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ABSTRACT

Background. Beta-trace protein (BTP), measured in serum or
plasma, has potential as a novel biomarker for kidney func-
tion. Little is known about the genes influencing BTP levels.
Methods. We conducted a genome-wide association study of
log-transformed plasma BTP levels in 6720 European Ameri-
cans (EAs) and replicated the significant associations in 1734
African Americans (AAs) from the Atherosclerosis Risk in
Communities (ARIC) study.
Results. We identified a genome-wide significant locus in EA
upstream of Prostaglandin D2 synthase (PTGDS), the gene en-
coding BTP. Each copy of the A allele at rs57024841 was associ-
ated with 5% higher BTP levels (P = 1.2 × 10−23). The association
at PTGDS was confirmed in AAs (6% higher BTP for each A
allele at rs57024841, P = 1.9 × 10−7). The index single nucleotide
polymorphisms (SNPs) in EAs and AAs explained ∼1.1% of the
log(BTP) variance within each population and explained over
30% of the difference in log(BTP) levels between EAs and AAs.
The index SNPs at the PTGDS locus in the two populations were
not associated with the estimated glomerular filtration rate
(eGFR) or the urine albumin creatinine ratio (P > 0.05). We
further tested for the associations of BTP with 16 known loci of
the eGFR in EA, and BTP was associated with 3 of 16 tested.
Conclusions. The identification of a novel BTP-specific (non-
renal related) locus and the confirmation of several genetic loci
of the eGFR with BTP extend our understanding of the metab-
olism of BTP and inform its use as a kidney filtration biomarker.

INTRODUCTION

The glomerular filtration rate (GFR) is the most widely ac-
cepted index of kidney function. The direct measure of the
GFR using an exogenous molecule is an invasive procedure
and often impractical in both clinical and research settings [1].
Therefore, it is often estimated using equations based on
endogenous biomarker levels, such as serum creatinine (SCr).
Discovery and characterization of novel filtration markers,
such as beta-trace protein (BTP) and cystatin C, are important
for improving the precision and reducing bias in GFR esti-
mation due to non-GFR factors influencing SCr [2]. However,
novel filtration markers will have their own non-GFR factors.
Advances in human genetics are enabling an unbiased charac-
terization of common genetic variation influencing any novel
filtration biomarker.

BTP, measured in serum or plasma, has been found to be
more sensitive than SCr in detecting a modest decline in the
GFR [3–6]. BTP is a low-molecular weight protein (23–29
kDa) that is freely filtered by the kidney. It has been shown to
be associated with risk of kidney failure and mortality in par-
ticipants with chronic kidney disease (CKD) in the Modifi-
cation of Diet in Renal Disease and African American Study of
Kidney Disease and Hypertension studies [7] and with risk of
end-stage renal disease (ESRD) in African Americans (AAs)
having hypertensive CKD after controlling for measured GFR
[8]. Recently, the Atherosclerosis Risk in Communities
(ARIC) population-based cohort also found BTP to have
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stronger associations with ESRD, cardiovascular disease and
mortality than SCr estimates of the GFR [9]. Little is known
about with non-kidney-related factors influencing BTP levels.
The primary goal of this study was to identify genetic loci of
BTP. As a biomarker of kidney function, BTP may be
associated with kidney function loci or loci specific to the
regulation of BTP. Our secondary goal was to examine the
association between BTP and known eGFR loci. Investigation
into the genetic associations of BTP can enhance our under-
standing of the biological mechanisms underlying BTP metab-
olism and inform its potential use as a kidney function
biomarker. We conducted a genome-wide association study
(GWAS) of plasma BTP in a large population-based cohort,
tested replication of the genome-wide significant results, deter-
mined whether this locus was associated with kidney function
and finally tested for the associations of BTP with 16 pre-
viously identified GFR loci among individuals of European
ancestry [10].

METHODS

Study population and phenotype and covariate measures

The ARIC study is a prospective observational cohort study
of middle-age adults (baseline age between 45 and 64) in four
US communities. Details of the study design were reported
previously [11]. Briefly, four visits, each ∼3 years apart, were
conducted between 1987 and 1998. The baseline sample in-
cluded 15 792 participants, ∼12 000 European Americans
(EAs) and 4000 AAs.

All biomarkers (BTP, serum and urinary creatinine and
urinary albumin) for this study were measured from samples
collected at visit 4. BTP was measured from plasma samples
using nephelometric technology run on the Dade Behring Ne-
phelometer II (BNII) system (sample reliability coefficient:
0.96 in 381 replicates after the removal of 7 outliers with BTP
levels >3 SD). A total of 10 557 observations were available
(8269 for EA; 2288 for AAs). Combined with the availability
of genotype data and the removal of 20 individuals with the
self-reported dialysis status or BTP levels >8 SD, the final
sample sizes were 6720 in EA and 1734 in AAs (details in Sup-
plementary Methods section).

SCr was measured using the modified kinetic Jaffe method.
eGFRscr was calculated using the CKD-EPI equation [12]
after standardizing SCr levels by calibrating to the age- and
sex-specific means in the Third National Health and Nutrition
Examination Survey (NHANES III) and adding 0.5 [13]. In
the calculation of the urine albumin creatinine ratio (UACR),
the detectable limit of albumin was determined to be 2 mg/L
and that of creatinine was 1 mg/dL. Individuals with non-de-
tectable albumin and creatinine levels were given a value of
half of the detectable limit.

Diabetes was defined as fasting glucose ≥126 mg/dL, non-
fasting glucose ≥200 mg/dL, self-reported physician diagnosis
of diabetes mellitus or the use of oral hypoglycemic medi-
cation or insulin. Hypertension was defined as systolic blood
pressure ≥140 mmHg, diastolic blood pressure ≥90 mmHg or
the use hypertension treatment medication.

Statistical methods

A natural-log transformation was applied to BTP levels
because its distribution was right skewed. In the genome-wide
and the candidate region association analyses, a linear
regression model was used to test for the associations between
each SNP and log(BTP) levels controlling for age, gender,
center and principal components associated (P < 0.05) with
log(BTP). Each SNP assumed an additive genetic effect. To de-
termine the existence of multiple independent signals in each
genome-wide significant locus, we conducted linear regression
for each SNP adding the index SNP at the locus as an additional
covariate. The statistic significant threshold for independent
signals was set at 0.05 divided by the number of genotyped
SNPs that were relatively independent (variance inflation factor,
VIF, <2) within the locus. The VIF was calculated using PLINK
v1.07 [14] with a window size of 50 SNPs and defined as 1/(1-
R2), where R2 is the multiple correlation coefficient for a SNP
being regressed against all other SNPs in a window. The replica-
tion P-value threshold in AAs was set at 0.001 (=0.05/45) based
on the number of genotyped SNPs with VIF <2 in the imputed
region (139.4–140.4 mb on chromosome 9 in build 37 pos-
ition). Details of genotyping and imputation and principal com-
ponent generation are reported in the Supplementary Methods
section. The genome-wide and candidate region association
analyses in EAs and AAs were performed using ProbABEL [15]
and PLINK v1.07 [14], respectively. Other analyses were con-
ducted using SAS 9.2 or R.

We tested for the differences in the study participant charac-
teristics between EAs and AAs. (t-tests for age and eGFRscr,
Wilcoxon test for BTP levels and Chi-square tests for dichoto-
mous variables). To assess whether the GWAS signals upstream
of PTGDS could explain the difference in BTP levels between
EAs and AAs, we combined the data of the two cohorts and re-
gressed self-reported race against log(BTP) in three regression
models. Model 1 included age, gender and center as covariates.
Model 2 added hypertension, diabetes, eGFRscr and common-
log-transformed UACR as covariates. Model 3 added one of the
index SNPs, rs7019538, which was selected because its associ-
ation with BTP was similar to the other two index SNPs among
EA based on P-value and was the strongest among AAs.

The regression analyses of the BTP index SNPs at the
PTGDS locus against eGFRscr and UACR and the regression
analyses of 16 eGFR index SNPs against scaled BTP and
eGFRscr in EA were conducted controlling for age, gender,
center and significant principal component(s). In the
regression analyses of the eGFR index SNPs against BTP, we
took the reciprocal of BTP and scaled it to have the same
mean as eGFRscr, so that the effect size of the SNPs against
BTP could be compared with that against eGFRscr. We refer
to this as scaled BTP in this manuscript.

RESULTS

Table 1 presents the basic characteristics of our study popu-
lations. Compared with EAs, AAs had lower BTP levels,
higher estimated GFR based on SCr and more individuals with
albuminuria, hypertension or diabetes.
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The GWAS of BTP levels in EAs was initially conducted
using imputed dosage based on a HapMap phase 2 reference
panel, and it identified 11 SNPs, representing a single locus, on
chromosome 9 that achieved genome-wide significance
(P < 5 × 10−8, Supplementary Tables S1 and S2). This genome-
wide significant locus was upstream of PTGDS, the gene encod-
ing BTP (rs7040970, beta = 0.04, % variance explained = 0.7%,
P = 1.5 × 10−17; Table 2). Figure 1 shows the regional association
plot of the PTGDS locus. Supplementary Figure S1 presents a
plot of the –log10(P-values) by genomic position, and Sup-
plementary Figure S2 presents the quantile–quantile plot of the
GWAS results in the EA samples with a genomic control factor
of 1.02. Two other loci showed suggestive significance (P-
value < 5 × 10−6). One was near MSTN on chromosome 2
(rs16832277, beta = 0.02, P = 1 × 10−6, MAF = 0.28, variance
explained = 0.3%). The other was at GCKR on chromosome 4
(rs1260326, beta = 0.018, P = 2 × 10−6, MAF = 0.41, variance
explained = 0.3%), which was a reported eGFR locus [10].

We decided to follow-up on the novel genome-wide signifi-
cant locus at PTGDS. To finemap the region near PTGDS, we
subsequently imputed SNPs across this locus (139.4–140.4 mb
in build 37 position) in both EAs and AAs based on 1000
Genomes reference panels [August 2010 release for EA and
the Phase I (interim) for AAs]. This 139.4–140.4 mb region
was selected because the closest recombination peak was
∼400 kb upstream of the GWAS index SNP rs7040970 (Sup-
plementary Figure S3) and cis-regulatory elements are unlikely
to exist far from the protein-coding gene [16]. Using the 1000
Genomes imputed dosage in EAs, the top SNP was
rs57024841 (beta = 0.05, P = 1.2 × 10−23; Table 2, Supplemen-
tary Table S3). In the regression analysis controlling for this
index SNP (rs57024841), we did not detect other significant
signals (all SNPs had P > 2.9 × 10−3 > 0.05/28, the number of
independent genotyped SNPs in this locus in EAs). The two

index SNPs from HapMap phase 2 and 1000 Genomes
imputed data (rs7040970 and rs57024841, respectively) were
in linkage disequilibrium (LD) (r2 of 0.76 in the 1000
Genomes Interim EUR sample and 0.96 in the ARIC EA
samples (Supplementary Table S4).

The replication analysis in AAs using 1000 Genomes
imputed dosage at the PTGDS locus detected 64 significant
SNPs with P-value below the pre-specified threshold of 0.001.
The top SNP was rs7019538 (beta = 0.06, P = 6.8 × 10−8;
Table 2 and Supplementary Table S5). After controlling for
this top SNP, rs7019538, no additional signals were detected
among AAs (P > 1.5 × 10−3). The index SNP identified in EA
(rs57024841) was also significant in AAs (beta = 0.06,
P = 1.9 × 10−7; Supplementary Table S1).

Each of the index SNPs (rs57024841 in EA and rs7019538
in AAs) explained ∼1.1% of the log(BTP) variance in their
respective populations (Table 2). The two SNPs were ∼1 kb
apart and in high LD within both populations (D’ of 1 in 1000
Genomes EUR and AFR populations, Supplementary
Table S4). Figure 2 presents the regional association plots in
EAs and AAs with their respective LD plots showing more dif-
fused but largely similar LD pattern in AAs compared with the
EA samples. As shown in Supplementary Table S1, the two
index SNPs had comparable beta estimates within each popu-
lation (0.05 for rs57024841 and 0.04 for rs7019538 in EA and
0.06 for both SNPs in AAs), indicating that they likely rep-
resent the same signal(s). Across the two populations, the
coding allele of two index SNPs had lower allele frequencies in
AAs than in EAs (0.34 in AAs versus 0.58 in EAs for
rs57024841, 0.21 in AAs versus 0.51 in EAs for rs7019538).

To determine whether the lower allele frequencies of the
coding allele of the index SNPs in AAs could partly account
for the lower BTP levels in AAs observed between the ARIC
EA and AA participants, we performed a combined analysis of

Table 1. Study participant characteristics

EAs AAs P-valuea

Overall, n 6720 1734

Age, mean (SD) 63.1 (5.6) 61.9 (5.7) 2.6E-16

Women, % (n) 54.8 (3686) 64.3 (1115) 1.4E-12

Hypertension, % (n) 42.2 (2818) 67.6 (1166) 3.5E-79

Diabetes, % (n) 13.7 (916) 27.5 (469) 5.3E-43

eGFRscr <60 mL/min/1.73 m2, % (n) 6.6 (437) 7.15 (124) 4.4E-01

eGFRscr, mean (SD) 82.8 (13.8) 89.3 (19.2) 2.9E-39

BTP (mg/L), median (IQR) 0.69 (0.60, 0.78) 0.60 (0.51, 0.69) 1.6E-110

Albuminuriab, % (n) 6.6 (440) 15.0 (258) 1.9E-29

CKDc 11.8 (773) 19.1 (328) 3.4E-15

eGFRscr, glomerular filtration rate estimated based on the serum creatinine level using the Chronic Kidney Disease Epidemiology
Collaboration equation; CKD, chronic kidney disease; IQR, inter-quartile range.
aThe Chi-square test for categorical variables; t-test for age and eGFRscr; the Wilcoxon test for BTP.
bAlbuminuria defined as urinary albumin creatinine ratio >30.
cCKD defined as eGFRscr <60 mL/min/1.73 m2 or the presence of albuminuria.
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the association between self-reported race and log(BTP) levels.
In a model controlled for age, sex and center, self-report
‘black’ race was associated with lower BTP levels (beta =−0.10,
equivalent to 10% lower in BTP levels, Table 3). In a model
controlled for rs57024841 in addition to age, sex, center, dia-
betes, hypertension, eGFRscr and UACR, the effect estimate of
self-reported ‘black’ race was reduced by 38% (Model 3,
beta =−0.035) compared with the model without the SNP
(Model 2, beta: −0.056, Table 3). Adjusted for these variables,
log BTP was not associated with diabetes and hypertension
(P > 0.05) and moderately associated with UACR (beta = 0.06

per 10-fold higher UACR) and, as expected, strongly related to
eGFRscr (beta =−0.008/1 mL/min/1.73 m2, equivalent to 38%
lower BTP levels for 60 mL higher eGFR).

To determine the potential function of the significant SNPs
identified from our GWAS, we interrogated gene expression
databases for expression SNP (eSNP) associations with
PTGDS gene expression. [17, 18] Two eSNPs downstream of
PTGDS were reported to be associated with PTGDS expression
[19], but did not explain our GWAS signals upstream of
PTGDS (Supplementary Table S6). Since transcription factor
binding may affect gene expression and thus protein levels

Table 2. Association of log(BTP) with index SNPs at the PTGDS locus in European and African
Americans in ARIC

SNP Position (b37) Coded/non-coded allele Coded allele frequency Beta SE P-value

EA HapMap imputation

rs7040970 139 859 013 C/T 0.48 0.04 0.005 1.5E-17

EA 1000 Genomes imputation

rs57024841 139 862 633 A/G 0.58 0.05 0.005 1.2E-23

AA 1000 Genomes imputation

rs57024841 139 862 633 A/G 0.34 0.06 0.01 1.9E-07

rs7019538 139 861 470 C/T 0.21 0.06 0.01 6.8E-08

EA, European American; AA, African American; SE, standard error.

F IGURE 1 : The regional association plot of BTP genome-wide significant locus upstream of PTGDS using genotype dosage imputed from
HapMap Phase II reference panel. Build 37 genomic positions are shown on the x-axis. The purple diamond marks the index SNP, rs7040970.
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[20], we also queried the data from the ENCODE project [21]
for evidence of transcription factor activities at or near the
PTDGS locus and found some evidence of transcription factor
binding (Supplementary Figure S4).

To assess whether the PTGDS locus may be associated with
kidney function, we tested for the association of the BTP index
SNPs at the PTGDS locus against eGFRscr and log-trans-
formed UACR in our EA and AA cohorts and found no evi-
dence of associations (P-value >0.05, Supplementary
Table S7). Finally, to assess the associations between known
eGFR loci [10] and BTP levels, we tested for the association of
scaled BTP (for variable definition, see the section ‘Methods’)
with the index SNPs at 16 known eGFR loci and compared
their association with scaled BTP with their association with
eGFRscr. These 16 loci were identified with a total sample size
of ∼90 000 [10] from cohorts in the CKDGen consortium. In
our study of 6720 individuals, scaled BTP was associated with
three loci (GCKR, NAT8 and UMOD) at an alpha level of
0.003 (=0.05/16). The eGFR index SNP at the GCKR locus,
rs1260326, was the same SNP that attained suggestive signifi-
cance in the EA GWAS of log(BTP). Even though only three
index SNPs reached statistical significance, 13 of the 16 loci
had beta estimates in the same direction as the beta estimates
originally reported [10] (binomial test P-value = 0.01), an
event that is unlikely due to chance. Based on the same P-
value threshold of 0.003, eGFRscr was associated with seven
loci with all beta estimates in the same direction as those orig-
inally reported [10] (Supplementary Table S8).

DISCUSSION

We identified a genome-wide significant locus of BTP up-
stream of PTGDS, the gene encoding BTP. The A allele of
rs57024841 had a frequency of 58% in EAs compared with
34% in AAs but was associated with a similarly higher level of
BTP in the two populations (5 and 6%, respectively). As a
result, the PTGDS locus explained over a third of the difference
in log(BTP) levels between EAs and AAs in the ARIC study. It
accounted for 1.1% of the log(BTP) variance in both EAs and
AAs in our sample, and was not associated with either
eGFRscr or UACR. However, 13 of the 16 known eGFR loci
showed directionally consistent associations with BTP levels,
and three loci were statistically significant after a Bonferroni
correction. In addition, BTP levels were highly associated with
eGFRscr. After adjustment for eGFRscr, BTP was moderately
associated with self-reported race and UACR and not associ-
ated with hypertension and diabetes.

BTP belongs to the lipocalin protein family and is also
known as lipocalin-type prostaglandin (PG) D synthase (L-
PGDS). It catalyzes the isomerization of PGH2 as an enzyme
[22] and was found to have an independent role in inhibiting
astrocyte proliferation [23] and protection against oxidative
stress in neural cells [24] in functional experiments. It was first
isolated in the cerebrospinal fluid [25] and subsequently
shown to be expressed in a variety of tissues, including cells in
the glomeruli and the Loop of Henle [26]. After BTP is filtered

F IGURE 2 : Genetic association and LD patterns at the PTGDS locus using imputed dosage from the 1000 Genomes reference panels in EAs
and AAs. The Haploview plots on the right show the D’measures between SNPs in the same region as the regional association plots on the left.
The positions of the index SNPs and the PTGDS gene are marked with vertical lines in the Haploview plots.
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by the glomeruli, it may be partially reabsorbed and degraded
by tubular cells [26] and then excreted in the urine [27–29].
Besides kidney function, little is known about the biological
mechanism affecting its level in the blood. White et al., using
successive 50 deletions, identified a core promoter within the 50

flanking sequence of PTDGS and a thyroid hormone response
element (TRE) from 2576 to 2562 bp upstream of PTDGS.
There were no SNPs within the 14 bp of the TRE in our
imputed data. As reported in the ‘Results’ section, our query of
a gene expression database did not find SNP associations with
PTGDS expression levels that could explain the GWAS signals.
The upstream location of the GWAS signals together with evi-
dence of transcription factor binding in this region from the
ENCODE project is consistent with the hypothesis of the exist-
ence of distal regulatory elements [30–32]. Further studies are
needed to elucidate the biological mechanism underlying the
SNP associations at the PTGDS locus with BTP levels.

Although BTP has been studied as a serum or plasma bio-
marker for kidney function in patients with kidney disease [3, 5,
6, 33–36] and in a community-based cohort [9], relatively little
is known about the non-kidney factors influencing BTP levels.

In our study of population-based European and African Ameri-
can cohorts, we found the median BTP levels to be ∼0.09 mg/L
lower in AA than in their EA counterparts. Moreover, we have
identified a genetic locus that is associated with 5–6% differ-
ences in BTP levels and accounts for about a third of the racial
difference. GFR estimating equations usually require a race coef-
ficient to adjust for race differences in biomarker levels unre-
lated to kidney function. Self-reported race can be imprecise. If
genetic information becomes a routine part of the medical
chart, our discovery can be used to account for the largest
genetic non-kidney-related individual difference in BTP levels.
However, it is also useful to note that this genetic influence is
only of moderate size (5 in EAs and 6% in AAs), and our un-
biased genome-wide scan suggests that common variants of a
larger effect on BTP are unlikely to exist. We also showed that
after adjustment for eGFRscr, plasma BTP levels were moder-
ately higher at higher UACR levels.

A limitation of this study is that further functional studies
and replication are warranted to fully characterize the causal
variant(s) in the novel locus we identified. In contrast, a
strength of the present study is the robust, consistent associ-
ation in both EAs and AAs in a population-based cohort. The
GWAS panel spanned the whole genome (∼2.5 million
imputed SNPs) and the study sample was large with data col-
lected by uniform methods. BTP was measured with high
reliability (reliability coefficient of 0.96).

In conclusion, we discovered a variant upstream of the BTP
encoding gene, PTGDS, with a frequency of 58% in EAs,
associated with 5% higher levels of BTP and not associated
with other measures of kidney function. The frequency of this
variant was only 34% in AAs, coding for 6% higher BTP, as a
result explaining one-third of the racial difference in log(BTP)
levels despite explaining only ∼1.1% of the variance in log
(BTP) levels in each ethnic group. Known genetic loci influen-
cing creatinine-based measures of kidney function showed di-
rection consistent associations with BTP levels supporting the
role of BTP as a novel filtration marker whose metabolism is
known to be different from that of creatinine.

SUPPLEMENTARY DATA

Supplementary data are available online at http://ndt.
oxfordjournals.org.
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ABSTRACT

Background. There is limited data available on the use of red
blood cell (RBC) transfusions in younger chronic kidney
disease patients not on dialysis (CKD-ND), for whom the con-
sequences of developing antibodies to foreign antigens (allo-
sensitization) may be particularly relevant.
Methods. We used the Ingenix medical claims database,
comprising data on ∼40 million commercially insured US
individuals, to identify annual (2002–08) cohorts of
patients 18–64 years of age with newly diagnosed CKD.
We followed each cohort for 1 year to estimate RBC trans-
fusion rates and used Cox proportional hazards regression
to identify patient characteristics associated with time to
first transfusion.

Results. We identified 120 790 newly diagnosed CKD patients
for the years 2002–08; 54% were 50–64 years of age. Overall,
the transfusion rate was 2.64/100 person-years (PYs) (95% CI:
2.52–2.77). Rates were higher among those with diagnosed
anemia [9.80/100 PYs (95% CI: 9.31–10.3)] and among those
who progressed to end-stage renal disease (ESRD) [28.0/100
PYs (95% CI: 23.7–33.0)]. For those progressing to ESRD,
transfusion rates more than doubled between 2002 and 2008.
Of the factors evaluated, transfusion history and the presence
of heart failure and diabetes were most strongly associated
with a receipt of a transfusion.
Conclusions. RBC transfusions are relatively common and on
the rise among younger CKD-ND patients who are anemic
and progress to ESRD. Efforts to decrease the use of transfu-
sions may be important for potential transplant candidates
who progress to ESRD.
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