and gel-filtration
chromatography steps (Figures 6A and 6B). Analysis of the latter
by SDS/PAGE indicated that the complex was largely free of the
uncross-linked components, which elute later from the column
(shown for comparison in Figure 6A).

The complex was then reconstituted into phospholipid vesicles
and its ATPase ability and protein transport activity were
evaluated. In respect to ATP turnover and stimulation by SecYEG
and proOmpA ,.,,, the individual single mutants (uncross-linked)
behaved similarly to the wild-type (Figure 6C). When cross-
linked, the uncoupled ATPase (in the absence of pre-protein)
was elevated to similar levels observed when the PPXD was
cross-linked to NBD2 (Figure 2C and 6C). However, in
marked contrast with the previous experiment, the addition of
proOmpA 4, resulted in a small, but significant, stimulation of
ATPase activity and successful translocation (Figure 6D). The
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initiation: SecA dimers (low ATPase activity [23]) engage SecYEG. The mobility of the PPXD permits the binding of the pre-protein between the PPXD and the HWD. In (B) the structure of the SecA
dimer is shown [6], where the lower monomer has been replaced by SecA (white with PPXD in pale green) bound to the signal sequence (black) [14]. In the upper monomer the C-terminus is shown
in black, which may occupy the pre-protein-binding site [27]. The broken black line connects this C-terminal stretch to the signal sequence, describing a possible continuous binding groove for the
pre-protein. SecYEG here and in subsequent stages (2) and (3) was modelled on the structure of the membrane-bound complex [4,9]. Stage (2) activation: dissociation of SecA [18] exposes
the SecYEG-binding site of SecA [7]. The relocation of the PPXD serves to increase the affinity for SecYEG, activate the ATPase activity [19], release the signal sequence from the departing SecA and
close the clamp about the pre-protein. In (B) the dissociated SecA is removed but the signal sequence is retained. The remaining monomeric enzyme has been replaced by the activated version seen
in the SecA-SecYEG complex [7], with the PPXD adjacent to the NBDs to trap the pre-protein. Stage (3) insertion: the resultant association of the monomeric SecA with SecYEG displays the signal
sequence to the binding site at the lateral gate of SecY [8,28]. The binding of which unlocks SecYEG [8] to promote the intercalation of the translocation substrate into the protein channel and the full
activation of the ATPase [19]. In (B) the model of the membrane-bound translocon is shown [7,9] retaining the pre-protein from the previous alignment. Stage (4) transport: the trapped and inserted

pre-protein passes through the membrane via a single SecYEG complex.

polypeptide transport activity was reduced by approximately one-
half compared with the uncross-linked material, possibly due
to partial restrictions imposed by the cross-link. The results
demonstrate that, following its transit from the HWD to the
NBD2, the PPXD does not move back to its resting state until
translocation is complete.

DISCUSSION

The consequences of the location and restriction of the PPXD, and
in a related study the 2HF [22], of SecA have been used to explore
the dynamic mechanism of ATP-driven protein transport. This has
been achieved by the incorporation of unique cysteine pairs for
the formation of intra- and inter-molecular disulfide bonds by
oxidation. The mutants used in the present study have afforded
minor changes in the affinity of SecA for SecYEG (Figure 3) as
well as the ATPase activity (Figures 4 and 5). This is perhaps
not very surprising given that the mutations themselves are at
the interface between the PPXD and the NBDs of SecA and

© 2013 The Author(s)

cytosolic surface of SecY. The key findings of the present study
were related by much more profound consequences on the affinity
and activation of the enzyme upon the formation of each disulfide
bond. Significantly, these changes are reversed upon the release
of the restrictions by a reducing agent.

The PPXD alternates between the HWD and NBDs within the
intact SecA dimer. These transitions do not appear to be coupled
to ATP hydrolysis, in agreement with the nucleotide-independent
conformational change of this domain seen in the SecA monomer
[17].

The formation of SecA monomers following the initiation
of translocation (see the Introduction) exposes the SecYEG-
binding site, including the 2HF of the HSD [7] (Figure 1B). This
interaction has been monitored by an extrinsic fluorescent probe
in SecY [24], which was elicited irrespectively of the position
of the PPXD. Therefore the dissociation of SecA dimers is not
strictly dependent on the position of the PPXD.

The relocation of the PPXD away from the HWD results in
a switch in the kinetic properties, akin to those observed in the
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presence of SecYEG, together with an increase in affinity for the
protein channel. Evidently then, the initial contact of SecA with
SecYEG promotes the transposition of the PPXD, most probably
due to its interaction with cytoplasmic loop C5 of SecY, between
TMSs 8 and 9 [7]. In this position the PPXD is in direct contact
with the NBD to activate the enzyme, presumably by promoting
the release of ADP, which is the rate-limiting step of the ATP
hydrolytic cycle [19]. The low ATPase activity observed when the
PPXD is adjacent to the HWD, with the clamp open, reflects
the stability of the complex of the enzyme with ADP, in agreement
with the known tight association between the PPXD and HWD in
this state [16,17].

The cross-link between the PPXD and NBD2 activates the
ATPase, but inhibits transport. Therefore the cross-link may
have blocked the intercalation path for the pre-protein into the
translocation clamp (see also below). Changing the attachment to
the interaction site with SecY-CS5 retained the transport activity.
Therefore the PPXD does not need to move significantly once
translocation is underway. The large movement of the latter
is presumably only required during substrate binding and the
initiation step (see below).

On the basis of these results and a re-evaluation of the structures
of SecA and SecYEG, including those associated with pre-protein
peptide mimics [8,14], a model for the initiation of translocation
has been formulated (Figure 7). The pre-protein-binding sites on
SecA have been identified by cross-linking [13,15], NMR [14]
and X-ray crystallography [27] and allow us to partially map
the pre-protein-binding site on SecA (Figure 7: stage 1, black
polypeptide). The signal sequence binds between the PPXD and
HWD [14], and a site for the mature protein has been localized by
the C-terminus of SecA [6], proposed to mimic the substrate by
B-augmentation of the two strands connecting the PPXD to NBD1
[27]. The relocation of the PPXD would effectively release the
signal sequence, encapsulate the mature regions of the pre-protein
and increase the affinity for the SecY complex (Figure 7: stage 1—
2). The subsequent Sec YEG-induced dissociation of SecA dimers
[18,24] would expose the pre-protein to SecY (Figure 7: stage 2).
The association of the well-placed signal sequence would then
unlock the SecY complex and facilitate the intercalation of the
mature region of the pre-protein [8] (Figure 7: stage 2-3). This
mechanism avoids the need to transfer the signal sequence from
between the PPXD and HWD 60 A to the other side of the SecA—
SecYEG complex. Note also that the model is not absolutely
dependent on two copies of SecYEG.

The model explains the effects observed when the PPXD
is immobilized by intramolecular cross-links in the resting
(clamp open) or activated (clamp closed) states, including why
the latter is incapable of forming a productive interaction
with pre-protein (Supplementary Figures S2A and S2B at
http://www.biochemj.org/bj/449/bj4490695add.htm). In contrast,
the alternatively activated enzyme, with the PPXD cross-linked
to SecY, is fully primed and capable of pre-protein binding and
transport (Supplementary Figure S2C).

The mechanism of ATP-driven energy-transducing systems
often relies on large domain movements coupled to changes in
the affinity for ATP, ADP and substrate, in this case pre-protein.
SecA seems to have adopted a method whereby a large domain
movement is involved during the initiation phase for both the
activation of the NBDs and the trapping and release of pre-protein.
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SUPPLEMENTARY ONLINE DATA
The dynamic action of SecA during the initiation of protein translocation

Vicki A. M. GOLD', Sarah WHITEHOUSE, Alice ROBSON and lan COLLINSON?
School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K.

MATERIALS AND METHODS
Steady-state ATPase and determination of the K,

Steady-state SecA ATPase measurements were performed as
described previously [1,2] with various concentrations of ATP.
The K, and V,,,, (k..) were determined by fitting the data to the
Michaelis—Menten equation (eqn S1)

Vmax : [S]
V= ——
K, +1S]
where v is equal to the enzyme velocity, V., is the total capacity

of the substrate-associated ATPase stimulation, [S] is the substrate
concentration and K, is the Michaelis constant.
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Various parameters derived from data fits (see individual Figure legends in the main text). The data for the clamp-closed SecA are shown in bold to emphasize the significant differences in this version. Errors represent S.D. values from the fit.

SecA-SecYEGsqiupie SecA-SecYEGg, SecA-ATP SecApnr—SecYkoeeriEGsone  SECA-SECYEGiesicies [SecA-pOA]-SecYEGyesicies [SecA-SecYEGygsicies -pOA
1 2 3 4 5 6 7 8 9 10 11 12 13 14
Condition Kq (MM) Keat Kq (nM) Keat K (ILM) Keat Kq (nM) AFl (%) Kq (MM) Keat Ky (MM) Keat Ky (ILM) Keat
Acys 76406 314406 37+19 749435 - - 184+06  353+02 113+0.32 1542+220 0264004 656.4+31.0 050+0.12 6058+38.3
Acys +DTT 78+14 250+11 56406 827+09 - - 206+ 2.1 36.0+1.3 1114026 1494+172  019+0.03 631.6+226 078+010 6046+20.2
Clamp closed 0.015+0.011 23.2+0.6 - - 1.7+0.06 8.8+0.08 28.6+5.0 20.9+1.4 0.029+0.007 99.7+3.0 0.025+0.007 131.7+4.5 - -
Clamp released (c) 6.3+0.7 225+07 88+21 591+19 011+002 0544002 117.7+127 235408 0.344+0.20 594482 0.13+0.02 253.6+100 024+0.06 231.6+133
Clamp open 59421 99405 - - 010+0.03 0434002 6094100 150406 0.65+0.78 225+78 0.17+0.18 211435 - -
Clamp released (o) 60+14 159+06 65409 312+04 023+008 063+005 595+64 21.3+06 0.6540.42 299+6.4 013+0.07 90.3+97 035+015 505+47
Clamp released (c) 4+ SecYEG  — - - - 18+013 85+017 - - - - - - - -
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Figure S2 The consequences of the immobilization of the PPXD within SecA to protein transport

The model of pre-protein transport (Figure 7A of the main text) has been modified to incorporate the intra- and inter-molecular disulfide bonds, and to explain their effect on the activity. Colour
co-ordination and labelling is as in Figure 7 of the main text. Stages of the mechanism precluded as a result have been fogged out. (A) When the PPXD is cross-linked (purple bar) to the HSD the
clamp is permanently held open. This prevents the activation of the ATPase activity (thin blue arrows), maintains a low affinity for SecYEG (small pale blue arrows) and prevents association with
the pre-protein. (B) Fixing the PPXD to NBD2, holding the clamp closed, activates the ATPase activity (blue arrows), brings about a high-affinity association with SecYEG (large pale blue arrows),
but prevents the engagement of pre-protein. (C) The pre-activated cross-linked SecA-SecYEG complex is primed for translocation and capable of pre-protein intercalation and ATP-driven (thick blue
arrows) translocation.
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