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Synopsis
Diabetes mellitus is responsible for nearly 10% of fetal anomalies in diabetic pregnancies.
Although aggressive perinatal care and glycemic control are available in developed countries, the
birth defect rate in diabetic pregnancies remains much higher than that in the general population.
Major cellular activities--i.e., proliferation and apoptosis--and intracellular metabolic conditions--
i.e., nitrosative, oxidative, and endoplasmic reticulum stress--have been demonstrated to be
associated with diabetic embryopathy using animal models. Translating advances made in animal
studies into clinical applications in humans will require collaborative efforts across the basic
research, preclinical, and clinical communities.
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Introduction
Diabetes mellitus is a metabolic disease, primarily due to high concentrations of glucose in
the circulation (1). Hyperglycemia interrupts normal cellular metabolism and signaling and
eventually causes organ dysfunction (2, 3). Nearly two centuries after diabetes was first
recognized (4), its association with congenital birth defects and fetal mortality in pregnancy
was recognized and referred to as diabetic embryopathy (4, 5). Prior to the introduction of
insulin, diabetes-associated fetal and maternal mortality rates were nearly 70% and 40%,
respectively (6, 7). Since the administration of insulin to control glycemia in pregnant
women, these mortality rates have decreased dramatically to nearly 12% (8–15). In addition
to the control of glycemia with insulin, aggressive perinatal care and neonatal management
also contributed to the decline of maternal and fetal mortality (10, 16–19).

Unfortunately, the present birth defect rate in diabetic pregnancies (about 10%) is still
higher than that in the general population (3%) and appears to be on the rise (7, 12, 13, 15,
20–25). The reasons for this increase in birth defect rates are complex. One reason is that
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there has been a rapid increase in diabetic patients in the population which includes women
of childbearing age (26). It is estimated that approximately 8,000 babies in the United States
are born each year with maternal diabetes-associated congenital malformations. The
incidence of these malformations also has risen to near-epidemic level in developing
countries.

Tackling this issue involves battles at a number of fronts: diagnosing fetal anomalies must
be improved; technologies that can recognize developmental malformations as early as the
embryogenesis period are needed; and better prenatal and planned pregnancy consultations
should be implemented to help reduce diabetes-associated birth defects. These remain
ongoing challenges for perinatal care providers.

An important goal in eliminating birth defects is to develop therapeutic interventions that
can protect embryos from hyperglycemic insult. This goal can only be achieved by
understanding the cellular and molecular mechanisms underlying diabetic embryopathy.
Basic research using animal models has contributed a considerable amount of information
about the manifestations of fetal abnormalities, but more work is still needed.

Pre-gestational and gestational diabetes
Diabetes mellitus is a chronic disease manifested by hyperglycemia and its associated
metabolic factors. This condition is usually diagnosed by measuring the levels of plasma
glucose, expressed as mg/dL or mM, and glycosylated hemoglobin A (HbA1c), indexed as
percentage of total hemoglobin A (27–29). Manifestation of diabetes can be the result of
insulin deficiency (type 1) or insulin resistance (type 2).

• Type 1 diabetes, or insulin-dependent diabetes, is caused by autoimmune
destruction of insulin-producing β-cells in the pancreas (30, 31).

• Type 2 diabetes, or non-insulin-dependent diabetes, is caused by failure in insulin
signaling to regulate cellular glucose uptake (32–34).

Diabetes mellitus, either type 1 or type 2, diagnosed in women before pregnancy is referred
to as pre-gestational diabetes (20, 35–37). When hyperglycemia is detected after the onset of
pregnancy, usually in the third trimester (24–28 weeks), the pregnant woman is considered
having gestational diabetes mellitus (GDM) (38–42). According to guidelines from the
International Association of Diabetes in Pregnancy Study Group (IADPSG), women who
have a fasting plasma glucose ≥ 126 mg/dL and HbA1c ≥ 6.5% are diagnosed as having
GDM (43).

Congenital birth defects in infants of diabetic mothers have been found to be associated with
pre-gestational diabetes that is uncontrolled in the first trimester of pregnancy (44–48)
Although a few cases have suggested a link between GDM and fetal birth defects, this
association remains unclear and lacks strong supporting evidence (49, 50). One possible
reason for the controversy is that some women with early-onset type 2 diabetes are
misdiagnosed as having GDM when first screened in the second trimester (39, 51).
Nevertheless, it is well established that GDM can lead to many adverse fetal outcomes,
including macrosomia, hypoglycemia, hypocalcemia, and hyperbilirubinemia (51–53).

High glucose as a major teratogenic factor
Human studies have demonstrated a strong link between maternal glycemic level, as
indicated by the association of plasma glucose and HbA1c levels (54, 55) with the incidence
of congenital malformations in offspring (56–61). Other adverse metabolic factors produced
in diabetes mellitus, such as ketone bodies, advanced glycation end products, and branched
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chain amino acids, may have synergetic effects with glucose on disrupting normal
embryonic development (62–66). The putative teratogenic effects of hyperglycemia are
supported by studies that demonstrate a reduction in the incidence of birth defects following
clinical interventions targeted at achieving euglycemia (67–70). Animal studies also have
shown that isolated embryos in culture exposed to high concentrations of glucose develop
malformations similar to those seen in human diabetic pregnancies (62, 71–73). These
observations indicate that high glucose in either type 1 or type 2 diabetes is a major
teratogenic factor that disturbs embryonic development.

The major effort to eliminate adverse outcome in pre-gestational diabetes and GDM
complicated pregnancies is to control glycemic levels (20, 74–76). Clinical management of
diabetic pregnancy with insulin and oral hypoglycemic medications can achieve the
euglycemic standards, recommended by Diabetes Control and Complications Trials and
International Federation of Clinical Chemistry and Laboratory Medicine (Table 1) (77–79).
However, with respect to pre-gestional diabetes, optimal glycemic control prior to
conception appears to be a challenge because:

• most women with diabetes do not seek preconception care,

• most have unplanned pregnancies (80).

• even in women who plan pregnancies and receive preconception counseling,
euglycemia is difficult to achieve and maintain in non-clinical settings.

Therefore, alternative approaches to glucose control to prevent birth defects need to be
developed and implemented.

Malformations and Diagnosis
Maternal diabetes-associated fetal anomalies can be seen in any organ system but are most
common and severe in the central nervous system (CNS), cardiovascular system (CVS),
craniofacial region, and caudal structure (Table 2) (11, 12, 25, 44, 55, 81, 82).

Central nervous system
The most common structural defects resulting from diabetic embryopathy occur in the brain
region and spinal cord of the CNS () (12, 25, 83–86). Some of these can be recognized as
early as in the first trimester using ultrasonography.

• Anencephaly is characterized as absence of the cerebral hemispheres with the brain
stem and portions of the midbrain intact. It is readily discernible in the first
trimester (Figure 1) (76, 87, 88). In the second trimester, it is more evident as
poorly formed cranial bones and symmetric absence of the calvarium (76, 87, 89).

• Holoprosencephaly, the complete or partial absence of the midline echo within the
fetal brain, can be diagnosed as early as 14 weeks of gestation, though diagnosis at
the 20-week anomaly scan is more common (90–92).

• Excencephaly, the absence of the superior vault and convolution of the brain, can
be diagnosed as early as 10 weeks of gestation (Figure 2) (93).

• Ultrasonic diagnosis of CNS defects such as spina bifida usually occurs in
conjunction with detection of the second trimester maternal blood biomarker α-
fetoprotein (81, 94–97).
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Craniofacial structures
In newborns of diabetic mothers the most common anomalies in the craniofacial regions are
hemifacial microsomia and microtia in newborns of diabetic mothers (82, 98). Cleft palate
and lip also occur in relatively high frequency (99–101). Hearing impairment in children has
been found to be associated with diabetic pregnancy (82, 98, 102), likely due to
developmental defects in the inner and middle ear (102).

Prenatal diagnose of cleft lip and cleft palate relies a combination of coronal and axial two-
dimensional ultrasound scans (103). Cleft lip can be easily recognized from coronal scan
images, however, when cleft lip extends into the palate, the axial scan of the maxilla can
provide the image of the defects (104). Cases of lateral cleft lip/palate often present a so-
called maxillary pseudomass visualized in two-dimensional sonographs (105).

Cardiovascular system
Fetal cardiac defects associated with maternal diabetes have been extensively characterized.
Anomalies commonly are present in:

• myocardium-derived structures

– atria,

– ventricles

– interventricular septum.

• endocardium-derived structures

– conotruncal spetum

– ventricular septum

– atrio-ventricular valves (44, 47, 106–108).

Sonographic imaging remains the standard method to diagnosis fetal cardiac abnormalities.
Technological advances in imaging, especially in high frequency imaging and improvements
in resolution, have aided perinatal care providers in recognizing cardiac defects as early as
10 weeks of gestation.

Most heart anomalies, including double outlet hearts, atrial septal defects, and ventricular
septal defects, can be diagnosed using the four-chamber view, a transverse projection
through the fetal thorax above the level of the diaphragm (Figure 3) (109). Measurement of
the thickness of the ventricular walls in the sonographs can reveal myocardial hypoplasia.
Due to the position of the canning plane, the four-chamber view usually misses defects in
the structures in the outflow tracts. A so-called base view, with scans superior to the four-
chamber view, can reveal abnormalities in the aorta and pulmonary artery. Complex defects
such as Tetralogy of Fallot, which involves ventricular septal defects and great vessel
defects, may require a combination of four-chambered and base views to diagnose.

Color Doppler provides an added advantage to practitioners because it can detect minor
defects in the heart by exhibiting changes in blood flow pattern. The association of increased
first trimester nuchal translucency with fetal cardiac defects has been observed; however,
more studies are still needed to establish it as a diagnostic marker (110, 111).

Caudal regression
Caudal regression syndrome, also known as caudal dysplasia, is characterized as the absence
or hypoplasia of caudal trunk and limbs (112, 113). Caudal regression syndrome can be
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diagnosed by noting a shortened spine and abnormal lower limbs. This anomaly can be
detected in the fetus as early as second trimester.

Mechanisms of Diabetic Embryopathy
Developmental mechanisms

Central Nervous System—Diabetic embryopathy causes embryonic and fetal
abnormalities as a result of a disturbance in normal organogenesis. In the CNS, most
anomalies occur because of a failure of early neural tube formation, referred to as neural
tube defects (NTDs) (114–116). The formation of the neural tube, or neurulation, occurs in
human embryos from weeks 3–6 of gestation (114). Neurulation begins with formation of
the neural ectoderm, which develops into the neural folds. The neural folds grow dorsal-
laterally and eventually fuse at the dorsal midline along the body axis to form the neural
tube (117). In diabetic embryopathy, neurulation is perturbed in young embryos, leading to
NTDs such as exencephaly or spina bifida (62, 73, 118, 119). Studies using diabetic rodents
with poorly controlled hyperglycemia have recapitulated the same CNS defects observed in
human fetuses (Figure 4) (120–122).

Cardiovascular System—The development of the heart is a complex process, involving
multiple tissue types. The atria, ventricles, and interventricular septum are derived from the
myocardium, whereas the membranous septa in the atrioventricular channel and the outflow
tracts and associated valves are derived from the endocardium (123–126).

The most common abnormality of the ventricles is hypoplastic left heart syndrome (44). It is
associated with under development of the myocardium during early cardiogenesis (121).
Defects in endocardium-derived structures appear to be associated with endocardial
cushions (Figure 5) (121, 127), bulbous structures that develop during early embryogenesis
at the atrioventricular junction and the bulbous cortis (outflow tract) as a result of the
production of the extracellular matrix (128, 129). During development of the endocardial
cushions, endocardial (endothelial) cells differentiate into mesenchymal cells. This process
is known as the endothelial-mesenchymal transformation (EMT) (128, 130). These
mesenchymal cells migrate into the extracellular matrix to fill the acellular space and
promote the growth of the cardiac structures (130). The endocardial cushions develop
toward each other and eventually fuse to form a continuous septum (125). After fusion, the
endocardial tissues undergo dramatic remodeling to connect with the interventricular and
primary atrial septum and form valves (130, 131).

In embryos of diabetic pregnancies, early development of the endocardial cushions is
inhibited (121). An impact of maternal hyperglycemia on later endocardial cushion
remodeling also has been observed (132). Further research is needed to determine the
significance of these developmental processes in cardiac malformation in diabetic
embryopathy.

Craniofacial—In the craniofacial region, abnormalities in facial structures may be
associated with dysmorphogenesis of cartilages (133, 134). These cartilages, such as the
Meckel’s cartilage in the mandibular arch, are not only involved in early morphogenesis of
the facial processes, but also give rise to many types of bony structures in the craniofacial
regions such as the auditory ossicles (135, 136).

Cellular mechanisms
The development of organ systems involves cell proliferation, death, migration, and
differentiation. Excessive programmed cell death (apoptosis) has been observed in the dorsal
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region of the neural tube and is associated with NTDs in diabetic embryopathy (71, 122,
137–142). In the developing heart, cell proliferation at the early stages and apoptosis at the
late stages of cardiogenesis appear to be associated with cardiac malformations in the
embryos of diabetic pregnancy (121). In addition to cell proliferation, endocardial cell
differentiation and migration also are suppressed by maternal hyperglycemia (121, 127).

Development of the cardiac outflow tract requires cell migration from the neural crest in the
dorsal region of the neural tube. These neural crest cells contribute significantly to the
septation of the outflow segment and the formation of the great vessels (143, 144).
Malformations in the outflow segment may be due to impaired neural crest cell migration,
which can be caused by increased apoptosis (145, 146).

Craniofacial structure development also requires neural crest cells that migrate from the
anterior neural tube during early embryogenesis (147–149). Studies using animal models
have shown that maternal diabetes perturbs neural crest cell migration in embryos (133,
150). Increased apoptosis in the mandibular arch has been observed in embryos of diabetic
women, though it is uncertain whether those cells are of neural crest-origin (146). The
impact of maternal diabetes on the differentiation of the neural crest-origin craniofacial
mesenchymal cells remains to be demonstrated.

Molecular mechanisms in promoting apoptosis in diabetic embryopathy
Endoplasmic reticulum stress—When exposed to high glucose, embryonic cells take
up glucose via glucose transporters (151, 152). An influx of glucose disturbs intracellular
metabolic homeostasis and organelle function. Dysfunction of the endoplasmic reticulum
(ER) leads to aberrant protein folding and subsequent accumulation of unfolded and
misfolded proteins in its lumen (153–155), which cause ER stress (156–159). Under stress
conditions, the ER activates a number of molecular cascades, collectively known as the
unfolded protein response (UPR), to increase expression of chaperone protein to resolve
protein folding crisis, inhibit protein translation, suppress mitosis, and even trigger apoptosis
(Figure 6) (160–162). ER stress has been observed in the embryos from diabetic pregnancies
(127, 163, 164). The potential causative role of ER stress in embryonic malformation has
been demonstrated with experiments using a chemical chaperone to resolve protein folding
crisis (127).

Oxidative stress—High glucose also changes the morphology and function of
mitochondria (165). Changes in mitochondria interrupt the electron transport chain, leading
to generation of reactive oxygen species (ROS) (166, 167). High glucose also reduces the
level of intracellular antioxidants, including glutathione (GSH) and thioredoxin (168–171).
The imbalance of ROS and antioxidative buffering results in oxidative stress, which perturbs
intracellular signaling (Figure 7) (172, 173). Treating diabetic pregnant animals or embryos
cultured in high glucose with antioxidants decreases embryonic malformation rates (174–
184). Moreover, embryos treated with antioxidants overexpress a transgene of superoxide
dismutase resist maternal hyperglycemic insult (185, 186).

Nitrosative stress—Under hyperglycemic conditions, embryonic cells produce high
levels of nitric oxide (NO). NO is a second messenger that regulates various intracellular
signaling pathways (187, 188) and also can react with ROS to produce more toxic radicals,
called reactive nitrogen species (RNS), than NO or ROS alone (189, 190). The high levels of
RNS, such as peroxynitrite, generate a condition known as nitrosative stress (Figure 8).

Synthesis of NO is catalyzed by NO synthase (NOS) enzymes. There are three main forms
of NOS enzymes: neuronal (nNOS and NOS1); endothelial (eNOS and NOS3); and
inducible (iNOS and NOS2)(191–193). Both nNOS and eNOS are constitutively expressed
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and do not vigorously respond to extracellular stimulation (194, 195), but iNOS actively
responds to extracellular changes with marked upregulation in expression and activity (196–
198).

In embryos of diabetic animals, eNOS expression is decreased (199); in contrast, iNOS
expression is dramatically increased (200, 201). Experiments using an iNOS knockout
model clearly demonstrate that high level of NO is detrimental to the embryo (Figure 8)
(120).

Stress response
Phospholipid peroxidation—Cellular stress perturbs intracellular metabolic
homeostasis. Phospholipid metabolism is initiated by phospholipases (PLs), including PLA,
PLC, and PLD (202, 203). Cytosolic phospholipase A2 (cPLA2) cleaves arachidonic acid
from the cell membrane (204–206). In the cytoplasm, arachidonic acid undergoes two major
pathways of metabolism: it can be converted into prostaglandin E2 (PGE2) by
cyclooxygenase-2 (COX-2) (207, 208), or it can be converted into PGE2-like isoprostanes,
such as 8-iso-prostagladin F2 (8-iso-PGF2) and 8-iso-PGF2α, by non-COX-mediated
peroxidation involving free radicals (Figure 9) (209, 210).

In embryos of diabetic animals or embryos exposed to high concentrations of glucose in
vitro, the level of PGE2 decreases dramatically (211–215). On the other hand, the level of 8-
iso-PGF2 is dramatically elevated in embryos under hyperglycemic conditions as well as in
diabetic patients (209, 216). The reduction in PGE2 in the embryo may be due to a decrease
in COX-2 activity and expression (211, 217, 218), suggesting that a shift in arachidonic acid
metabolism has occurred from producing PGE2 to generating isoprostanes. These PGE2-like
isoprostanes have been shown to have damaging effects in animal models of diabetic
pregnancy and embryos exposed to high glucose in culture (216, 219), whereas PGE2
protects embryos from the damages due to hyperglycemic conditions (Figure 9) (211, 218,
220).

Protein kinase C family—Under cellular stress conditions, a number of intracellular
signaling systems are affected, including the ones regulated by members of the protein
kinase C (PKC) family. The PKC family of serine/threonine protein kinases consists of 12
members, which can be divided into the following three groups, based on their activation
mechanisms (221, 222): 1) PKCα, β1, β2, and γ require calcium and diacylglycerol (DAG)
for activation; 2) PKCδ, ε, η, ν, and θ require only DAG; and 3) PKCμ, ξ, and ι/λ do not
require calcium or DAG, but instead require distinct lipid cofactors (i.e., ceramide and
phosphatidylinositol-4-phosphate) (221).

In embryos of diabetic animals, each PKC isoform responds differently to hyperglycemia.
For example, PKCα, β2, and δ are phosphorylated and activated under hyperglycemic
conditions (141). Consequently, inhibiting PKCα, β2, and δ with isoform-specific inhibitors
reduces malformation rates in embryos cultured in a high concentration of glucose (141,
223). Additionally, embryos from diabetic pkcδ knockout animal models exhibit
significantly lower malformation rate than embryos from diabetic mice having the gene
(164). These and other similar studies demonstrate that PKCs play critical roles in diabetic
embryopathy.

Mitogen-activated protein kinase family—The mitogen-activated protein kinase
(MAPK) family also plays an important role in mediating the effects of maternal
hyperglycemia on embryonic development. Members of the MAPK family, including
extracellular signal-regulated kinases (ERKs) and c-jun N-terminal kinases/stress-activated
protein kinases (JNKs/SAPKs), can usually be activated by oxidative stress. ERKs primarily
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regulate cell proliferation and survival, whereas JNKs act on pro-apoptotic pathways (224–
226). In embryos of diabetic animals, the levels of phosphorylated ERK1 and 2 are
significantly reduced (Figure 8) (227, 228). In contrast, JNKs are activated in embryos of
diabetic animals (227–230). Embryos treated with a JNK inhibitor while simultaneously
incubated in a high concentration of glucose have a lower malformation rate, compared with
those without JNK inhibition (231). More convincing evidence of the role of JNKs in
diabetic embryopathy comes from the experiments using jnk1 and jnk2 knockout mice.
Embryos homozygous for either jnk1 or jnk2 deletion show significantly lower
malformation rates compared with a wild-type embryos from diabetic animals (231, 232).

Programmed cell death (Apoptosis)
Apoptosis is precisely regulated by a number of factors, including PKCs, JNKs, and
members of the Bcl-2 and caspase families (233). Although the mechanisms by which PKCs
and JNKs promote apoptosis in diabetic embryopathy remain to be delineated, much is
known about the roles that Bcl-2 and caspase family members play in programmed cell
death.

In the Bcl-2 family, some members are pro-apoptotic, such as Bax, Bak, and Bid, whereas
other members are anti-apoptotic, such as Bcl-2 and Bcl-xL (234). In the caspase family,
some members play a role in executing apoptosis. These members, known as effector or
executioner caspases, include casapse-3, -6, and -7 (235–237). Effector caspases can be
activated by another group of caspases, known as initiator caspases, including caspase-8, -9,
and -10 (235–237).

Bax and Bak form a pore in the outer membrane of mitochondria (238, 239), allowing
cytochrome C to be release to cytoplasm to induce apoptosis (240–242). During apoptosis,
Bax and Bim expression levels increase in the cell (238, 239). Bax is activated by truncated
Bid (tBid), which is produced when Bid is cleaved by serine/threonine proteases such as
caspase-8.

In diabetic embryopathy, caspase-8 cleaves Bid into tBid, which stimulates the release of
cytochrome C (140). Cytochrome C binds to apoptosis protease-activating factor-1 (Apaf-1),
and the resulting complex activates Caspase-9 by forming an apoptosome. Activated
Caspase-9 then activates effector caspases, including Caspase-3, 6, and 7, which turn on
caspase-activated DNase and other factors, leading to DNA fragmentation and cell death
(Figure 10) (240, 241).

In animal studies, suppression of apoptosis using caspase inhibitors can reduce embryonic
malformations in the embryos cultured in high glucose (140). The results imply potential
interventional strategies to block apoptosis in embryos in diabetic pregnancies.

Interventions and Clinical Challenges
Research conducted in animal models of diabetic pregnancy has revealed some of the major
molecular changes and subsequent intracellular metabolic conditions that occur in embryos
in response to hyperglycemia. This information has guided efforts to explore interventional
approaches to reduce diabetes-induced embryonic malformations (122, 174, 183, 184, 227,
243–247).

Targeting lipid metabolism
One anomaly that occurs in diabetic embryopathy is aberrant phospholipid metabolism,
especially lipoperoxidation. Dietary supplementation with arachidonic acid or myo-inositol
in diabetic pregnant animals has been shown to reduce embryonic malformations due to
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lipoperoxidation (183, 184, 244). Treatment of diabetic pregnancy animals with
polyunsaturated fatty acids also have been shown to exert similar helpful effects on
embryonic development (227, 248).

Antioxidative strategies
Targeting oxidative stress to treat diabetic embryopathy, using lipoic acid, ergothioneine,
vitamin C, and vitamin E, has been tested in diabetic pregnant animals and shown to
decrease embryonic malformations (174, 181, 183, 184, 243, 249). N-acetylcysteine (NAC),
which has been used as an antioxidant in clinical practices to treat acetaminophen poisoning
(250, 251), has been observed to reduce malformations in animal embryos in culture
exposed to high glucose (252–254); however, its effect in human diabetic pregnancy
remains to be demonstrated.

Folic acid, or water-soluble vitamin B9, has long been known to reduce NTDs in humans
(255, 256). The effect of folic acid in reducing embryonic malformations associated with
maternal diabetes has been explored in animal models. Treating cultured rodent embryos
with folic acid can reduce neural tube dysmorphogenesis induced by high concentrations of
glucose (246). In in vivo experiments, diabetic pregnant rats injected with folic acid also
exhibit decreased NTDs in their embryos, compared with diabetic pregnant rats not given
the supplement (122, 246, 257).

Combination approaches
The combination of antioxidants and phospholipids that target multiple molecular pathways
could have more potent effects in reducing fetal abnormalities compared with monotherapy.
Cocktails of vitamin E, arachidonic acid, and myo-inositol have been explored in diabetic
animal models and have been shown to decrease embryonic malformations (183, 184). The
efficacy of antioxidants to prevent fetal defects in human diabetic pregnancy has not been
examined. Antioxidant approaches tested to treat similar diseases, such as preeclampsia,
have produced unsatisfactory results (258–262). These results have tampered the enthusiasm
in applying similar strategies to treat diabetic embryopathy, but exploration of other
strategies is warranted.

Recently, alleviating nitrosative stress via iNOS inhibitors has been tested in diabetic
embryopathy (163). Oral treatment of diabetic pregnant animals with an iNOS inhibitor
decreased embryonic malformation rates (163). Additional studies are needed to test
therapeutic agents or dietary supplements that inhibit iNOS in order to translate these basic
research findings into clinical applications for human disease.

Clinical challenges
Diabetic embryopathy involves complex molecular interactions. Extensive understanding of
its mechanisms is essential for identifying therapeutic targets and developing effective
interventions. Many challenges in developing these approaches lie ahead. First, interventions
must be safe for the embryo and mother. The ideal approaches include dietary
supplementation of non-toxic agents. Second, because developmental malformations occur
early on in the first trimester of pregnancy, the dietary supplements must be easily accessible
for women to take before conception or soon thereafter. Third, any therapeutic agents
administered via oral treatments or dietary supplements must be able to pass the maternal-
fetal barrier to exert potent effects on the developing embryo.

To overcome these challenges, it not only needs scientific research to decipher the molecular
mechanisms underlying embryonic malformations and develop prevention strategies, but
also requires education of the public to raise awareness about the risk of birth defects in
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diabetic pregnancy. Preconception counseling and pregnancy planning have been shown to
be correlated with reduction in adverse outcomes of pregnancies (263–266). However, more
cooperative efforts between perinatal care providers and patients are needed to achieve the
goal of eliminating birth defects.

Concluding remarks
Diabetic embryopathy is a global public health issue. Although pregestational screening for
maternal diabetes, perinatal care, and postnatal management in developed countries are
available to most pregnant women, the rate of birth defects in infants of diabetic mothers
remains high. In developing countries, the rates of birth defects and even mortality are high
because of unavailable and inadequate care for pregnant women. With the worldwide
increase in obesity and type 2 diabetes, diagnosis and management of diabetic pregnancy is
a big challenge for the medical community. The increasing public health burden of diabetes
in women of childbearing age makes it important to develop interventional approaches to
prevent embryonic malformations.

Further understanding of the mechanisms underlying diabetic embryopathy will provide
crucial information for developing effective interventions. Clinical approaches must be safe
to administer in early pregnancy and accessible to women prior to and soon after conception
to be highly effective because diabetes in early pregnancy often goes undetected and many
women have unplanned pregnancies. Major cellular activities--i.e., proliferation and
apoptosis--and intracellular metabolic conditions--i.e., nitrosative, ER, and oxidative stress--
have been demonstrated to be associated with diabetic embryopathy using animal models.
Translating advances made in animal studies into clinical applications in humans will
require collaborative efforts across the basic research, preclinical, and clinical communities.
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Key points

• Diabetes mellitus in early pregnancy increases the risk of birth defects in
infants.

• High glucose induces intracellular stress, increases programmed cell death
(apoptosis), and decreases cell proliferation in the embryo.

• Reduction of the risk includes pre-conceptional and early gestational glycemic
control.

• Interventions via dietary supplementation remain to be developed.

• Pre-conceptional counseling and planned pregnancy are encouraged for
physicians and patients.
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Figure 1.
Two-dimensional ultrasonic scanning of anencephaly in the first trimester. Arrows indicate
missing forebrain. Modified with permission from; Cameron M, Moran P. Prenatal
screening and diagnosis of neural tube defects. Prenat Diagn 2009;29:402–11.
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Figure 2.
Two-dimensional ultrasonic scanning of exencephaly in the first trimester. The contours of
the brain are irregular (arrows). Modified with permission from; Blaas HG, Eik-Nes SH.
Sonoembryology and early prenatal diagnosis of neural anomalies. Prenat Diagn
2009;29:312–25.
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Figure 3.
Four-chamber view of fetal hearts. (A) Normal heart. Arrow indicates interventricular
septum. Arrowhead indicates interatrial septum. (B) Heart with VSD (arrow) in inlet portion
of interventricular septum (arrowhead). LA, left atrium; LV, left ventricle; RA, right atrium;
RV, right ventricle. Modified with permission from; Rajiah P, Mak C, Dubinksy TJ, et al.
Ultrasound of fetal cardiac anomalies. AJR Am J Roentgenol 2011;197:W747–60.
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Figure 4.
Exencephaly in mouse E15.5 fetus of diabetic pregnancy. (A) Nondiabetic control. (B)
Diabetes. Arrow indicates exencephaly. Scale bar=3 mm.
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Figure 5.
AVSD in mouse E15.5 fetus of diabetic pregnancy. (A) Heart of nondiabetic control. (B)
Heart of diabetic group with VSD (arrow). ao, aorta; ivs, interventricular septum; lv, left
ventricle; ra, right atrium. Scale bar=200 μm.
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Figure 6.
ER stress in diabetic embryopathy. ER, endoplasmic reticulum; UPR, unfolded protein
response.
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Figure 7.
Oxidative stress in diabetic embryopathy. GSH, glutathione; ROS, reactive oxygen species.
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Figure 8.
Nitrosative stress in diabetic embryopathy. iNOS, inducible nitric oxide synthase; RNS,
reactive nitrogen species.
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Figure 9.
Lipoperoxidation in diabetic embryopathy. COX-2, cyclooxygenase-2; cPLA2, cytosolic
phospholipase A2; PGE2, prostaglandin E2; ROS, reactive oxygen species.
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Figure 10.
Caspase-8-regulated apoptotic pathway in diabetic embryopathy. Apaf-1, apoptotic
protease-activating factors-1; Casp, caspase; Cyto, cytochrome;
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Table 1

Recommendations for pre-conception HbA1c targets

USA UK

DCCT <7.0% <6.1%

IFCC <53 mmol/mol <43 mmol/mol

DCCT, Diabetes Control and Complications Trials; IFCC, International Federation of Clinical Chemistry and Laboratory Medicine.
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Table 2

Developmental anomalies in major organ systems in diabetic embryopathy

Central nervous Craniofacial Cardiovascular Skeletal

Anencephaly Hemifacial Conus arteriosus defects Sacral agenesis

Encephalocele microsomia Transposition of great vessels Sacral hypoplasia

Exencephaly Macrostomia Tetralogy of Fallot Limb defects

Microcephaly Cleft palate Ventricular septal defects Vertebral defects

Hydrocephaly Cleft lip Pulmonary vavle defects Caudal regression

Holoprosencephaly Microtia Patent ductus arteriosus

Spina bifida Micrognathia Hypoplastic left heart syndrome

Craniosynostosis Coarctation of the aorta

Anotia/Microtia Right ventricular septal defects

Eye defects Atrial septal defects

Heterotaxia
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