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ABSTRACT
Introduction. The objective of this study was to create a tool that accurately predicts
the risk of morbidity and mortality in patients with type 2 diabetes according to an
oral hypoglycemic agent.
Materials and Methods. The model was based on a cohort of 33,067 patients with
type 2 diabetes who were prescribed a single oral hypoglycemic agent at the Cleveland
Clinic between 1998 and 2006. Competing risk regression models were created for
coronary heart disease (CHD), heart failure, and stroke, while a Cox regression
model was created for mortality. Propensity scores were used to account for possible
treatment bias. A prediction tool was created and internally validated using tenfold
cross-validation. The results were compared to a Framingham model and a model
based on the United Kingdom Prospective Diabetes Study (UKPDS) for CHD and
stroke, respectively.
Results and Discussion. Median follow-up for the mortality outcome was 769 days.
The numbers of patients experiencing events were as follows: CHD (3062), heart fail-
ure (1408), stroke (1451), and mortality (3661). The prediction tools demonstrated
the following concordance indices (c-statistics) for the specific outcomes: CHD
(0.730), heart failure (0.753), stroke (0.688), and mortality (0.719). The prediction
tool was superior to the Framingham model at predicting CHD and was at least as
accurate as the UKPDS model at predicting stroke.
Conclusions. We created an accurate tool for predicting the risk of stroke, coronary
heart disease, heart failure, and death in patients with type 2 diabetes. The calculator
is available online at http://rcalc.ccf.org under the heading “Type 2 Diabetes” and
entitled, “Predicting 5-Year Morbidity and Mortality.” This may be a valuable tool to
aid the clinician’s choice of an oral hypoglycemic, to better inform patients, and to
motivate dialogue between physician and patient.

Subjects Diabetes and Endocrinology, Epidemiology
Keywords Type 2 diabetes mellitus, Prediction, Propensity, Coronary heart disease, Heart failure,
Stroke, Mortality, Electronic health record, Hypoglycemic agents

INTRODUCTION
Optimizing treatment of type 2 diabetes requires the consideration of a number of

important outcomes such as vascular morbidity, heart failure, and mortality. Informed
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treatment decisions are extremely difficult to make because the literature is frequently

inconclusive about the preferred treatment. The best outcomes are not always experienced

by patients with the best glycemic control (Abraira et al., 1997; Mellbin et al., 2008;

Duckworth et al., 2009). And, head-to-head comparisons of clinical outcomes between

the oral hypoglycemic agents are lacking (Bolen et al., 2007). In addition, the most effective

oral hypoglycemic drug likely depends on patient characteristics and comorbid conditions.

Calculators modeled from cohorts that are not exclusively comprised of patients

with type 2 diabetes have been shown to predict poorly when applied to patients with

diabetes (Sheridan, Pignone & Mulrow, 2003; Guzder et al., 2005; Coleman et al., 2007).

The calculators that have been fashioned specifically for patients with type 2 diabetes only

address single outcomes such as stroke (Wolf et al., 1991; Kothari et al., 2002), coronary

heart disease (Wilson et al., 1998; Stevens et al., 2001; Lee et al., 2006), or mortality

(Hong Kong Diabetes Registry et al., 2008; Wells et al., 2008). Other complications – like

heart failure, which is much more prevalent among diabetic patients (12%) than the

general population (3.9%) (Nichols et al., 2001)– have not been modeled with respect to

risk at all. Each of these risk assessments exist in different locations and were modeled

using slightly different populations, parameters and methods. The result is that they are

difficult to combine, and not readily used by physicians.

The purpose of this project was to create a tool that would assist a clinician (and patient)

with the selection of an oral hypoglycemic medication. The tool was designed to allow

the consideration of a number of common complications and mortality separately but

simultaneously, in a more realistic approximation of the complex decision-making process

of risk optimization.

MATERIALS AND METHODS
A retrospective cohort gathered from the electronic health records (EHR) at the Cleveland

Clinic between 1998 and 2006 was used for this study. The data were recorded for patients

with type 2 diabetes for clinical and administrative purposes. The research in this project

was approved by the Institutional Review Board of the Cleveland Clinic Foundation (Study

#06-635) which granted a waiver of informed consent. Patients entered and exited the

cohort according to their actual clinical courses and had varying follow-up periods.

Baseline was defined as the date of first prescription of an oral hypoglycemic agent in

an eligible patient.

Patients were included in the analysis and modeling if they were 18 years of age or older,

and carried a diagnosis of type 2 diabetes as determined by International Classification

of Diseases, 9th revision (ICD-9) codes (250–250.99, 357.2, 362.01, 362.02, 366.41).

The diagnosis of diabetes was required to be recorded a minimum of twice in order to

reduce the chance of misclassification due to “rule out” diagnoses. Patients on insulin

were included in the study since this medication is frequently used in the treatment of

type 2 diabetes. However patients on insulin were still required to be on at least one oral

hypoglycemic agent in order to exclude patients with type 1 diabetes.
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The analysis was limited to patients who were prescribed a single one of the following

oral hypoglycemic agents: sulfonylureas (SFUs), meglitinides (MEGs), biguanides (BIGs),

or thiazolidinediones (TZDs). Patients with prescriptions for multiple oral agents at

baseline were excluded because of the substantial number of possible two- and three-drug

combinations. Patients prescribed alpha-glucosidase inhibitors, non-insulin injectable

medications, and other less-commonly used medications were excluded because of

inadequate sample sizes.

Patients with advanced disease on dialysis were excluded. Those patients who previously

experienced the event of interest (e.g., stroke in the stroke model) were excluded from

modeling of that specific outcome. Patients with a documented history of a transient

ischemic attack were also excluded from the stroke analysis. Some patients with polycystic

ovarian syndrome (ICD-9 256.4) can be placed on BIGs for management; to avoid

confusion, patients with such a recorded diagnosis were also excluded. The EHR contained

49,939 patients with type 2 diabetes who were prescribed at least one oral agent. The

exclusion of 16,872 patients on multiple oral agents left a final sample size of 33,067.

Four primary outcomes were modeled separately: stroke, heart failure, coronary heart

disease (CHD), and mortality. Stroke was defined according to ICD-9 codes 430-434 and

436-438. These codes exclude transient ischemic attack as this diagnosis is difficult to

capture reliably in the EHR. CHD was defined as a recorded diagnosis of CHD (ICD9

410-414), documentation of a coronary revascularization procedure, or documentation

of CHD as a cause of death on death certificate data obtained from the National Death

Index (National Center for Health Statistics, Hyattsville, MD). Heart failure was defined

as documented heart failure (ICD9 402.01, 402.11, 402.91, 428.00–428.99, 404.01, 404.11,

or 404.91) and/or left ventricular ejection fraction (LVEF) >40% on echocardiogram.

Mortality was determined from vital status in the electronic health records (EHR) and/or

the Social Security Death Index (SSDI).

Potential predictor variables for each of the four models were chosen individually based

on their clinical and physiological relevance to the individual outcomes (Table 2). Values

for each predictor variable were extracted from the EHR. The baseline value for each

predictor variable was defined as the value of the variable on the baseline date. If missing,

the most recent historical value was used, or the value closest to the baseline date up to 21

days following baseline. Patients were considered to have a new diagnosis of type 2 diabetes

if they had been seen before their baseline date by either an endocrinologist or primary care

physician at Cleveland Clinic and did not have a diagnosis of diabetes entered in the EHR at

that time.

The analytic dataset was built using SAS, version 9.1. In order to maximize the available

information and to reduce the potential bias introduced by deleting incomplete records,

missing values were imputed using the Multiple Imputation by Chained Equations (MICE)

package, version 2.3, for R. Ten complete imputed datasets were created using predictive

mean matching, logistic regression, and polytomous regression for numeric, binary, and

categorical variables, respectively. The missing data were imputed using all of the other

covariates as well as the outcomes as predictor variables which has been shown to improve
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accuracy and decrease bias (Moons et al., 2006). Patients were censored at the time of their

last follow up (or the date of the last SSDI update for mortality) and therefore imputation

was not employed for the outcome information.

For mortality, a Cox proportional hazards regression model was fit with time to death

as the outcome. For stroke, heart failure, and coronary heart disease, a competing risks

regression model was fit with death considered the only competing event. Statistical

analyses were performed using R, version 2.10.

Given that oral hypoglycemic medication is our variable of interest, a limited number

of potential interactions were considered that might result from inclusion of medication in

the predictive model. An interaction of medication class x glomerular filtration rate (GFR)

and medication class x age was considered due to precautions advised for use of biguanides

(BIGs) in older adults and in patients with renal dysfunction. Similarly, for medication class

x congestive heart failure (CHF), there are precautions advised for using TZDs and BIGs in

patients with heart failure. (This interaction was not included in the heart failure model.)

For parsimony, interactions were only included in the final model if they were statistically

significant (p < 0.05).

A modified version of Harrell’s “model approximation” (aka step-down) method

(Harrell, Lee & Mark, 1996) that maximized the concordance index (c-statistic, a measure

of predictive discrimination) and not R-squared (a measure of explained variation) was

used for variable selection. Variables in the full models for each outcome were chosen

according to clinical relevance (Table 2). Medication, as our primary variable of interest,

was forced into each model. Interactions were included only when the interaction variables

themselves remained in the model. The final model represents the subset of variables

maximizing the c-statistic.

Propensity regression was utilized to adjust for residual confounding by indication.

There was agreement among the physicians and investigators that this effect was likely to be

small between groups placed on SFUs, TZDs, and MEGs, but large when comparing these

to the group of patients placed on a BIG alone (i.e. healther patients with less severe disease

are more likely to be prescribed BIG). The propensity parameter included in the final

regression model was the probability of receiving BIG and was calculated from a logistic

regression model that included all other dependent variables. Model accuracy was assessed

using ten-fold cross-validation in order to prevent overfit bias. The cross-validation was

performed by randomly dividing the dataset into ten equal sections and setting aside

one section as a test dataset while using the other nine sections as a training dataset. The

variable selection, propensity score calculations, and model building were all performed in

the training dataset. The prediction accuracy was assessed in the test dataset that consisted

of patients systematically not included in the training data. This process was repeated a

total of ten times with each section of the data serving as a test dataset exactly once. The

c-statistic was calculated for each model to demonstrate the model’s ability to identify the

patient at higher risk (discrimination). Calibration was assessed graphically by plotting the

predicted risk against the actual risk in each quintile.
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The final prediction model for CHD was compared head-to-head with the Framingham

model described by Wilson et al. (1998). This comparison was performed in a subset of

patients between 30–74 years of age in order to fairly represent the population for which

the Framingham model was intended. In addition, the test dataset was limited to patients

for which complete data prior to imputation was available for calculating the Framingham

risk score. The final comparison dataset after these restrictions consisted of 7,714 patients.

The Framingham model was designed to produce 10-year risk, whereas our model pro-

duces 5-year risk predictions. Thus, an assumption was made that the Framingham model

follows an exponential association, and the 5 year risk was estimated accordingly. However,

since these models are not time-dependent, the particular predicted follow up time will

have no effect on the calculated discrimination (a patient with higher risk in 5 years will

also have higher risk in 10 years). The predictions used to compare with the Framingham

model were derived from the ten-fold cross validation and were therefore “overfit-

corrected” as none of the predictions were made on patients used to build the model.

The final prediction model for stroke is compared to that created by the United

Kingdom Prospective Diabetes Study (UKPDS) risk engine (Kothari et al., 2002). Again,

a subset of the cohort was used in order to make a more fair comparison. The subset was

limited to patients newly diagnosed with type 2 diabetes (i.e. length of diabetes = 0)

since the UKPDS model contains a predictor variable for length of diabetes that was

not available in the current cohort. The comparison dataset was also limited to patients

between 25–65 years of age and without a history of coronary heart disease. Furthermore,

the subset was limited to patients with triglycerides <500 mg/dl since the total cholesterol

levels used for the UKPDS prediction were calculated using the Friedewald equation which

can be inaccurate in patients with extremely high triglyceride values (Warnick et al., 1990).

Finally, the dataset was limited to patients who had complete data prior to imputation for

the calculation of the UKPDS prediction. The final stroke comparison dataset consisted

of 2,072 patients. Unfortunately, an insufficient number of events in each risk quintile

prevented the creation of a calibration curve. Once again, the predictions created in this

study were overfit corrected using cross-validation.

RESULTS AND DISCUSSION
Characteristics of patients on each of the four hypoglycemic types can be seen in Table 1.

Overall the patients were predominantly white with a roughly equal gender distribution.

Patients taking BIGs were younger, had less heart failure, and were more likely to have

newly diagnosed diabetes. Variables included in the final models after Harrell’s model

approximation (aka step-down) method are shown below in Table 2. It is important to note

that the final variables do not necessarily reflect the clinical importance of that individual

variable but rather the best predictive model as a whole.

The final cohort sizes, median follow-up time, and model discrimination (c-statistic)

are shown in Table 3, and the calibration curves appear in Fig. 1. The predictions are

quite accurate across the board, with excellent calibration in CHF and CHD. The stroke

and mortality models appear to be slightly less-well calibrated; mortality specifically
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Figure 1 Calibration curves for the final models. The curves display the predicted probabilities on the x-axis and the Kaplan–Meier estimations
on the y-axis according to quintiles of the predicted probabilities.

underestimates risk in the higher risk quintiles. The concordance indices range from 0.688

to 0.753 which indicates that the model correctly identifies the higher risk patient among

discordant pairs 69% to 75% of the time. An online risk calculator is available at http://

rcalc.ccf.org under the heading “Type 2 Diabetes” and entitled, “Predicting 5-Year Morbid-

ity and Mortality.” The final published calculator will be posted at http://rcalc.ccf.org.
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Table 1 Characteristics of the overall cohort of patients with type 2 diabetes.

BIG MEG SFU TZD Missing

n 14708 773 12606 4980

Continuousa variables

Age 57.8 66.4 66.4 61.9 0

Body Mass Index 33.6 30.4 31.1 33.3 13986

Hemoglobin A1c (%) 7.8 7.1 7.7 7.8 16717

Systolic BP (mm of Hg) 133.2 133.5 135.1 133.5 6482

Diastolic BP (mm of Hg) 77.7 72.7 75 74.4 6489

LDL (mg/dl) 109.4 93.7 105.9 105.7 17347

HDL (mg/dl) 47.1 46.8 45.8 46.3 16653

Triglycerides (mg/dl) 203.7 174.8 202.5 210.6 16861

GFR (ml/min) 75.5 58 66.3 65.7 10702

Income 45047.2 43768.1 43999.7 43851.7 702

Categoricalb variables

Male 6733 (45.8) 418 (54.1) 6961 (55.2) 2600 (52.2) 2

Caucasian 10778 (76.2) 626 (83.7) 9553 (78.2) 3917 (81.8) 1175

Heart Failure 431 (2.9) 97 (12.6) 1030 (8.2) 255 (5.1) n/a

Coronary Heart Disesae 1528 (10.4) 147 (19.0) 1790 (14.2) 688 (13.8) n/a

Insulin 1934 (13.2) 214 (27.7) 1371 (10.9) 1568 (31.5) n/a

Aspirin 3566 (24.3) 243 (31.4) 3171 (25.2) 1325 (26.6) n/a

Plavix 929 (6.3) 98 (12.7) 1059 (8.4) 516 (10.4) n/a

ACE-I/ARB 7286 (49.5) 443 (57.3) 6699 (53.1) 2921 (58.7) n/a

Atrial Fibrillation 476 (3.2) 50 (6.5) 757 (6.0) 191 (3.8) n/a

Cholesterol Medication 7098 (48.3) 409 (52.9) 5630 (44.7) 2911 (58.5) n/a

New Diabetes 3140 (21.4) 37 (4.8) 1002 (8.0) 399 (8.0) n/a

Hypertension Medication 10242 (69.6) 639 (82.7) 9976 (79.1) 3939 (79.1) n/a

Warfarin 858 (5.8) 120 (15.5) 1473 (11.7) 399 (8.0) n/a

Smoking Status 8195

Never 5763 (49.0) 254 (46.7) 3941 (44.4) 1643 (44.7)

Quit 4126 (35.1) 239 (43.9) 3649 (41.1) 1461 (39.7)

Current 1877 (16.0) 51 (9.4) 1293 (14.6) 575 (15.6)

Notes.
a Mean.
b Count (%).

BIG= Biguanide.
MEG=Meglitinide.
SFU= Sulfonylurea.
TZD= Thiazolidinedione.
BP= Blood Pressure.
LDL= Low Density Lipoprotein.
HDL=High Density Lipoprotein.
GFR= Glomerular Filtration Rate.
ACE-I/ARB= Angiotensin Converting Enzyme Inhibitor or Angiotensin Receptor Blocker.

In the head-to-head comparisons for CHD, the final c-statistics for our CHD model

and Framingham were 0.75 and 0.54, respectively. Calibration curves showed our model

to be well calibrated, while the Framingham model appeared to underestimate CHD risk

at all risk quintiles (Fig. 2). Other studies have also found that Framingham does not
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Table 2 Variables included in the four final models.

CHD Heart failure Stroke Mortality

Propensity for Biguanide Included Included Included Included

Age Included Included Included Included

Gender Included Included Removed Included

Ethnicity Included Included Removed Included

Medication Included Included Included Included

Income Included Included Included Included

Glomerular Filtration Rate Included Included Included Included

Body Mass Index Removed Included Included Included

Hemoglobin A1c Included Included Included Included

Coronary Heart Disease Not considered Included Included Removed

Smoking Status Included Included Included Included

Systolic Blood Pressure Included Included Included Included

Diastolic Blood Pressure Included Included Included Included

Insulin Included Included Included Included

Clopidogrel Included Included Included Included

Aspirin Included Included Included Included

ACE-I/ARB Included Included Not considered Included

Cholesterol Medication Included Removed Included Included

New Diabetes Included Included Included Included

Low Density Lipoprotein Included Not considered Included Included

High Denisty Lipoprotein Included Not considered Included Included

Triglycerides Removed Not considered Included Included

Heart Failure Removed Not considered Included Included

Atrial Fibrillation Not considered Not considered Removed Not considered

Hypertension Medication Not considered Not considered Removed Not considered

Warfarin Not considered Not considered Included Not considered

Age X Medication Included Included Included Included

GFR X Medication Included Included Included Included

Heart Failure X Medication Removed Not considered Included Included

Notes.
CHD= Coronary Heart Disease.
ACE-I/ARB= Angiotensin Converting Enzyme Inhibitor or Angiotensin Receptor Blocker.
GFR= Glomerular Filtration Rate.

Table 3 Summary of the final model results.

Final cohort
size

Median follow-up
time (days)

N with Follow-up
more than 5 years

C-statistic

Heart failure 25,882 503 1,211 0.7530

Coronary heart disease 23,906 462 943 0.7298

Stroke 26,140 501 1,088 0.6881

Mortality 33,067 769 1,955 0.7195
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Figure 2 Calibration Curves for the CHD Outcome.

perform well in patients with type 2 diabetes (Sheridan, Pignone & Mulrow, 2003; Guzder

et al., 2005; Coleman et al., 2007). Unfortunately, the CHD prediction model could not be

compared head-to-head with UKPDS due to differences in the definition of CHD between

the current study and the UKPDS. Specifically, the UKPDS defined CHD as MI, Fatal MI,

and sudden death. It was not possible to determine which patients in the current study

experienced a sudden death and it was also felt that it was important to include coronary

revascularization procedures as a CHD endpoint.

For stroke, the final c-statistics were almost indistinguishable between our model

(0.753) and the UKPDS model (0.752). The subset of data used for the UKPDS comparison

was not large enough to create a calibration curve, but there was some evidence that the

UKPDS may be underestimating stroke risk more than the stroke model created in this

study when examining calibration in the large. The median predicted 5-year risk of stroke

according to the UKPDS and the new model were 0.1% and 6.7%, respectively; the actual

5-year incidence of stroke was 16.4% in this subset.

The prediction calculator created in this study is the first of its kind to predict a risk

profile of multiple endpoints for individual patients with type 2 diabetes. The Archimedes

model has been created to estimate the overall number of different adverse outcomes in

a cohort of patients with diabetes for use in cost analyses and for clinical trial simulation

(Eddy & Schlessinger, 2003). But, the Archimedes model does not provide risk estimates for

individual patients, and therefore cannot be compared head-to-head with the models

created in this study. Other tools have been created to address individual endpoints
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(Framingham, UKPDS), but this tool is the first of its kind to predict multiple endpoints

simultaneously for this population. This tool more closely addresses physician and patient

real-world concerns for preventing a wide range of life-threatening complications. Further,

it improves on the accuracy of past model’s predictions. It is interesting to note that our

models created with observational EHR data matched or surpassed other published tools

created using clinical trial data. Our use of propensity scores should reduce any potential

concerns about treatment bias and the employment of competing risk regression should

help prevent the overestimation of risks that might be caused by ignoring the competing

risk of death for the CHF, CHD, and stroke outcomes.

In the past, the necessity of using a nomogram to calculate risk made large models

difficult to use quickly and efficiently; replacement of this method with a free and accessible

web-based calculator rectifies this issue. With the inclusion of so many individual predictor

variables, the accuracy of the model is preserved while the web interface makes it easy to

use. If the performance of the model is evaluated externally and found to be strong, it could

be linked directly to the EHR, allowing patient characteristics to be directly imported into

the calculator. All of the variables included in our models are readily accessible, making it

functional for patients and clinicians everywhere.

Some limitations to our study should be highlighted. First, the duration of diabetes was

not collected uniformly and therefore could not be included in the model. The patients in

our cohort probably tend to be newer diabetic patients since the population was restricted

to patients prescribed a single oral agent and therefore the risk calculator may be most

appropriate for those types of patients. Future models may be able to out-predict ours if

this variable can be captured. Of course, given the potentially lengthy period during which

a patient may have undiagnosed diabetes or pre-diabetes, this variable may not add much

to the accuracy of the model given the many other covariates already included. Secondly,

the oral hypoglycemic included in the model was the medication at baseline. Medication

changes were not considered since these future changes are unknown at the time when a

new patient presents for oral hypoglycemic therapy. A final weakness of the study involves

the substantial amount of missing data for some predictor variables. The imputation

techniques used, however, help to limit the potential bias caused by simply eliminating

incomplete records. Even with these limitations, should this model prove valid in external

populations, it could prove an extremely helpful tool for clinicians who seek to understand

their patient’s personal risk profile.

CONCLUSIONS
The prediction tool created in this study was accurate in predicting 5-year morbidity

and mortality among patients with type 2 diabetes. The calculator outperformed the

Framingham model in predicting CHD while producing a model for stroke that had

a discrimination that is comparable to the UKPDS model. The next step would be to

validate this tool externally in other cohorts of patients with type 2 diabetes. If it performs

well externally, it could serve as a tool for clinicians to tailor diabetes treatments to their

individual patients with the aim of decreasing morbidity and improving survival.
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