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Why did eukaryotes evolve only once?
Genetic and energetic aspects of conflict
and conflict mediation

Neil W. Blackstone

Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA

According to multi-level theory, evolutionary transitions require mediating

conflicts between lower-level units in favour of the higher-level unit. By

this view, the origin of eukaryotes and the origin of multicellularity

would seem largely equivalent. Yet, eukaryotes evolved only once in the his-

tory of life, whereas multicellular eukaryotes have evolved many times.

Examining conflicts between evolutionary units and mechanisms that med-

iate these conflicts can illuminate these differences. Energy-converting

endosymbionts that allow eukaryotes to transcend surface-to-volume

constraints also can allocate energy into their own selfish replication. This

principal conflict in the origin of eukaryotes can be mediated by genetic

or energetic mechanisms. Genome transfer diminishes the heritable variation

of the symbiont, but requires the de novo evolution of the protein-import

apparatus and was opposed by selection for selfish symbionts. By contrast,

metabolic signalling is a shared primitive feature of all cells. Redox state of

the cytosol is an emergent feature that cannot be subverted by an individual

symbiont. Hypothetical scenarios illustrate how metabolic regulation may

have mediated the conflicts inherent at different stages in the origin of eukar-

yotes. Aspects of metabolic regulation may have subsequently been coopted

from within-cell to between-cell pathways, allowing multicellularity to

emerge repeatedly.
Regardless of how early eukaryotes escaped from their predicament, it is plain that the
problems faced by a prokaryotic host cell with bacterial endosymbionts are serious, if
not irreconcilable, and go a long way towards explaining why there are no surviving
evolutionary intermediates between prokaryotes and eukaryotes [1, p. 13].
1. Introduction
In a groundbreaking synthesis of genomics and bioenergetics, Lane & Martin

[2] examine the question: Why have not prokaryotes evolved complex multicel-

lularity? Their analysis points out crucial differences between prokaryotes and

eukaryotes in the availability of energy and the role of energetic differences in

the capacity for gene expression. By their view, the mitochondrial endosymbio-

sis coupled with the accumulation of mitochondrial genes in the nuclear

genome allowed tight regulation of respiration at relatively low cost in terms

of genome size. This genetic and bioenergetic complexity allows eukaryotes

to then easily evolve complex multicellularity. Left unaddressed by their analy-

sis is an obvious follow-up question: if eukaryotes are so richly favoured, why

did they only evolve once?

Metabolic complementation could have produced a eukaryotic cell in a var-

iety of ways from a variety of partners [3], yet the data suggest that eukaryotes

are monophyletic [4,5]. Equally uncontroversial is the evidence that many

eukaryotic lineages have independently evolved some form of multicellularity

[6–8]. To reflect the ease of this transition, Grosberg & Strathmann [7] charac-

terize multicellularity as a ‘minor major transition’. Indeed, a recent study

claims to have evolved multicellular yeast in the laboratory de novo [9]. Conse-

quently, the study of the early evolution of multicellular organisms focuses on

environmental ‘triggers’ [10,11].
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Figure 1. Levels-of-selection analyses usually focus on particles nested within
a collective (a), for example, individuals within a society, or cells within an
organism. In the case of proto-mitochondria within a proto-eukaryote, much
of the collective is not contained within the particles, as emphasized in
(b) with the cytosol shaded. The cytosol can be viewed as an emergent feature
of the collective. The host genome appears as the unique particle.
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The origins of both eukaryotes and multicellularity may

have been driven by the advantages of larger size (efficient

dispersal, exploitation of more or different food sources, pro-

ducing more offspring, escaping predators, avoidance of the

constraints of low Reynolds numbers) [6,12,13]. Both tran-

sitions were initiated by clever engineering solutions to

surface-to-volume constraints. In the case of eukaryotes,

energy-converting membranes were moved internally [14].

In the case of multicellularity, other surface- and size-depen-

dent processes were facilitated [12].

The origins of both eukaryotes and multicellularity bolster

the conceptualization of the history of life as repeated transi-

tions between levels or units of selection [15–22]. In the

former, bacterial cells formed the collective; in the latter, eukary-

otic cells formed the collective. The multi-level theory of

evolution provides a framework for understanding these

transitions. Central to this understanding are sequential stages

of cooperation, conflict and conflict mediation [23]. Coopera-

tion among lower-level units leads to nascent higher-level

units. Conflicts among lower-level units can then undermine

these emerging units. If conflicts can be mediated, however,

then fully formed higher-level units can emerge. These new

units can outcompete individual lower-level units and pro-

liferate. Subsequently, if conflicts can again be mediated,

these higher-level units themselves can band together to

form even higher-level units. The history of life can thus be

viewed as a repetition of stages of cooperation leading to

conflict, and conflict mediation leading to emergence [23].

This process underlies many transitions in evolution, and

these transitions are thus in some sense equivalent [16,22].

Or are they equivalent? Biological details can complicate

these theoretical generalities [22]. So the question remains—

if the evolutionary issues were similar (i.e. reconciling conflict

among lower-level units in favour of the higher-level unit),

why did the eukaryotic cell evolve only once, while by con-

trast multicellular eukaryotes have evolved many times? A

general theoretical framework may only provide limited

insights into a particular transition. Key biological details—

particularly the nature of the conflicts and the available

mechanisms for conflict mediation—need to be elucidated.

In the case of eukaryotes, there may have been something

achieved in their origin that facilitates the subsequent origin

of multicellularity. Re-examining the nature of the eukaryotic

cell in relation to conflict and conflict mediation can provide

insights into what this something is.
2. Conflict and conflict mediation and the
endosymbiont theory

Early-twentieth century formulations of the endosymbiont

theory of the origin of eukaryotes explicitly rejected ‘Darwinian’

notions of conflict and posed cooperation as an alternative.

Such views were common particularly in Russia [24]. For

example, Mereschkowsky [25] makes no mention of conflict

(but see [26]). Later, Wallin [27] described ‘symbionticism’ as

a missing part of Darwin’s theory, seemingly outside the

realm of natural selection. Margulis [28] also had little to say

about potential conflicts, despite discussing scenarios in

which conflict would seem inevitable. In her later writings,

Margulis’ view of conflict remained unchanged, for example,

Margulis and Sagan: ‘ . . . the view of evolution as chronic

bloody competition. . .dissolves before a new view of continual
cooperation . . . Life did not take over the globe by combat, but

by networking’ [29, pp. 14–15; 30, p. 11].

Later theorists of course did raise the issue of conflict—

both in general, and with regard to mitochondria, in particu-

lar. Cosmides & Tooby [31] rigorously examined the potential

for intragenomic conflict within a eukaryotic cell. Williams

[32, p. 42] notes ‘the subsequent stability of these eukaryotic

cell lineages through geologic time, despite potential disrup-

tion from selection among cellular components, presents an

evolutionary problem that deserves detailed attention’.

From the perspective of mitochondrial physiology, Black-

stone [33] addressed this question as well. Nevertheless,

these theoretical considerations had relatively little impact.

Rather, it was the empirical discovery of the role of mitochon-

dria in programmed cell death [34,35] that firmly established

the notion of conflictual relationships in the formation of the

eukaryotic cell [36–38]. In the following, conflict and its

mediation are further explored.
3. Conflict and conflict mediation and the origin
of eukaryotes: a closer look

A proto-eukaryote can be conceptualized as a colony of proto-

mitochondria within a larger cell that also contained the host

genome. Superficially, this seems quite similar to standard

levels-of-selection models [22] in which particles are nested

within a collective (figure 1a). The host genome could be con-

sidered a unique particle, whereas the proto-mitochondria

would comprise an interchangeable group of particles. Never-

theless, such a conceptualization leaves out a critical feature

of the proto-eukaryote: the cytosol (figure 1b). Indeed, it is

through the cytosol that the lower-level units or particles

actually interact with each other. During metabolism, proto-

mitochondria take up and emit various molecules; dying

proto-mitochondria release DNA; the host genome takes up

DNA and emits various gene products, and so on. To reconcile

these considerations with levels-of-selection models, the cytosol

could be regarded as an emergent feature or features [22]. This

view of the cytosol is of particular significance to considerations

of energetic regulation, as discussed in the following.

Metabolic complementation is common in the microbial

world [39]. In the initial association that led to eukaryotes,

host and symbiont could have interacted in a variety of

ways [3]. Nevertheless, there was one key requirement: in

order for the eukaryote to attain larger size, the process of

energy conversion had to be shifted to internal membranes

[14]. Moving energy-converting symbionts inside a larger

host is one way to accomplish this. In this scenario, however,



first proto-
mitochondrion

modern outgroups

last common
ancestor

modern mitochondria

Figure 2. Evolutionary history of mitochondria. If the character states of all
modern mitochondria were known, then features of the last common ancestor
could be accurately reconstructed. Nevertheless, the last common ancestor may
be very distinct from the first proto-mitochondrion (i.e. extensive evolution occurred
in the mitochondrial stem group). Modern out-groups are also highly derived.
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the lower-level units now carry out energy conversion and

allocation. Because replication requires energy, selection on

the proto-mitochondria would inexorably favour allocation

of energy into selfish replication. This is the principal conflict

in the origin of eukaryotes. Genomic and energetic factors

both have the potential to mediate this conflict.

Before considering these factors, a caveat should be noted.

The diversity of modern mitochondria is only beginning to be

characterized (e.g. genome size and structure, inheritance,

recombination, signalling and so on [40–42]). Such infor-

mation coupled with a well-resolved phylogeny of the

eukaryotes could, in principle, be used to reconstruct the

character states of the last common ancestor of modern mito-

chondria. Such an ancestor would still be highly derived

compared with the first proto-mitochondrion [1], and

modern out-groups are highly derived as well (figure 2).

Hence, the following discussion is based on generalizations

that seem supportable at this time [43].

(a) Genetic and genomic factors
Restraining the selfish replication of proto-mitochondria

has long been attributed to the formation of a chimeric

(i.e. host/symbiont) nuclear genome, and the consequent

reduction in the symbiont’s genome and hence mutational

space [13]. Nevertheless, organelles with functioning electron

transport chains always retain a small genome [44,45], so the

potential for heritable variation still exists even in modern

mitochondria. Modern mitochondrial genomes generally

seem to lack key factors involved in replication and energy

allocation. Variant mitochondria that initiate or freely allocate

energy into their own replication thus cannot evolve. Conse-

quently, genome transfer does seem to have a role in

mediating conflicts in modern mitochondria.

Such features of modern mitochondria notwithstanding,

it remains difficult to see how genome transfer (at least by

itself ) could have regulated the conflicts during the origin

of the eukaryotes. Genome transfer requires a series of evol-

utionary innovations, and none of these existed before the

endosymbiosis. Prior to the evolution of the nucleus [46], it

was likely a simple matter for bulk DNA released by

damaged proto-mitochondria to incorporate into the host

genome. Indeed, in this way, the host genome quickly gave

rise to the chimeric, proto-nuclear genome. Recombination
could activate the newly included genes by association with

promoters. Symbiont genes thus transferred could then be

expressed in the cytosol [47,48]. Some advantages might

accrue to the higher-level unit by this transfer of symbiont

biochemical pathways. Nevertheless, the effects of such trans-

fer were likely minimal in terms of mediating conflicts:

subsequent to the transfer, viable symbionts still retained a

full complement of genes and a broad mutational space for

selfish variants to arise.

To diminish this mutational space, it was necessary not only

to transfer symbiont genes to the chimeric, proto-nuclear

genome, but also to have their products re-enter the proto-

mitochondria. This requires the evolution of the protein-import

apparatus, and the association of proto-mitochondrial genes in

the chimeric genome with appropriate transit peptides. If the

gene product could be re-imported into a proto-mitochondrion,

then the organelle copy could then become defective via

mutation and ultimately lost. This will only occur, however, if

there is no selection on the proto-mitochondrion to maintain a

functional copy. In other words, the key question is whether a

symbiont with a silenced gene loses out in competition with

one in which this gene remains intact.

Consider, for instance, replication factors in this context. In a

cell in which a gene for a replication factor has been transferred

to the host genome and a re-import mechanism evolved, proto-

mitochondria can lose this gene and still successfully replicate.

Their replication can now be regulated by the higher-level

unit. On the other hand, a proto-mitochondrion that retains

the gene and selfishly replicates will increase in frequency and

come to predominate within the collective. It is thus difficult to

see how the system of gene transfer could be used to modulate

the selfish replication of the lower-level units. Indeed, the argu-

ment seems to be perfectly circular: relaxed selection is necessary

for gene loss, and gene loss is necessary for relaxed selection. Per-

haps selection at the level of the mitochondrial genome or

random processes, or both, can be invoked, leading to the fix-

ation of proto-mitochondria missing the gene in a particular

proto-eukaryotic cell [49,50]. The consequent advantages of

that cell vis-à-vis its competitors could then favour its prolifer-

ation. Selection on the higher-level unit favouring genome

transfer thus must be invoked to overcome selection on the

lower-level units opposing such transfer. Nevertheless, in

the early stages of an evolutionary transition, selection on the

higher-level unit is likely to be weak relative to selection on

the lower-level units [23]. In comparable circumstances, naı̈ve

‘for the good of the group’ evolutionary scenarios have been

heavily criticized previously [51,52].

In this context, functional advantages of the shift of most of

the proto-mitochondrial genome to the nucleus may be relevant.

A compact mitochondrial genome eliminates energetically

expensive redundancy throughout the cell [1,2]. While in

modern eukaryotes the loss of much of the mitochondrial

genome may currently serve to mediate conflicts, this loss may

not have evolved in this context. Rather, relocation of the

genome may have evolved for functional benefits and may

now mediate conflicts as a by-product.
(b) Energetic and metabolic factors
Because the functions of living cells require energy, metabolic

regulation can be expected to have a central role in modern

cells, and indeed it does [53,54]. Such metabolic regulation is

likely a shared primitive feature of all cells [55]. In particular,
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Figure 3. Stoichiometric mediation of conflict. In the initial endosymbiosis
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because both growth and replication require energy, both are

expected to be regulated by metabolic state [1]. Metabolic

state, in turn, depends on a series of redox couples whose

sources and sinks are environmental [44]. Thus, the growth

and replication of all cells are ultimately regulated by the

environment. In the case of proto-mitochondria, subsequent

to the endosymbiosis, their environment was the cytosol of

the proto-eukaryote. The content of the cytosol in terms of elec-

tron donors and acceptors would regulate the capacity of proto-

mitochondria for growth and replication. For instance, an abun-

dance of substrate would facilitate their replication, whereas a

shortage of substrate would have an inhibitory effect.

As pointed out earlier, the cytosol was an emergent feature

of the collective. The ingestions and excretions of the proto-

mitochondria (and the chimeric, proto-nuclear genome)

would influence its contents. If the scale of the cytoplasm was

vastly greater than any proto-mitochondrion, however, no

single lower-level unit could unduly control its contents. Thus,

the proto-mitochondrial collective produces the metabolic

state of the proto-eukaryote, and this metabolic state, in turn,

regulates the replication of the members of the collective. Such

metabolic regulation would be in place from the first day of

the endosymbiosis—nothing had to be invented. During initial

associations of host and symbiont, crucial conflict mediation can

thus occur. Subsequently, as the higher-level unit began to

emerge, metabolic regulation may continue to mediate conflict.

The following scenarios illustrate these principles for two

sequential stages very early in the evolution of eukaryotes.

(a), the proto-eukaryote takes up substrate and uses an unspecified molecule,
X, as a terminal electron acceptor. The proto-mitochondrion takes up the
reduced form of this electron carrier, XH, and oxidizes it, excreting X. Both
partners obtain energy in this fashion. The proto-mitochondrion replicates
and the host increases in size (b), eventually dividing (c). This simple life
cycle continues with conflicts mediated by stoichiometry.
(c) Stage 1: first steps
Endosymbioses in prokaryotes occur rarely [1]. Consider the

first proto-mitochondrion, which by whatever means became

endosymbiotic (figure 3). Some kind of metabolic, mutualistic

relationship is assumed, but remains unspecified. For instance,

the proto-mitochondrion may take up the reduced form of an

electron carrier, oxidize it, and then excrete the oxidized form

as waste, whereas in the cytosol, this molecule serves as an elec-

tron acceptor. In such a system, stoichiometry mediates conflict.

In order to obtain energy, a proto-mitochondrion needs to

oxidize the substrate, and hoarding the waste product would

have negative fitness consequences. A proto-mitochondrion

could evolve to oxidize substrate faster, but it would continue

to emit waste in proportion to the amount of substrate oxidized.

This would be adaptation, not defection. Greater efficiency of

both partners would quickly evolve.

Given such metabolic complementation, the initial

proto-mitochondrion would find itself in a relatively rich

environment. Rapid replication would ensue. Meanwhile, if

the proto-eukaryote was provided with abundant substrate,

then the ready availability of electron acceptors would also

be advantageous. Indeed, if the proto-eukaryote did not

use its external membrane in energy conversion, then size

increase in proportion to the proto-mitochondrial population

may also occur. Size increase of the proto-eukaryote could

then provide new food resources [6,12]. At some point, the

proto-eukaryote would attain a size where other surface-

dependent processes became limiting. Proto-eukaryote

division and assortment of proto-mitochondria would restore

favourable conditions. With the attainment of this simple life

cycle, the population of proto-eukaryotes would grow. The

resulting large population would increase the probability of

subsequent emergence.
(d) Stage 2: adenine nucleotide translocator and
conflict mediation

As the proto-eukaryote evolved, no innovation was as

seemingly fraught with peril for the collective as the adenine

nucleotide translocator, ANT. ANT actively exports the meta-

bolic currency of cells, ATP, from mitochondria to the cytosol,

while taking up ADP. The evolution of ANT completely

recasts the relationship between the proto-mitochondria

and the proto-eukaryote. No longer are the former taking

up something useful (e.g. XH) and excreting something

useless (X), as in the case of simple metabolic complementa-

tion (figure 3). On the other hand, the major benefit of the

symbiosis (specialization of energy conversion on internal

membranes) cannot be realized without ANT. A benefit

for the lower-level units can be realized as well, if proto-

mitochondria are digested under stressful conditions in a

process analogous to mitophagy [56], i.e. proto-mitochondria

can emit ATP to stabilize the host and avoid digestion. As

discussed earlier with genetic factors, however, these advan-

tages accrue to the higher-level unit. Emitting ATP would

seem to be vulnerable to defectors in a frequency-dependent

fashion, i.e. a proto-mitochondrion with a disabled ANT will

be at a selective advantage.

Or will it? As developed in scenario 1, increased effi-

ciency follows from stoichiometric conflict mediation. One

result would be ‘substrate shovelling’ from the plasma

membrane to the proto-mitochondria. In these
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Figure 4. Regulation of energetically selfish proto-mitochondria by metabolic demand and stochastic processes. If the proto-eukaryote exerts strong metabolic
demand because of rapid growth and replication (a), then normal proto-mitochondria (unfilled circles) will perceive a high ADP/ATP ratio and their rates of
growth and division will match those of variant proto-mitochondria (filled circles). If metabolic demand of the proto-eukaryote falters and it undergoes
whole-cell fusion and whole-genome recombination (b), stochastic processes may still produce a daughter cell with all normal proto-mitochondria.
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circumstances, ATP is abundantly produced, and a shortage

of ATP is unlikely. Rather, the principal threat to the proto-

mitochondrion is a shortage of metabolic demand. In this

context, ANT may have evolved as a metabolic ‘safety

valve’, creating reliable metabolic demand for the proto-

mitochondrion. Without ANT, a variant proto-mitochondrion

could potentially convert all of its ADP to ATP. Membrane

potential would then become maximal, electron carriers

would become highly reduced, and reactive oxygen formation

would be maximal (i.e. state 4 metabolism). Damage to the

proto-mitochondrion would ensue. In a process analogous

to modern mitophagy [57,58], selective digestion of the

damaged proto-mitochondrion may then occur. By this

view, ANT conveys an advantage to the individual proto-

mitochondrion by sustaining a state 3 metabolism (e.g. high

ADP/ATP and NADþ/NADH ratios, low to moderate

reactive oxygen species).

Notably, in cells of modern animals, the master regulator

of mitochondrial biogenesis, PGC-1a, triggers the formation

of new mitochondria under conditions of state 3 metabolism

[59,60]. Replication of state 3 proto-mitochondria may also

have occurred. Under these conditions, a proto-mitochondrion

without ANT, even if it somehow avoided damage and

selective digestion, still could at best only match the replication

rate of the cooperator proto-mitochondria. Thus, when the

metabolic demand of the proto-eukaryote was high, both

variant and normal proto-mitochondria grow and divide at

maximal rates (figure 4a). Under other metabolic conditions

(e.g. low amounts of substrate or of electron acceptors), none

of the proto-mitochondria would grow and divide. The variant

proto-mitochondrion and its descendants, however, would

likely have an advantage when the metabolic demand of the

proto-eukaryote was low. Such a proto-eukaryote might

lose out in competition with more rapidly dividing proto-

eukaryotes (i.e. selection on the higher-level unit again must

be invoked). Alternatively, because the bulk of the proto-

mitochondria would enter state 4, initiation of the sexual

phase of the life cycle should follow [61] and may by

chance produce a daughter proto-eukaryote without the

energetically selfish proto-mitochondria (figure 4b; see also

Szathmáry & Demeter [62]).

Clearly, the evolution of ANT subsequently required

mechanisms of conflict mediation more complex than mere

stoichiometry. A way forward for the proto-eukaryote,
however, can be envisioned by linking features of the life

cycle of the collective to metabolic state:

† state 3 metabolism of the collective—replication of the

proto-eukaryote and proto-mitochondria,

† state 4 metabolism of a lower-level unit—mitophagy of an

individual proto-mitochondrion and

† state 4 metabolism of the collective—sex involving whole-

cell fusion of two proto-eukaryotes and stochastic reappor-

tionment of proto-mitochondria to the daughter cells

(figure 4b).

These generalities are supported by some [57–60,63] but

not all [64,65] of the available data. Further investigations,

particularly of early-diverging eukaryotes, are clearly necessary.
4. Eukaryotes and multicellular organisms:
parallels and differences

Moving energy-converting membranes internally allowed

eukaryotes to transcend surface-to-volume constraints. This

clever engineering solution, however, turned into a levels-

of-selection nightmare: the lower-level units could selfishly

allocate energy into their own replication. This was the princi-

pal conflict in the origin of eukaryotes. Genomic transfer was

likely not initially effective in mediating this conflict. On the

other hand, the metabolic regulation inherent in the electron

transport chain itself may have allowed sufficient conflict

mediation. Nevertheless, the evolutionary requirements are

stringent and many evolutionary experiments in forming com-

plex cells may have failed to mediate these conflicts and ended

in failure [1].

In the transition to multicellularity, lower-level units

again can take up more than their share of substrate and allo-

cate it into selfish replication. Because there is no structure

analogous to the nucleus, genome transfer is impossible,

and genomic deletion in somatic cells is not commonly

found. Metabolic regulation, however, may be achieved by

extending within-cell signalling derived during the conflic-

tual stages of the origin of eukaryotes to between-cell

signalling. The extent to which mitochondrial pathways con-

nect to within- and between-cell signalling may provide an

indication that this has occurred (table 1). These may be the



Table 1. A list of putative exemplars of signalling molecules that are both connected to mitochondrial metabolism and also used in between-cell signalling.

molecule mitochondrial function other functions

cAMP modulates electron transport chain [66] second messenger [66]

ATP signals metabolic state (see text) purinergic signalling [67]

reactive oxygen species signals metabolic state (see text) disulfide relays [68]

calcium ions metabolic activator [69] second messenger [70]

STAT3 component of electron transport chain [71] JAK-STAT pathway [72]

cytochrome c component of electron transport chain [73] apoptosis [34,35]

VEGF regulator of fatty acid metabolism [74] angiogenesis [75]

insulin activator of pyruvate dehydrogenase complex [76] hormone regulating carbohydrate and fat metabolism [77]

p53 metabolic regulation [78] tumour suppressor [79]
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features of ‘genomic and bioenergetic complexity’ derived by

eukaryotes that allowed complex multicellularity to evolve

repeatedly [2].

In conclusion, any evolutionary transition in which the

lower-level units carry out energy conversion and allocation

will be extraordinarily challenging. This is the central reason

why eukaryotes only evolved once. Yet by successfully med-

iating these conflicts, eukaryotes may have paved the way
for repeated evolution of multicellularity, which could occur

simply by coopting the existing within-cell mechanisms of

conflict mediation into between-cell ones.
Many thanks to the organizers of the discussion and satellite meet-
ings. Other participants and two reviewers provided helpful
comments, and the NSF provided support (grant no. EF-0531654).
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