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Summary

Directly relating to sensitivity and specificity and providing an optimal cut-point which maximizes
overall classification effectiveness for diagnosis purpose, the Youden index has been frequently
utilized in biomedical diagnosis practice. Current application of the Youden index is limited to
two diagnostic groups. However, there usually exists a transitional intermediate stage in many
disease processes. Early recognition of this intermediate stage is vital to open an optimal window
for therapeutic intervention. In this paper, we extend the Youden index to assess diagnostic
accuracy when there are three ordinal diagnostic groups. Parametric and nonparametric methods
are presented to estimate the optimal Youden index, the underlying optimal cut-points and the
associated confidence intervals. Extensive simulation studies covering representative distributional
assumptions are reported to compare performance of the proposed methods. A real example
illustrates the usefulness of the Youden index in evaluating discriminating ability of diagnostic
tests.
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1 Introduction

The ROC (Receiver Operating Characteristic) curve has been popularly used in biomedical
research to graphically illustrate the sensitivity (Se) versus 1-specificity (1-Sp) of a
diagnostic test along a sequence of cut-points when there are two populations, usually
healthy and diseased. Area under the ROC (AUROQC) curve is the summary index from
ROC curve analysis representing the global discriminative ability of a diagnostic test across
all possible cut-points. The independence of cut-point property can sometimes become a
disadvantage. For instance, when two markers have crossing ROC curves, it indicates that
one marker performs better at some of the cut-points while the other marker appears
superior at others. AUROC cannot differentiate such two markers if they happen to have an
equal AUROC. For remedy, partial area under the curve has been recommended to calculate
the area under curve restricted to some sensitivity or specificity region of interest (Zhang et.
al., 2002 and references therein). Because of its lack of direct link to a specific pair of
sensitivity and specificity, AUROC can be a rather abstract index for clinicians to
understand and compute. Furthermore, an optimal cut-point which is required for diagnosis
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purpose is not straightforwardly available. Instead, separate computation after AUROC
calculation is needed to derive an optimal cut-point, which is chosen in practice either to
achieve arbitrarily preferred specificity and sensitivity, to equate sensitivity to specificity
(Greiner et al, 1995) or to be closest to the perfect classification coordinate (0,1) (Grainer et
al, 2000; Kitaharaa et al, 1999; Perkins and Schisterman, 2006).

In contrast, the Youden index not only summarizes the discriminatory accuracy of a
diagnostic test but also provides a ready-to-use optimal cut-point for the purpose of future
diagnosis. The Youden index was defined (Youden, 1950) as A9 = Sg(9) + Sp(t) -1,
essentially a combinatory index of sensitivity and specificity at a cut-point Z Practically, this
definition renders a maximum value of one when a diagnostic test provides a perfect
separation between two populations and a minimum of zero when it classifies no better than
chance. An optimal cut-point 7', which maximizes J, i.e., ' = argmax; J(¢) can be derived.
The resulting Youden index which maximizes the overall effectiveness of a diagnostic test
will be taken as the summary measure for a test’s discriminatory ability. The optimality (in
the sense of overall correct classification) of 7 has been discussed in Perkins and
Schisterman (2006) in comparison to the optimal cut-point from ROC curve analysis. The
Youden index and cut-points for two groups has been extensively investigated in statistical
literatures (Hilden and Glasziou, 1996; Fluss et al., 2005; Perkins and Schisterman, 2005,
2006; Schisterman and Perkins, 2007).

An intermediate transitional stage usually exists prior to disease onset in many disease
processes. Due to the irreversible nature of most diseases, early recognition of the
transitional stage will enable timely therapeutic intervention. A good diagnostic test which
discriminates all three diagnostic groups will be valuable for medical practice. Current
statistical research largely focuses on two-class diagnostic problems. A three-class
diagnostic test is often handled as a multiple two-class problem, especially for the purpose
of finding optimal cut-points (Mossman, 1999; Landgrebe and Duin, 2007). The ROC
surface, a natural extension of ROC curve, has been proposed for three-group diagnostic
tests while the volume under ROC surface (VUS) is taken as the global measure
summarizing a test’s discriminative power (Ferri et al., 2003; Nakas et al., 2004; Xiong et
al., 2006, Li and Zhou, 2009, and reference therein). As a summary measure over a whole
spectrum of sensitivities and specificities, VUROC still suffers similar drawbacks as the
AUROC. The Youden index for three ordinal groups, generalized from its counterpart for
two populations, can overcome some of the drawbacks associated with the VURQOC. In this
paper, we aim to define and estimate the Youden index to rate a diagnostic test for three
ordinal groups and contribute practically useful computation tools to facilitate its application
in medical diagnosis. The definition of Youden index for three ordinal diagnostic groups is
provided in Section 2. Parametric and non-parametric estimators to the Youden index and
the optimal cut-points and their variances will be investigated under a variety of
distributional assumptions in Section 3 and 4. We will compare the performance of the
estimators through an extensive simulation study in Section 5. Section 6 illustrates a real
example. Finally, we conclude the paper with a discussion.

2 The Youden index for three ordinal diagnostic groups

We assume that there are three ordered diagnostic groups based on the severity of a disease.
Let O, 0P, and DO and denote the diseased (i.e., the positive condition) group, the
intermediate group (early stage/very mildly diseased), and the healthy (i.e., the negative
condition) group, respectively. It is also assumed that a continuous diagnostic test ( 7) is
measured in all the groups, under the convention that higher values of test result are
associated with greater severity of the disease (when the association is opposite, negated test
result can be used as a diagnostic marker). Let #;be the probability density and £;be the
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corresponding absolutely continuous and strictly increasing cumulative distribution function
(CDF) of the test in group, £, /=+, 0, —. Ideally, a pair of thresholds and £ and &, £ < ¢,
exist for a diagnostic test to differentiate subjects among the three ordinal diagnostic groups.
An intuitive decision rule is then to diagnose the subjects whose test results fall below £
into O~ and those with test results above ¢ to 0. The remaining subjects whose test results
fall between £ and ¢ will be classified into the intermediate group £°. The probabilities of
correctly classifying patients from the three groups are individually defined as:
SHL)=P_(TEL)=F_(L), S&(ty) = P. (T2t.)=1-Fi(t;), and Sm(Lt,t.) = Py(L<T<t)=Fy(t)
—-Fy(t). The Youden index which evaluate the diagnostic accuracy of a test marker for three
ordinal groups can be thereafter defined as the sum of the three correct classification
probabilities,

1 1
J@t-. t)=Z[S plt)+Sm(t-. tr)+S ets) = =5 [F_(t-) = Fo(t-)+Fo(t) - F1 ()] (1)

We will suppress the dependence of the Youden index on the cut-points and abbreviate it as
Jlater on. An optimal pair of cut-points (¢*, £}) can be derived by maximizing Jamong all
possible pairs. The Youden index attained at this pair is reported as the overall diagnostic
accuracy of a test,J*=J(¢*, £} ). The Youden index defined in Equation (1) falls in the
practically useful range of 0~1. When a test assigns a patient to the three ordinal groups by
chance, Jbecomes zero. When a test leads to a perfect separation among the three groups, J
attains one. Further, the Youden index for three ordinal diagnostic groups is invariant under
monotonic transformations on a diagnostic test (and the matching cut-points).

3 Point Estimates of the Optimal Cut-points and the Youden index

3.1 Parametric Estimates

Under the assumption of normality, P; 7= +,0, — takes the density function of an
independent normal distribution My, o) with mean p;, and standard deviation (SD)o ;.
Without loss of generality, we assume - <pg < p+. Let @(x) denote the cumulative
distribution function (CDF) of a standard normal distribution. We have,

I — - Iy — - —Ho

). Se(t)=1-D(EE2) S, 1,)=0(E—H0)
o_ o g0 g0

S p(t_)=d( )

Thus, the Youden index under the normal distribution assumption is expressed as,
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The optimal pair of cut-points is subsequently obtained by taking partial derivatives of the
above equation with respect to £ and ¢ separately and then setting both partial derivatives
to zero:
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The negatively valued second derivative evaluated at the solution warrants that Jachieves
the maximum.

In the presence of equal group variances between O~ and 2P or/and between 2P and D', the
average of the pair of group means serves as the optimal cut-point,

«_H

_+ +
= 2#0 or/andtfr:'uo K

2

A diagnostic test may also follow gamma distributions with the group density functions
B el —pr

(T B)= @ T e P, i=+,0,~ | ot 5= Bo—PB-, b=a--agand c=a-In(B-) - ag

In(Bo) + In(l"(ao;) =In(I'(a-)). The closed-form solution for the lower optimal cut-point is

exp {—lambertW (= ef) - S}, where the function /ambert\//(z) denotes the solution w
satisfying we"” = z (Corless et al, 1996). The upper optimal cut-point has the same
exponential expression but requires simultaneous substitution of ag and g by a+ and B+, a-
and B- by ag and Bg in the expressions of &, band c. If the three shape parameters (a.;) are
all equivalent to a, the solutions for the optimal cut-points are simplified:

+_ In(Bo) —In(B-) ’ _aln(ﬂ+) — In(Bo)

I=a 3 and . The resulting optimal Youden index can be

calculated by usmg the gamma CDF functions in Equation (1). Setting a =1 supplies the
solutions for exponentially distributed diagnostics tests. Estimates on the optimal cut-points
and the optimal Youden index under normal and gamma distributions can be obtained by
substituting the relevant parameters by their maximum likelihood estimates (MLE). Under a
more general distribution assumption, application of characteristic function can be adopted
(Vexler, Schisterman and Liu, 2008) but will not be investigated in the paper.

When normality is not justified, Box-Cox transformation has been frequently implemented
to approximate normality (Vexler, Liu, Eliseeva and Schisterman, 2008). The Box-Cox
transformation transforms a positively-valued random variable x monotonically to ythrough

the function g: = g(x,\.), which has the format of y=X/l 1f0r/1 # 0 and the limit
distribution under A —0 leads to the log-transformation approximation, i.e., = log(x) for A
= 0. When there are three ordinal diagnostic groups, the estimate of A can be obtained by
maximizing the overall profile log-likelihood (see Appendix) through numerical
optimization algorithms.

3.2 Nonparametric Estimates

Imposing no distributional assumptions, we can estimate the optimal cut-points and the
Youden index non-parametrically. The CDFs F;, 7= +,0, — can be estimated either
empirically or by means of kernel smoothing (Silverman, 1986) on the basis of observed
data. Fluss et al. (2005) have applied both approaches to estimating the Youden index for
two populations. Denote the sample size for group £, j= + 0 - as njand the test

measurement of the j subject in the it" diagnostic group as x ) The empirical CDFs of the

Fi(t)=— Zl(x(’) < 1), i=+,0, -
test for the three groups are estimated by, , where [(u<) is the
indicator function returning 1 if the condition in the parentheS|s holds true and 0 otherwise.
With a pre-chosen kernel density function K(x)and a bandwidth / (a positive number), the
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n; t— (’)

- 1
P(T=H=—)» —K )
group density functions can be estimated by (=0 n; ;hi ( h; ), /=+,0,—. The

choice on K{x)is mostly not crucial and Gaussian kernel has been a popular choice for
convenience (Wasserman, 2005). The bandwidth (/) is critical to control the degree of
smoothness. Notice that we allow a different bandwidth /;for each of the three groups. The
“Normal reference rule” as in Fluss et al. (2005) can be utilized (with typos corrected):

hi=1.06n; "> min{7;, %} with /QR;denating the inter-quartile range of sample
measurements in group LY, /~=+,0,—. Besides, a popular data-based bandwidth selection
method—Sheather-Jones (SJ) direct plug-in algorithm (Sheather and Jones, 1991; Sheather
& Jones, 1992) can also be used. We refer readers to Loader (1999) for more details on
bandwidth selection. The utilization of Gaussian kernel smoothing leads to the estimates of
i t— x(.i)
E(;):lZcp( Ly, i=+,0,~

the group CDFs, ni i i

Plugging in the empirical or the Gaussian kernel smoothing CDF estimates into Equation (1)
gives the Youden index estimators for three ordinal groups under the two nonparametric
approaches separately as following,

- L1, o 1<, o 1< o 1<, o
J(t_,t+)=§[zj2=;1(xj St_)—%jzz;l(xj St_)+%;l(xj SLJ—ZJZ:;I()CJ. <t)]

ny (0) no (0) (+)

)——Z(D( )+ Z(I)(

)——i@(

- 1 1 n- t_—
T t)=5l n—Z@(
A

The optimal pair of cut-points for the above two nonparametric estimates of the Youden
index can not be analytically derived. Therefore, numerical optimization algorithms have to
be employed for solutions.

4 Confidence intervals for the Optimal Youden index and Cutoffs Points

4.1 Parametric Confidence Intervals

Notice that, under the normal distributions, the parametric estimates of the optimal pair of
cut-points and the Youden index are functions of sample means and SDs (L-, 1o, L+ and o,
o0, 04+) from three independent normal distributions and it is well known that the sample
mean and sample SD of a normal distribution are independent. By multivariate delta
method, asymptotic variances of the optimal cut-points and the optimal Youden index can
be calculated by the following equations,

2 t# 2 t* 2
) Var(o_ )+( ) Var(co) (4)

ot
Var(f)= (

2

Var(t;)= ( )+( :

®)
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2 2 2 2

2
Oy ar@+ 2Ly Var@+ (2L Var@ )+ (2L var@)+ (2L var@y) )
Ol Oug do_ do, doo

Var(fk):(aaﬂ—]_)“Var@_H(

The estimates of the optimal cut-points and the Youden index are asymptotically unbiased
and normally distributed. Therefore, a (1-a)x100% confidence interval (ClI) for these
parametric estimates can be obtained as

Tt 22\ Var(@), 7, + 22 \Var@), I + 2o \Var(J*) respectively, where z,

represents the a/2 quantile of a standard normal. Meanwhile, ¢ and ¢ are not independent of
each other due to their common dependence on pg and og. The covariance of the two
estimates is thus derived by Taylor expansion as:

— or* ot or* ot:
Cov(@, 7 )=—=— - ¢
oV T)= g o evarGioyt 5 = 5 svar@o) - ()

The variances of the sample estimates of the normal parameters are well known (Patel and
Read, 1996):

1 1
Var@)=n_i0'?, Var@iﬁmo'?, i=+,0,— (8

The partial derivatives involved in Equations (4) to (7) are presented in the Appendix.
Substituting the variances of normal parameter estimates (Equation (8)) and the partial
derivatives (Appendix) accordingly, we can obtain the asymptotic variance and covariance
on the estimated optimal cut-points as well as the variance on the estimated optimal Youden
index. The corresponding estimates can be calculated by plugging in the normal sample
means and variances together with the optimal cut-point estimates.

4.2 Nonparametric Confidence Intervals

Closed-form solutions to estimate the optimal cut-points and Youden index from
nonparametric approaches are not available. However, bootstrap basic quantile Cls can be
computed: repeatedly draw a set of bootstrap samples, derive estimates on ¢*, #; and J" from
each set of bootstrap samples and finally calculate the corresponding a/2 and 1 — a/2
quantile as the lower and upper bound on the estimators respectively. A bootstrap
confidence interval can be established for each proposed estimators in the paper, both
parametric and non-parametric.

5 Simulation Studies

In three simulation scenarios, a diagnostic test is assumed to individually follow a normal, a
log-normal or a gamma distribution. We examined in each scenario the performance of the
proposed approaches: normal distribution---labeled as A, normal approximation via Box-
Cox transformation--- 7/, empirical CDF method--- EMP and kernel smoothing method with
application of the normal reference rule and the Sheather-Jones algorithm for bandwidth---
KSand KS-SJseparately. Table 1 displays the simulation parameters including the normal
mean and SD (., o ~+,0,~) used for the Normaland Log-normal scenario and the shape
and scale parameters (a;, B ~+,0,~) for the Gamma scenario. Normal/gamma parameters
for the D~ and DO group, as well as the SD (o) and gamma shape parameter (a.;) for D¥,
were pre-specified while the mean and the gamma scale parameter for D* (also given in
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Table 1) were estimated to attain a given J. We chose Jto be (0.5, 0.6, 0.7, 0.8) since this is
a practical range for a useful biomedical marker in three-group screening. An equal sample
size of 20, 50, 100 and 200 is used for the three groups, to resemble the usual size of
biomedical datasets in reality. The underlying true pair of optimal cut-points (#*, ;) are also
listed in Table 1. The R function “optim” with the box-constrained BFGS optimization
method (Byrd et al, 1995) was used for searching the optimal cut-points in the non-
parametric estimators and R package “KernSmooth” was used for implementation of SJ
bandwidth calculation.

5.1 Simulation Results on J", » and * and estimations

For each scenario, 1000 datasets were independently simulated to estimate J, ; and /* and
from each proposed method. The resulting estimations were compared in terms of bias and
root mean square error (RMSE). Simulation results on J* are shown in Table 2. At a fixed
Youden index, all methods exhibit a decreasing trend in both bias and RMSE as the sample
size increases under each simulation scenario. Interestingly, the two kernel smoothing
estimators (both bandwidth choices) usually underestimate the Youden index while the
others generally show positive biases. A similar negative bias phenomenon with the kernel
smoothing estimator is also found in the Youden index for two populations (Fluss et al.,
2005). The two bandwidth selection choices (normal reference rule and SJalgorithm) often
result in similar performance across all scenarios though subtle superiority is observed in the
latter. Unsurprisingly, when data are truly from normal, A performs the best with the
smallest bias and RMSE and 7/ provides almost indistinguishable results. Biases resulting
from kernel smoothing estimators on a normally distributed test marker are comparatively
the largest among all the methods though the RMSEs at J=20 are smaller than £AMP and
comparable elsewhere; The Log-Normal scenario caters to the 7V method. As expected, 7V
stands out in terms of both bias and RMSE, but with a small margin in RMSEs compared
with the nonparametric estimators. KSestimators are better than £MP from both bias and
RMSE though EMP produces smaller biases at large sample sizes (e.g., 200) and/or large J
(/=0.7 and 0.8). In comparison, Nis the worst method with the largest biases and RMSESs
under the greatly skewed distribution; In the Gamma scenario, KS-SJand 7N are
competitors for the best performer. KS-SJis superior to 7/Vat small sample sizes or/and
small Jwhile 7N performs subtly better at /=0.8 and the sample size of 200. EMP can
results in smaller RMSE than KSat J=0.8. Under moderate deviation from normality, N/
behaves the worst. Surprisingly, A noticeably outperforms the other methods at J=0.8 in the
gamma scenario with the smallest RMSEs.

The results on the upper optimal cut-point are summarized in Table 3. We omit results on
the lower optimal cut-point because it is fixed across Jwithin each scenario by our
simulation design and its performance is similar to the upper optimal cut-point. Similar to
the Youden index estimates, the biases and RMSEs from all methods decrease with
increasing sample size. Differently, small underestimation on the upper cut-points is
observed in TN instead of KS. Nstill performs the best in the normal scenario but generally
the worst in the other two scenarios with the largest biases and RMSEs with the exception of
J=0.8 in the gamma scenario. 7/ takes the lead in the non-normal scenarios but it results in
the largest biases in the normal scenario. The two kernel smoothing estimators have similar
performance but generally perform inferior to EMP. Biases from kernel smoothing
estimators are larger than EMP. In terms of RMSE, KS'is inferior to EMPin the Normal
scenario and Log-normal scenario but is superior to EMP except at J=0.8 in the gamma
scenario. KS-SJprovides slightly better performance than KSwith the normal reference rule
except in the normal scenario and J=0.5.
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5.2 Simulation Results on Confidence Intervals

For ClI, we generated 500 datasets under each scenario and for each dataset, a 95% CI was
constructed by delta method for A/ (labeled as N-delta) and by bootstrap from 500 samplings
for all methods (N, TN, EMP, KS, KS-5J). The CIs’ coverage probabilities and widths under
the three simulation scenarios are displayed in Table 4 and Table 5 for J*and £+ and
separately (results for ;# are omitted due to space limit). With increasing sample size, Cls
produced by all the methods become narrower. Across all the scenarios, EMP leads to the
widest Cl on J while KS results in the widest Cl on ¢; among all methods. A provides a
high coverage probability on J*in the Normal Scenario. The averaged coverage probability
from N-deltaon Jis around 97% and around 95% for ¢. By comparison, the coverage
probabilities of A/bootstrap Cls are slightly lower but of relatively small width. 7A/and the
nonparametric methods result in bootstrap Cls of similar coverage probabilities though the
latter are often accompanied with wider Cls. Cls from A have the poorest coverage (for both
J*and *) under the non-normal skewed scenarios. In the Gamma scenario, the lowest
coverage probability of MVis nearly 0% on ¢; and 4% on J*while the highest is only around
60% on either at 5 below 0.8. Under Log-Normal scenario, the huge standard deviations
lead to large variance estimation by delta-method. As a result, the width of Cl on J*has
always the (practically) maximum length of 1 (the coverage probability is then 1). N-delta
also has extremely poor coverage on the optimal cut-points. Noticeably, the coverage from
N-deltaon J* improves when groups are more and more widely separated in the Gamma
scenario. In fact, its coverage probabilities at J=0.8 rise to around 97% across sample sizes.
The Nbootstrap Cls are certainly better than A/ delta-based Cls under non-normal
distributions. Across all simulation scenarios, the 7A/ method provides optimal Cls, covering
both the Youden index and the upper cut-points at a close-to-nominal probability across all
situations. The KSestimators also demonstrate consistently high coverage probabilities,
comparable to and sometime even higher than 7N/ (significantly at small J and small
sample sizes), though the associated Cls are relatively wider. EMPYyields Cls of high
coverage probabilities for J“across all the three scenarios, however, in comparison to 7V
and KS, the coverage for ¢% is much lower in the non-normal scenarios. The lowest coverage
probability is around 50% in the Gamma scenario and is only around 30% in the Log-
Normal scenario and the highest below 90%.

6 A Real Example

The proposed methods for the Youden index were applied to investigate the diagnostic
ability of fourteen psychometric markers of Alzheimer’s disease (AD) among non-
demented/mild cognitive impairment/early stage AD. The same dataset was analyzed in
Xiong et al (2005) for VUS and the readers are referred to the paper for more details on the
dataset. Logistic regression analyses, including the analysis of logit for dichotomous
outcomes and the analysis of generalized logit for polytomous outcomes, are simple and
powerful alternatives to the traditional ROC types of analyses, and are well supported by
existing software packages. The connection between the binary logistic regression model
and AUROC has been addressed (Qin 2003), though the connection between polytomous
logistic regression and VUS has not. We implemented multinomial logit analysis and
confirmed that each marker has a significant effect on predicting the AD status (all the
markers have p<0.0001 based on maximum likelihood analysis of variance only that
‘zbentd” has p=0.002). Application of a nonparametric k sample test for location based on
marginal ranks (Prui and Sen, 1971; Nordhausen et al., 2010) across all the fourteen markers
indicates that the markers have different distributions across the three diagnosis groups,
suggesting potentially distinct diagnostic ability (p=1.55e-09). We continued to calculate the
diagnostic ability summary measures—the Youden index and VUS. Figure 1 Plots for each
marker the estimates on Jwith 95% CI, accompanied with averaged estimates of Jfrom all
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methods and the averaged VUS under normal and empirical method. All markers are useful
to some extent comparing the VUS measures to 1/6 and Jestimates to 0 (of a useless
marker) respectively. The two measures also rank the markers in similar order with subtle
difference. The marker ‘zbentd’ is rated as the worst marker while ‘ktemp’ and ‘FACTORY’
as the most discriminative, according to both the Youden index and VUS. Table 6 separately
lists point estimates on Jand VUS under normality for each of the 14 AD marker,
accompanied with 95% CI, as well as associated optimal cut-points. The resulting optimal
cut-points are not exactly equivalent but stay quite close between the two methods.

7 Discussion

Current research on diagnostic tests focuses very much on two-population diagnosis.
VUROC has been used to evaluate diagnostic tests for three groups. However, VUROC has
its limitations such as being computationally difficult, lacking direct link to correct
classification probabilities and failing to assess two markers which have equal VUROCs but
perform better at different cut-points. Most of all, it lacks an integral derivation of optimal
cut-points which are required for patients diagnosis in medical practice. We extended the
Youden index for three ordinal groups as an alternative measure of diagnostic accuracy. We
proposed parametric and nonparametric methods for simultaneous estimation of the Youden
index and the cut-points and evaluated the bias, precision and CI coverage and width of
these estimators under three representative simulation scenarios. We have provided a
directly applicable R package to evaluate diagnostic markers for three ordinal groups
through the Youden index. We found that if groups are well separated, the parametric
estimator under the normal assumption (/) performs well despite small to moderate
deviation from normality but its performance is the worst otherwise. 7/ provides the best
estimation almost in all scenarios in evaluation of both point estimates and CI properties. It
may be argued that the normal and Log-normal scenario caters to 7/VVand the gamma
scenario under investigation only deviates moderately from normality, thus Box-Cox
transformation can still approximate reasonably well. Kernel smoothing estimators introduce
comparatively large biases but can outperform 7/ especially under small sample sizes and
when groups are not well separated. The Sheather-Jones bandwidth selection is generally
preferred to the normal reference rule for kernel smoothing estimator. In terms of point
estimate for both the Youden index and optimal cut-points, EMP performs surprisingly well,
especially under large sample size and for widely separated groups. However, in
consideration of CI properties, EMP yields unsatisfactory coverage in non-normal scenarios.

The point estimation and variance on both the Youden index and the cut-points for three-
group diagnostic tests were specifically derived for some parametric distributions. Closed
form expressions are sometimes difficult to derive or may not even exist for other
distributions. In contrast, flexible nonparametric estimators are distribution free and
meanwhile, can provide consistently satisfactory results on point estimates and Cls. Two
popular bandwidth selection methods were considered here for the kernel smoothing method
for convenient and fast computation. Other bandwidth estimation algorithms may be
adopted. Basic quantile bootstrap confidence intervals were calculated in the paper.
However, more computationally expensive bootstrap intervals such as bias-corrected and
accelerated bootstrap confidence intervals (Carpenter and Bithell, 2000; Schisterman and
Perkins, 2008) may offer further improvement. In practice, it is recommended that the
distribution of a marker should be examined by exploratory plots before implementation.
Experiments with all of the proposed methods are encouraged for comparison. Last, we
presented the Youden index as a simple combination of the three correct classification
probabilities associated with the three ordinal groups by imposing equal weights. The
proposed Youden index can be easily generalized by researchers in order to take disease
prevalence into account or consider cost/benefit ratio in a diagnostic test.
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Appendix

»  The profile log-likelihood of marker measurements from three ordinal groups after
implementation of Box-Cox transformation is,

n- no ny
-~ n_ — — — n — — n — —
M=-1 1+1og(2m%)]+u—1)Zlog(x§. ))—7"[ 1+1og(27rcr3)]+(ﬁ—1)Zlog(x§’>)— %[ 1+log(27r0'%r)]+(/l—I)Z;log(x§.+))
Jj= j= j=
Notice that we have suppressed the dependence of estimates of normal variance on A.

*  Partial derivatives of /, £ and Jwith respect to relevant parameters.

The partial derivatives of  with respect to the relevant parameters can be derived as:

ot* loxl o_ o o- oo o ab-20_c 0 arb+20c
=—— +— _— —_—— +— _— —_—
b [oo ‘/Z(H /10)],6#0 5 Lo \/K(ﬂ Ho)ls=— SR 2

Where b, ¢ and A separately represent the denominator, numerator and the term under the
square root in Equation (3.1), i.e.

b=(02~03), A=(u_ — po)*+(c> O'O)In( )c (o0 ~p_ )~ _oro VAa1=2u00 -~ VA —T[a 1n(—)+b]
0 O

[0
and 2= 7 #H-00~ - \/ZJF\/_Z[O- In(—= )+ , where /n(?)is natural log.

Since 7 has the same functional form as ;*, the partial derivatives on g, p+, og and o, can
be easily written out by simultaneously substituting, in the above equations and notations,
K- by po, o, by p4, o- by o9, and og by o,. We omit the detailed expressions here.

The partial derivatives of the Youden index with respect to the six normal parameters are
represented as follows,

aJ 1 ot to— - 1 —up 1 ot —pu-

o 2o _( = )—O_—O<P( - )]—Z<P( -y

)

o7 1.0 1t —u, 1 - 1t -,
=-—{ & L oS S S L N el S

Ope 2 0us o4 On oo 00 o oy

)}

oJ 1 ot 1 1 ot —uy.. 0. 1 ty—puo. 1 ty—u 1 t_ — Uo ty — Mo
—— () 2 [ — (=) —p(——) ]+ — [ ( )—p(=
om0 2 6#0 i oo 09 Ouo oo’ 00 o oy o) 00 00

Ml
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