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Abstract
The basic reproductive number, , and the effective reproductive number, , are commonly used
in mathematical epidemiology as summary statistics for the size and controllability of epidemics.
However, these commonly used reproductive numbers can be misleading when applied to predict
pathogen evolution because they do not incorporate the impact of the timing of events in the life-
history cycle of the pathogen. To study evolution problems where the host population size is
changing, measures like the ultimate proliferation rate must be used. A third measure of
reproductive success, which combines properties of both the basic reproductive number and the
ultimate proliferation rate, is the discounted reproductive number . The discounted reproductive
number is a measure of reproductive success that is an individual’s expected lifetime offspring
production discounted by the background population growth rate. Here, we draw attention to the
discounted reproductive number by providing an explicit definition and a systematic application
framework. We describe how the discounted reproductive number overcomes the limitations of
both the standard reproductive numbers and proliferation rates, and show that  is closely
connected to Fisher’s reproductive values for different life-history stages
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1. Introduction
The theory of biological evolution provides a dynamic method for predicting past and future
population change. If we know a population’s current composition and we can identify the
fittest individuals, we can predict that population’s future composition. However, when
converting theory to prediction we stumble at one particular point: how does nature
determine fitness? Fitness is a flexible concept that can be defined in different ways
depending on the evolutionary problem being addressed (Mayr, 1997). The evolutionary
ecology concept of fitness is conventionally defined as the “reproductive success” of a
phenotype or adaptation. This convention bypasses the complexities of population genetics
(that inherited genotypes differ from expressed phenotypes according to Mendel’s laws) but
is a reasonable approximation under weak selection (Lande, 1982; Charlesworth, 1990).
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In infectious disease research, the most commonly invoked measure of reproductive success
is the basic reproductive number  (Dublin and Lotka, 1925). In a demographic sense,  is
the total number of offspring a typical individual expects to have over the course of a
lifetime in a naive population. For infectious diseases, this means the number of new
infections caused by a typical case in a completely susceptible population. In several
archetypal epidemiology models, strains of disease with higher  values out-compete
strains with lower  values, leading to a rule-of-thumb that evolution maximizes . This
phenomenon has been exploited to derive a number of useful results concerning pathogen
evolution in the context of vaccination (Gandon et al., 2001, 2003). In populations that are
not completely susceptible,  is replaced by an effective reproductive number 
representing the number of new cases created, conditional on the population’s state. But
Bremermann and Thieme (1989) have shown that even in some cases where populations are
not completely susceptible,  can be used to predict the asymptotic outcomes of some
nonlinear competition models.

 maximization does not always correctly predict evolutionary changes in strain
frequencies, however. If, for example, at the beginning of an epidemic, there are two strains
of a virus: one strain that kills its host in 2 days while causing 2 new cases at the end of
those 2 days, and a second strain that kills its host in 6 days while causing 3 new cases at the
end of those 6 days, the second strain has a larger  (3 versus 2). However, the relative
frequency of the second strain will decrease over time. In 6 days, the first strain will have
been transmitted though 3 generations, for a total of 8 descendant infections compared to the
3 descendant infections of the second strain. If both strains start with a single case, then after
a month, there will clearly be more cases of strain one than strain two although strain two
has the larger  value.

The above argument applies for both naive populations with  and non-naive population
states where we use the effective reproductive number . Both  and  ignore the timing
of reproduction events, treating all reproduction events as having the same value. If the
population size is not changing, all reproductive events do indeed have the same value, and
reproductive success can be predicted by  or . But if the population size is changing,
early reproductive events have more value than late reproduction events.

In situations where the population size is growing, reproductive success is often measured in
terms of the ultimate proliferation rate r of the strains. Biologically, r is the asymptotic
instantaneous rate of change in abundance of a population of identical individuals after the
population structure has settled down to a stable stage distribution (Keyfitz, 1968). Although
no population can grow indefinitely, and the allowance for indefinite growth superficially
violates one of the fundamental premises of Darwin and Wallace’s theory of evolution, r is a
measure of reproductive success that receives regular use in both theory and practice
(Bulmer, 1994; McGraw and Caswell, 1996; Caswell, 2001). Comparative analysis of the
ultimate proliferation rates r of different strains can correctly predict evolutionary changes in
strain frequency not just when population sizes are changing, but also when the total
population size is stationary (r = 0).

However, the dichotomy between the ultimate proliferation rate and the basic reproductive
value is unsettling. A better mathematical theory of fitness would not require this ad-hoc
distinction between populations that are changing size and populations that are not changing
size. The ultimate proliferation rate is often more difficult to calculate than a reproductive
number when comparing novel mutant strains with a wild-type population, especially when
considering a subpopulation having a different life history than the population as a whole.
Another issue is that the ultimate proliferation rate has the connotation of a population-scale
concept, describing how the size of a specific subpopulation changes in time as the
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population structure converges to a stationary distribution. By contrast, reproductive
numbers have a connotation associated with individuals. As each individual case of an
infection has a basic reproductive number, so each mutation in an evolving population has
the potential to create a new strain with its own reproductive number.

Instead of having to deal with both the ultimate proliferation rate and the basic reproductive
number, there is an equivalent alternative approach. Here we describe a third measure of
reproductive success equally valid in contexts of both growing and static background
populations: the discounted reproductive number . The discounted reproductive number

 is a measure of reproductive success that is an individual’s expected lifetime offspring
production discounted by the background population growth rate. We provide an explicit
definition and systematic application framework for the discounted reproductive number.
Although other authors have used the discounted reproductive number for life-history
optimization (Goodman, 1982; McNamara, 1991; McNamara et al., 2001), its merits remain
under-recognized. Furthermore, the fundamentally comparative and game-theoretic nature
of the discounted reproductive number has not been made explicit. In this work, we illustrate
the versatility of the discounted reproductive number as a fitness measure that subsumes the
two most common measures, the basic reproductive number and the ultimate proliferation
rate. We also show that  is closely connected to Fisher’s reproductive values for different
life-history stages. Our results show how the standard concept of reproductive numbers
extends naturally to solve a wide array of evolution problems.

2. Mathematical methods and results
To define measures of reproductive success within a quantitative framework, we consider
the family of continuous-time, stage-structured population models described by a (possibly
nonlinear) matrix equation of the form

(1)

where n is a vector of population abundances at each life stage, F is a non-negative matrix
of reproduction rates, and T is the negative of an M-matrix1 describing the transition rates of
a Markov process, and F + T is irreducible and primitive. Formally, there are many different
splittings of the system into fecundity and transition components such that F + T = F̃ + T̃
with F ≠ F̃ and T ≠ T̃. Biologists may argue that life-cycle structure dictates a canonical
splitting. Our results will hold for all splittings provided the non-degeneracy condition λ0(F
+ T) > λ0(T) holds, where the notation λ0(·) represents the matrix’s largest real eigenvalue.

The ultimate proliferation rate is the largest real eigenvalue of the growth operator:

(2)

which is the eigenvalue with largest real part. The general methods for calculation of  and
 are closely related to the theory of Markov decision processes developed by Howard

(1960) and to branching process theory (Ulam, 1990). The basic reproductive number can be
thought of as the expected number of offspring produced in each life-history stage, weighted
by the probability of surviving and entering that stage, and summed over all stages. The
basic reproduction number of an epidemic is the expected number of new cases in a naive

1See the appendix for a definition of M-matrix and other matrix terminology.
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population.  is calculated (Cushing and Yicang, 1994; Caswell, 2001; Diekmann et al.,
1990; van den Driessche and Watmough, 2002) as

(3)

In situations where the expected number of new cases is conditional on a population state
other than the naive state, the calculation is the same and the result is called an effective
reproductive number . Note that the difference between  and  is simply whether the
matrices F and T, as functions of the population state, are evaluated at a naive or non-naive
state. In what follows, we will refer only to , although the statements also hold for .

A third measure of reproductive success that combines both the basic reproductive number
and the ultimate proliferation rate is the discounted reproductive number . The discounted
reproductive number represents the number of off-spring an individual expects to have over
the course of a lifetime, discounted for expected changes in population size. The conceptual
origins of the discounted reproductive number begin with the r–K theory of selection
introduced by Margalef (1959) and MacArthur and Wilson (1967). The r–K selection theory
was originally envisioned as a continuum between r selected species in resource-rich
environments that evolve to maximize productivity and K selected species in resource-
scarce environments that evolve to maximize efficiency. The nomenclature derives from the
simple logistic-growth model

(4)

where r represents the per-capita growth rate and K denotes the carrying capacity. In
application, however, r–K selection has most often been treated as a polar dichotomy
because there is no natural continuum between the carrying capacity K, measured in the
same units as the population’s size, and the growth rate r, measured in units of inverse time.
Although it is a convenient caricature, r–K selection theory has been largely abandoned.

The discounted reproductive number supplies the missing spectrum to r–K selection theory,
with K selection corresponding to static populations without discounting, and r selection
corresponding to any scenario with positive population growth. The concept of discounting
has a long history in economics tracing back to Fibonacci’s 13th-century work (Goetzmann,
2005). In the later part of the 20th century, some researchers have observed that the discount
rate also plays an important role in evolutionary population biology because it provides a
means to account for costs associated with delays in reproduction (Goodman, 1982).  has
appeared repeatedly throughout the historical development of evolutionary theory, although
not explicitly by this name. Taylor et al. (1974) showed that the proliferation rate and  are
equivalent fitness measures in the special case of a discrete-time, age-structured model.
Schaffer (1974) also implicitly employed the discounted reproductive number in his study of
life-history evolution. Li and Schneider (2002) later extended this by studying models with
general stage structure in discrete time. Goodman (1982) seems to be the first author to treat
the discount rate as a free parameter, although he takes pains to downplay any originality in
his paper. Goodman further suggests a method for optimizing  in an age-structured model.
The method implicitly requires that an equilibrium strategy have a form of convergent
stability (Eshel, 1983) to guarantee that it will be found. McNamara refers specifically to 
as the “discounted maximum future expected reward” (McNamara, 1991) or the “discounted
lifetime reproduction success” (McNamara et al., 2001).  plays an important role in
studies of evolution based on dynamic programming approaches to fitness (McNamara,
1991) and alternative versions of adaptive topographies (McNamara, 1993; Lande, 1982).
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The discounted reproductive number is defined in a manner similar to the basic reproductive
number, except that the number of offspring from each stage is also weighted to reduce the
value of offspring produced later in time, relative to offspring produced earlier. Thus, the
discounted reproductive number is defined as

(5)

where δ is the discount rate. In general, we take δ > λ0(T) so that an inverse exists. Since all
known species are mortal, λ0(T) < 0.

Just like ,  can be defined for other common life-history models in addition to the
continuous-time matrix models presented here. For a McKendrick–von Foerster model,

(6)

where a is the age of a cohort, the discounted reproductive number is given by

(7a)

with

(7b)

For the discrete-time matrix model

(8)

the discounted reproductive number is given by

(9)

where θ is the discrete-time discounting ratio (Li and Schneider, 2002). The equation  = 1
is a special case which leads to the well-known Euler–Lotka eigen-value problem (Kot,
2001) and Fisher’s reproductive value (Fisher, 1930) for age-structured populations.

3. Properties of 
Inspecting equations (3) and (5), we see that when there is no discounting (δ = 0),  = .
Further, positive discount rates always result in discounted reproductive numbers smaller
than the basic reproductive number.

Proposition 1
The discounted reproductive number  is a decreasing function of the discount rate δ and is
bounded below by 0.

Proof—Define the discounted generation matrix
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(10)

so that  = λ0(G). By the properties of M-matrices, G exists for all δ > λ0(T). The
discounted generation matrix can be rewritten as

(11)

Since multiplication by a scalar commutes over all matrices, we can decompose the matrix
exponential to the form

(12)

Because −T is an M-matrix, the matrix exponential and hence the whole integrand must be
non-negative (Berman and Plemmons, 1979, p. 146). Perron–Frobenius theory tells us that
the dominant eigenvalue of a non-negative matrix is non-negative (Horn and Johnson,
1985), so  = λ0(G) ≥ 0.

By inspection, the integrand is decreasing in δ. Because F is also non-negative, we see that
G is a component-wise strictly decreasing function of δ in the sense that either ∂Gij/∂δ < 0
or Gij = 0. Take h such that for sufficiently small ε,

(13)

If for two matrices A and B where B ≥ A ≥ 0 component-wise, then λ0(B) ≥ λ0(A) ≥ 0
(Horn and Johnson, 1985, p. 491), so

(14)

It follows that either λ0(G(δ)) = 0, or λ0(G(δ)) > λ0(G(δ + ε)) ≥ 0 in the limit as ε
approaches 0 from above.

As  = λ0(G), we conclude that  is decreasing in the discount rate δ, and strictly
decreasing so long as  is positive.

Note that this proof holds for any T and F satisfying our assumptions, so there is a
continuous cone of discounted reproductive numbers  for any alternative splitting F̃ + T̃ =
F + T, but all of these ’s have the same relationship to the ultimate proliferation rate r: the
discounted reproductive number is 1 if reproduction is discounted at the ultimate
proliferation rate.

Proposition 2
 = 1 if and only if δ = r.

Proof—We need to show that the dominant eigenvalue of F(rI − T)−1 is 1. Since r is the
dominant eigenvalue of the primitive matrix F + T, the left eigenvector v corresponding to r
is unique (up to scaling) and can be taken to be positive (Horn and Johnson, 1985).
Moreover, v is the only positive left eigenvector for any eigenvalue (Chow, 1983, p. 914).
Then
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(15)

where vT denotes the transpose of v. Since −T is an M-matrix and r = λ0(F+T) > λ0(T), the
matrix rI − T also satisfies the definition of an M-matrix. Because the inverse of an M-
matrix is non-negative (Horn and Johnson, 1991, p. 117), (rI − T)−1 exists and is non-
negative. If we multiply by this inverse,

(16)

We now see that v is a positive left eigenvector of F(rI − T)−1 corresponding to the
eigenvalue of 1.

Perron–Frobenius theory tells us that for a non-negative matrix A, if an eigenvalue e has a
modulus smaller than the dominant modulus, then the eigenvector for e is not strictly
positive. Contrapositively, if A is non-negative and v is a positive eigenvector, then the
corresponding eigenvalue has modulus equal to the dominant eigenvalue (Chow, 1983, p.
914). Since v is a positive left eigenvector of the nonnegative matrix F(rI − T)−1, we must
have λ0(F(rI − T)−1) = 1. Thus, if δ = r,  = 1.

Conversely, let δ ≠ r. By Proposition 1,  is strictly decreasing in δ when  > 0, so  ≠ 1.

4. Comparison of fitness measures
To demonstrate that the discounted reproductive number is equivalent to the basic
reproductive number and the ultimate proliferation rate as a fitness measure, consider a very
large population where a small number of individuals possess a mutant phenotype π that
differs from the population’s resident phenotype π̄. The life-history and fecundity matrices
of individuals depend both on the mutant phenotype and on the resident phenotype, which
we will denote using subscripts. The mutant phenotype has basic reproductive number

(17)

ultimate proliferation rate

(18)

and discounted reproductive number

(19)

where

(20)

We have chosen the discount rate δ(π̄) to be the ultimate proliferation rate of individuals
with the resident phenotype because this is the population’s baseline growth rate against
which the mutant phenotype is competing. Although all phenotypes with (π, π̄) > 1 will
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increase in number, only phenotypes with an ultimate proliferation rate larger than that of
the resident population will increase in frequency.

A mutant phenotype can only invade a population if it has a greater fitness in the current
environment than the resident phenotype. If we define the relative fitness of a phenotype as
W(π, π̄), with the convention that W(π̄, π̄) = 1, then a mutation can invade when W(π, π̄) >
1. A resident phenotype is a strict Nash equilibrium of the population game if all possible
mutations have a lower fitness than the resident phenotype (W(π, π̄) < 1 for all π ≠ π̄). This
and other evolutionary properties of a fitness measure can be assessed using the pairwise
invasion test map

(21)

As examples, we re-derive and generalize results from Mylius and Diekmann (1995) and
Bulmer (1994, p. 77) describing the circumstances when each fitness measure is equivalent.

Comparison 1
When a population is at a stable size (i.e., no growth, r = 0), the pairwise invasion test of
relative fitness measured in terms of the basic reproductive number is the same as the
pairwise invasion test of relative fitness measured in terms of the discounted reproductive
number.

Proof—We need to prove

(22)

Because there is no asymptotic growth of the population (r(π̄, π̄) = 0), there is no
discounting (δ(π̄) = 0) and the discounted reproductive numbers are equal to the basic
reproductive numbers. The ratio of the mutant discounted reproductive number to the
resident discounted reproductive number is then the same as the ratio of the basic
reproductive numbers:

(23)

Thus, the population games are identical, and the pairwise invasion tests must also be
identical.

 does not correctly measure fitness, however, when a population’s size is growing or
decaying because it gives all reproduction events equal weight. In a growing population,
reproduction events next year are worth less than reproduction events this year. Both the
ultimate proliferation rate and the discounted reproductive number are suitable alternatives
in these cases.
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Comparison 2
The pairwise invasion test of relative fitness measured in terms of the ultimate proliferation
rate is the same as the pairwise invasion test of relative fitness measured in terms of the
discounted reproductive number.

Proof—In order for 1 to remain the critical value for invasion, as in the definition (21) of
S(W), we will use the exponential of the ultimate proliferation rate, er(π,π̄), instead of the
ultimate proliferation rate. Consequently, the relative fitness of π with respect to π̄ is

(24)

Thus, we need to show that

(25)

The tests are equal if they are equal at each point (π, π̄). If r(π, π̄) −r(π̄, π̄) = 0, then the
discounted reproductive number has a discount rate equal to the proliferation rate and by
Proposition 2, (π, π̄) = 1. Now by Proposition 1, if r(π, π̄)−r(π̄, π̄) < 0, then the discount
rate is faster than the proliferation rate and (π, π̄) < 1. If r(π, π̄) − r(π̄, π̄) > 0, then the
discount rate is slower than the proliferation rate and (π, π̄) > 1. The tests are therefore
equal.

Comparisons 1 and 2 show that the discounted reproductive number subsumes the two most
common measures of fitness, r and . To show how  can be combined with population-
level and individual-level models to study evolutionary strategies, let n(t) be the
macroscopic state of the resident population, e(t) be the state of the environment, and p(t) be
the probability density of the life-history state space over time for an individual with the
mutant phenotype π. We refer to p(t) as the microscopic state, because it is the life-history
state of a single individual. We refer to n(t) as the population’s macroscopic state because it
is a combination of all other individuals’ states. Mathematically, the macroscopic and
microscopic dynamics are driven by separate but related processes. From the microscopic
perspective of the individual, life is stochastic, but from the macroscopic perspective of a
large population, the dynamics are treated as deterministic. If we use a Markov process to
describe the life of an individual, and a system of ordinary differential equations to describe
changes in a population, the relative fitness of an individual with phenotype π is given by
the discounted reproductive number

(26a)

where

(26b)

governs the dynamics of the microscopic state, and
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(26c)

(26d)

govern the dynamics of the macroscopic state and the environment. Here, T is the transition-
rate matrix of the life-history Markov process, δ = r(π̄, π̄) is the population’s proliferation
rate, F is the fecundity matrix, and the vector v is the reproductive value for each state. The
use of v was introduced by Fisher (1930), who suggested it be interpreted as the relative
expected future lifetime contribution to reproductive output for individuals in each state
when π = π̄. The population’s proliferation rate δ discounts future reproduction relative to
current reproduction.

Consider a system that is stationary in the sense that the resident population is growing at
rate δ(π̄) with fixed proportions of life-history states so that n(t) = eδ(π̄)tn* and the resource
is at steady state, i.e. e(t) = e*. The dynamic equations can be reduced by substituting n(t) =
eδ(π̄)tn* and e(t) = e* into system (26) and requiring that the equation for the microscopic
state, p, be at steady state, resulting in the system of equations:

(27a)

(27b)

(27c)

Under these equilibrium conditions, the probability of being in each state at a given time is

(28)

It follows that2

(30)

We want to choose the reproductive values v such that the relative fitness W(π, π̄) correctly
predicts changes in strategy frequency of long times; mathematically,

(31)

2On further examination, I think we can avoid the arbitrariness of the scaling choice by defining

(29)

This includes our original definition, and is invariant to scalings of v. It’s also more closely connected to the ideas of projective
geometry relevant here, where we really are associating values to rays.
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If we choose v to be the left eigenvector associated with the dominant eigenvalue of F (δI −
T)−1, normalized such that vTp(0) = 1, then

(32)

Applying Comparison 2, we find that for this choice of v,

(33)

Thus, the relative fitness W(π, π̄) correctly predicts which strategies π can replace the
resident strategy π̄ provided that the reproductive value v is defined in terms of a left
eigenvector. The reproductive value v is a generalization of Fisher’s reproductive value
because it depends on both the invading phenotype π and the resident phenotype π̄, whereas
for Fisher’s reproductive value it is traditionally assumed that π = π̄. The definition of the
reproductive values in terms of an eigenvector of F (δI − T)−1 may seem to preclude the
practical use of equation (26a). However, often F has only 1 nonzero row, corresponding to
birth into only one life-history stage, and vTF is a scalar multiple of that row. In this case,
the condition vTp(0) = 1 completely characterizes vT.

Given a fitness function, we can then compare strategies and determine which strategies are
Nash equilibria. A phenotype π̄ is a Nash equilibrium strategy if (π*, π*) > (π*, π*)

for all π ≠ π. When  is a smooth function, the Nash condition is equivalent to 

and .

5. Applications of 
The discounted reproductive number is easy to apply, although closed-form solutions are
uncommon. As a first example, let us calculate  for a simplification of the classic problem
of maturation-time evolution. Consider a population with two life-history states, juvenile
and adult, that grows linearly according to

(34)

(35)

where π̄ is the resident phenotype strategy. An individual with phenotype π has life-history
transition-rate matrix

(36)

and fecundity matrix

(37)
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Applying equation (27), we find the discounted reproductive number

(38)

where the discount rate

(39)

Let us extend this model to pathogen evolution in epidemiology. Consider incubation-period
evolution in the susceptible-exposed-infectious-recovered (SEIR) model

(40a)

(40b)

(40c)

(40d)

Here S is the number of people who are susceptible, E is the number exposed, I is the
number infectious, and R is the number recovered. The birth rate is given by η, m is the
background death rate, μE is the infection-induced death rate during the exposed stage, μI is
the infection-induced death rate during the infectious stage, and γ is the recovery rate. The
infection rate, β, and the incubation rate, f, are both functions of pathogen phenotype.

The dynamics of System (40) are well understood. If

(41)

then the disease-free stationary solution is globally attracting. Otherwise, there is a unique,
globally attracting stationary solution with known Lyapunov function (Korobeinikov and
Maini, 2005).

In infectious-disease modeling, the pathogens are the organisms of interest, and they only
exist in infected human hosts. Therefore, we only need the exposed (E) and infectious (I)
compartments of the host population to model the pathogen population. The life-history
transition-rate matrix for an infection with type π is

(42)

and the fecundity matrix for the creation of new infections is
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(43)

We apply equation (5) and find

(44)

with

(45)

In this calculation, S is treated as a constant. There are two natural cases of equation (40)
where this is reasonable. First, early in an epidemic, the number of infections is small while
S is large and relatively constant. In this case, S is fixed and independent of the resident
phenotype π̄. Second, late in an epidemic, the dynamics approach the endemic steady-state
solution, where S is again constant. In this case, the steady-state depends on the resident
phenotype π̄;

(46)

As an example, let f(π) = π and  (Fig. 1). Example contour plots of (π, π̄)
early and late in an epidemic are shown in Figure 2. The condition above are used to show
that the points where the 1-contours cross in Figure 2 are Nash equilibria.

The value of the discount rate differs at different points in an epidemic, as does the number
of susceptibles S. Early in an epidemic almost all individuals are susceptible and the number
of infections grows exponentially. Thus, the discount rate is large. Over time, however, the
excess of susceptibles is exhausted and the population-dynamics approach an endemic
stationary solution with the discount rate also approaching 0. The evolutionary pressures on
the pathogen change as the discount rate varies between these extremes. The discount rate is
faster early in the epidemic when the number of susceptibles is largest and the number of
infections is growing quickly, favoring short incubation periods (large π). Late in the
epidemic, discounting is slow, and longer incubation periods can pay off with greater
transmission. Figure 2 shows how these differences play out in moving the Nash equilibrium
from short incubation early in the epidemic to longer incubation periods late in the epidemic.

6. Discussion
We have shown that the discounted reproductive number  unifies several disparate
measures of fitness within a single framework while providing a mechanistic basis for the
derivation of new results. The discounted reproductive number allows us to systematically
account for the timing of transmission events to study changes in frequency in a way not
possible with the reproductive number . Although we illustrated the use of  with
ordinary differential equation models, we also showed how  is formulated for difference
equation and partial differential equation models. We have applied  to model changes in
host behavior when virulence changes with the age of the host (Reluga et al., 2007) and here
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to describe changes in pathogen selection over the course of an epidemic. In addition,  can
be used in studies of the evolution of clutch size, senescence, growth, and other evolutionary
trade-offs, including co-evolution, like that between host and pathogen. We also have shown
that (π, π̄) is closely connected to Fisher’s reproductive values for different life-history
strategies. Therefore, the discounted reproductive number is broadly applicable to other
studies where it is reasonable to assume populations are near dynamic equilibrium or
growing exponentially.

For many models, the reproductive number  is easier to derive and takes a simpler form
than the ultimate proliferation rate r. When discount rate δ is treated as a free parameter,
which may suffice for some kinds of analysis,  is as easy to derive and as simple in form
as . However, when δ is taken to be the ultimate proliferation rate of the resident
population r(π̄, π̄), the determination of (π, π̄) involves the complexity of calculating
both r and .

The proofs of Proposition 1 and Proposition 2 rely on our assumption that the demography
matrix F + T is irreducible and primitive. It is not immediately clear what form the results
would take if either of these conditions were relaxed. Of particular interest is the fact that the
splitting of F + T needed to define , as well as , is not unique. A similar issue is present
and more onerous when matrix models are generalized to branching-process models of
demography. This suggests two points. First, the mathematics is not capturing some parts of
the biology, since fecundity can not be defined arbitrarily in practice. Second, while each
splitting defines a different , there seem to be no significant mathematical differences
between these splittings in practice. These points suggest a need for a practical convention to
aid in comparative analyses. Some readers may note a close connection between the concept
of the discounted reproductive number as a function of the discount rate δ and the concept of
a Laplace transform. This connection may provide a convenient avenue for mathematical
applications of  in new research.

Evolutionary population game theory based on the discounted reproductive number has a
number of limitations. While convenient, population game theory based on  is an
asymptotic theory with well-known shortcomings (Abrams et al., 1993). The theory has
primarily been applied in settings where population dynamics are stationary or growing
exponentially. Equation (5) assumes the matrices F and T are stationary. If transition rates
or fecundities are not stationary, the integrals in equation (11) and equation (26a) do not
have general closed-form solutions. Similar issues arise in attempts to apply  and r in
situations where dynamics oscillate. Further generalizations are needed to accommodate
dynamic programming formulations and Lyapunov-exponent descriptions of fitness in
settings with periodic and chaotic population dynamics (McNamara et al., 2001 ; Metz et al.,
1992 ). We have also sidestepped the challenges associated with frequency-dependent
selection by restricting our attention to population games. In general, alternative
mathematical approaches should be used if the evolutionary dynamics of a biological system
are not easily summarized in terms of asymptotic properties.

In summary, we have provided an explicit definition and systematic application framework
for extending the reproductive number  to the discounted reproductive number. We
demonstrated that the discounted reproductive number is a versatile fitness measure that
subsumes the two most common measures of fitness, the basic reproductive number and the
ultimate proliferation rate.
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Appendix

Terminology
Here we briefly outline the terminology we use to describe a variety of matrices that arise in
population modeling.

A matrix A = [aij] is non-negative if all its entries are non-negative, aij ≥ 0. Likewise, A is
positive if its entries are all positive, aij > 0.

A Z-matrix is a square matrix whose off-diagonal entries are all non-positive, aij ≤ 0 for i ≠j.
A Z-matrix can be written as Z = αI − P, where P is a non-negative matrix. An important
property of Z-matrices is that the matrix exponential e−Zt is non-negative for all t ≥ 0
(Berman and Plemmons, 1979, p. 146).

An M-matrix is a Z-matrix that can be decomposed as M = αI − P for some non-negative
matrix P and some α > λ0(P), where λ0 denotes the largest real eigenvalue of the matrix.
The real part of all the eigenvalues of an M-matrix are positive. Moreover, the inverse of an
M-matrix is non-negative (Horn and Johnson, 1991, p. 117). See Horn and Johnson ( 1991)
and Berman and Plemmons ( 1979) for expositions on M-matrix theory.

A matrix A being irreducible means, in population terms, that each life stage can ultimately
produce every other life stage, either by transition between life stages or by production of
offspring. (See, for example, Caswell ( 2001, p. 81).) Note that this definition implies that
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the matrix must be square. An example of a reducible matrix would be the projection matrix
from a model that includes post-reproductive adults: the post-reproductive life stage cannot
produce newborns or any other life stage.

A non-negative matrix P is primitive if there exists an integer z such that Pz is positive
(Horn and Johnson, 1985). Note that primitive implies irreducible. Otherwise, we define the
matrix A to be primitive if there exists α > 0 such that A = P − αI, with P non-negative and
primitive. Note that A primitive implies that it is irreducible, as with non-negative matrices,
and that it is the negative of a Z-matrix, A = −Z. For a primitive matrix A = P − αI, by
Perron–Frobenius theory, the eigenvalue of maximum modulus of P is real and positive
(Horn and Johnson, 1985). Therefore, the largest real eigenvalue, λ0(P), is the eigenvalue of
maximum modulus. This implies that λ0(A) = λ0(P) − α is real and is the eigenvalue of A
with the largest real part.
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Figure 1.
Transmission rate, β vs. incubation rate, f used in our example for equation (40) and Figure

2. The functional forms are f(π) = π and  with b0 = b1 = 1.

Reluga et al. Page 18

Math Biosci Eng. Author manuscript; available in PMC 2013 June 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Contour plots of (π, π̄) early (top) and late (bottom) in the course of an epidemic
described by equation (40). Nash equilibria correspond to the phenotypes where the 1-
contours intersect. At the start of an epidemic, the number of susceptibles is independent of
the strategies and the number of infections is growing exponentially. However, near the end
of an epidemic, the number of susceptible individuals at dynamic equilibrium depends on
the population’s resident phenotype π̄, although there is no net change in the number of
susceptible individuals per unit time. Because of these differences, the Nash equilibrium π*
for the rate of leaving the exposed class is more than twice as large early compared to late in
the epidemic. Parameter values μE = μI = 0, γ = 10, m = 1/60, η/m = 100. The early plot is
for the naive population, S = 100. For the late plot, S is given by equation (46).
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Figure 3.
Nash equilibrium strategy (π*) at the start of an epidemic, depending on the initial
population size (N = η/m). Parameter values are m = 1/60, μE = μI = 0, γ = 1/3, and b0 and
b1 as in Figure 1.
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