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Abstract
Regulating physical size is an essential problem that biological organisms must solve from the
subcellular to the organismal scales, but it is not well understood what physical principles and
mechanisms organisms use to sense and regulate their size. Any biophysical size-regulation
scheme operates in a noisy environment and must be robust to other cellular dynamics and
fluctuations. This work develops theory of filament length regulation inspired by recent
experiments on kinesin-8 motor proteins, which move with directional bias on microtubule
filaments and alter microtubule dynamics. Purified kinesin-8 motors can depolymerize
chemically-stabilized microtubules. In the length-dependent depolymerization model, the rate of
depolymerization tends to increase with filament length, because long filaments accumulate more
motors at their tips and therefore shorten more quickly. When balanced with a constant filament
growth rate, this mechanism can lead to a fixed polymer length. However, the mechanism by
which kinesin-8 motors affect the length of dynamic microtubules in cells is less clear. We study
the more biologically realistic problem of microtubule dynamic instability modulated by a motor-
dependent increase in the filament catastrophe frequency. This leads to a significant decrease in
the mean filament length and a narrowing of the filament length distribution. The results improve
our understanding of the biophysics of length regulation in cells.
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1. Introduction
A fundamental question in biology is how organisms control the size of subcellular
structures, cells, organs, and whole organisms. The physical principles underlying the
sensing and control of size in biology are not well understood; indeed, whether there are
general principles or mechanisms in size control is unclear [1–3]. In particular, the
regulation of polymer length is important for the organization of the cellular cytoskeleton.
Regulation of cytoskeletal filaments affects both the size of subcellular organelles such as
the mitotic spindle [4, 5] and the structure of cells themselves [6, 7]. Microtubules are an
important cytoskeletal filament that contribute to cell structure, affect the distribution of
other cytoskeletal filaments, move chromosomes during cell division, and serve as tracks for
transport within the cell. This paper focuses on the regulation of microtubule length.
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Microtubules undergo complex, nonequilibrium polymerization dynamics, known as
dynamic instability, characterized by stochastic switching between distinct growing and
shrinking states. When dynamic microtubules polymerize in vitro from purified tubulin
protein, dynamic instability leads to a broad distribution of polymer lengths [8]. However, in
cells other proteins are also present which modify microtubule dynamics, particularly at the
plus ends of microtubules [9]. This allows cells to control tubulin polymerization dynamics
to give microtubules of regulated length. A relatively well-studied example of length
regulation of microtubule-based structures is the control of flagellar length in
Chlamydomonas reinhardtii, where the assembly and disassembly of the flagellum is
controlled to give a fixed flagellar length [10]. However, in general it is not well understood
how cells control the length of their microtubules.

Recently an example of physically-based microtubule length detection and control was
proposed, based on motor proteins that walk with directional bias on a microtubule and
shorten a stabilized (non-polymerizing) microtubule from its plus end [11–13]. If the motors
are processive (unbinding slowly from the microtubule), then a long filament can
accumulate large numbers of motors at its end, and the shortening rate is high; for a short
filament fewer motors reach the end, and shortening slows. This length-dependent
depolymerization has been demonstrated for the kinesin-8 protein Kip3p moving on
stabilized microtubules. The physical interactions of motors moving on the filament allow a
physical process (the rate of depolymerization) to vary with the filament length, thereby
allowing sensing of the length [12–14]. By coupling this length-sensitive depolymerization
with other processes (for example, a constant filament growth rate) a specific filament
length or narrow filament-length distribution could in principle be achieved [12].

To understand the biological relevance of length-dependent depolymerization, it is important
to make a connection between the biophysically measured effects of purified proteins on
stabilized microtubules and the more complex situation in cells. Stabilized microtubules
have little or no intrinsic length dynamics, while in cells microtubules undergo dynamic
instability. Other proteins can also modify microtubule dynamics. Therefore, the kinesin-8
length-dependent depolymerization process will be affected by microtubule length
fluctuations and the presence of other proteins at microtubule tips. In general, any
biophysical mechanism of length regulation must be robust to noise in the cellular
environment.

Recent work suggests that direct length-dependent depolymerization may not be occurring
in cells; instead, kinesin-8 proteins may act to promote catastrophe (the transition from
growing to shrinking). Extensive experiments have demonstrated that deletions or
knockdowns of kinesin-8 proteins in cells result in longer microtubules and mitotic spindles
as well as an increase in chromosome loss in mitosis [11,15–21]. Other work has shown that
kinesin-8 activity is associated with destabilization of microtubules and other alterations in
microtubule dynamics [11–13,15,20,22–35]. While the molecular mechanisms of kinesin-8
protein function are not clear, it appears that not all kinesin-8 proteins are able to
depolymerize stabilized microtubules [26,35,36]. Both experimental evidence [11, 25, 29,
35] and modeling work [37] suggest that in cells kinesin-8 proteins may act to promote
catastrophe of dynamic microtubules. Therefore, it is necessary to understand the
consequences of length-dependent changes in microtubule dynamic instability to predict the
effects of these motors in cells. This will improve our general question of how length-
sensing mechanisms are altered by fluctuations and dynamics in biological systems.

Previous theory and modeling work has addressed aspects of kinesin 8 behavior and length
regulation. Several papers have focused on modeling the physical effects important to
describe the length-dependent depolymerization of otherwise static filaments [13,14,38] or
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filaments with simplified polymerization kinetics [39–41]. To our knowledge, previous
work has not examined the effect of catastrophe-promoting motors on the length distribution
of microtubules undergoing dynamic instability. Tischer et al. used a similar formalism to
that in this paper in a model for how length-dependent microtubule catastrophe and rescue
rates affect the density of cargo-carrying motors along microtubules, an effect that could be
used to target cargo delivery to specific cellular locations [42].

In this paper, we develop a simplified physical theory to compare two scenarios for length
regulation: for length regulation by depolymerization we calculate the steady-state length
that is reached by a constantly growing filament balanced by depolymerizing motors, while
for length regulation by altering catastrophe we consider filaments undergoing dynamic
instability with alterations in the dynamics due to motors. We consider two possible
mechanisms of motor action at the microtubule tip, both the minimal model in which motor
effects (depolymerization or catastrophe) increase in proportion to the motor density [14, 38,
41] and the cooperative model in which motor effects (depolymerization or catastrophe)
increase in proportion to the flux of motors to the filament end [13]. These two models show
important differences in their effects on length regulation, suggesting that cellular length
regulation could be sensitive to the precise mechanism. We find consistent qualitative
agreement between mean-field theory and stochastic simulation; in some parameter regimes
the two approaches agree quantitatively.

2. Motor dynamics along filament
The mean-field density of the motors along the filament, ρ(x, t), in units of motors per unit
length is described by [43]

(1)

On the right hand side, the first term describes biased motion of the motors with speed v,
where crowding effects reduce the motor flux [43] and ρmax is the maximum possible motor
density. The second term describes binding of motors to unoccupied sites at rate per unit
length konc. The third term describes unbinding of motors from occupied sites at rate koff.
This formulation assumes a continuum limit in which the lattice spacing a → 0 so that the
motor density can be treated as continuous in x. The bulk motor concentration c is assumed
constant, i.e., the binding of motors to the filament is assumed not to deplete the pool of
motors in the bulk. Note that we do not consider protofilament interactions within a
microtubule, so we are effectively considering a single-protofilament microtubule (figure 1).

For relatively low motor density, we neglect crowding effects in the drift term, which makes
the density equation linear. In addition, we work with the motor fractional occupancy p(x, t)
= ρ(x, t)/ρmax, so the density equation can be written

(2)

With the initial condition p(x, t) = 0 at time t = 0 and the boundary condition p(x = 0, t) = 0,
the solution to this equation is

(3)
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The steady-state occupancy away from the filament ends is p0 = konc/(koffρmax + konc), the
time scale τ = 1/(koff + konc/ρmax), and the length scale λ = v/(koff + konc/ρmax) = vτ. At
long time, the density approaches the steady state profile which is constant away from the
filament end but has a boundary layer for small x where transport effects and boundary
conditions change the motor density away from p0 [39,43,44].

3. Length regulation by depolymerization
Here we study the regulation of filament length assuming the motors directly depolymerize
the filament from its plus end, an effect which is balanced by a constant rate of filament
growth (figure 1A). This approach neglects fluctuations due to microtubule dynamic
instability, and so the resulting length is deterministically reached. We suppose that a
filament grows with constant speed u.

We consider two simple models for the dynamics of the plus end end. (We assume that the
filament minus end is not dynamic.) For density-controlled depolymerization, the motor-
induced depolymerization rate is proportional to the motor occupancy at the end [14,38,41].
For flux-controlled depolymerization, the motor-induced depolymerization rate is
proportional to the motor flux to the end [13,38]. We assume that the motors move faster
than the growth (v > u), so the motors track the end as observed experimentally. We
therefore assume that the motor occupancy away from the filament end reaches the steady-
state value p(x) = p0(1 – e−x/λ).

Dimensional analysis suggests that the filament length reached should be related the
boundary layer length scale λ = v/(koff + konc/ρmax) = vτ, the obvious length scale that can
be constructed from the rates in the problem. However, the steady-state filament length is
quite different from λ and is controlled by the dynamics at the end of the filament.

This model is related to recent work that also considered the balance between
depolymerizing motors and filament kinetics described by constant growth [39, 41] or
treadmilling [40]. The model here is simplified compared to the previous work, to allow the
derivation of analytic expressions for the length achieved and to allow comparison to the
results for filaments undergoing dynamic instability.

3.1. Density-controlled depolymerization
In the density-controlled model, we assume that the depolymerization rate is proportional to
the motor density at the terminal site of the microtubule [14]. We assume that only the motor
occupancy at the last site of the filament is important for depolymerization, i.e., we neglect
possible cooperative effects. Define pe(t) to be the average motor occupancy at the last site
on the filament, and the filament length is L(t). The mean-field density-dependent
depolymerization model is:

(4)

(5)

The first term on the right side of equation (4) represents the stepping of motors from the

site adjacent to the end to the terminal site on the filament, at rate . The density at
the penultimate site on the filament is p(L – a, t), where a is the lattice spacing, assumed
small. If the motor dynamics at the end are faster than the typical time scale of density
changes in the bulk of the filament, we can treat the motor density away from the end quasi-
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statically assuming it is unaffected by the end dynamics. Thus, we write p(L – a, t) ≈ p(L, t),
where p(x, t) is the motor occupancy for a region far from the filament end. Because the
kinetics of motor removal may be different at the end of the filament, we include crowding
effects at the last site even though they are neglected elsewhere along the microtubule. The
second term on the right side of equation (4) describes unbinding of the motor at the end. In
equation (5), the filament lengthens at constant speed u and shortens at a rate proportional to
the motor density at the end, with a maximum speed w.

Note that in this model the unbinding of the motor from end of the filament (controlled by

the term with rate  in equation (4)) is decoupled from the depolymerization rate
(controlled by the term with rate wpe in equation (5)). This means that we allow processive

depolymerization, with a single motor able to remove an average of  monomers from
the filament.

The steady-state length in the density-controlled model Lden is reached when  and ,
which implies pe = u/w and

(6)

(7)

The approximate solution in equation (7) applies when the second term inside the logarithm
of equation (6) is small. Note that there is no steady-state solution if either w < u (in this
case the motors can never remove dimers quickly enough to keep up with the growth) or

. Therefore the motor occupancy must be larger than the critical

value  for a steady-state length to occur, implying a minimum bulk

motor concentration of . In practice given
measured motor parameters, reasonable values of the steady-state length require w quite
similar to u; the requirement for such fine-tuning of the depolymerization rate suggests that
this length-regulation mechanism is not highly robust (figure 2).

We show the dependence of the steady-state length on the bulk motor concentration in
figure 2. We use parameters similar to those found in experiments [11,13]. The results of
stochastic simulation of density-controlled depolymerization agree qualitatively with the
predictions of the mean-field theory (figure 2, details of the simulations are described in
section 5). The best agreement occurs when the stochastic simulation uses a slightly larger
motor-induced depolymerization speed w and a slightly lower motor unbinding rate from the

filament end  than the mean-field theory. In this case the mean filament lengths reached
in the two models are similar, but the stochastic simulation shows large fluctuations about
the mean length. This is intuitively reasonable since in this model depolymerization is
controlled by the motor occupancy at the terminal site of the filament, which undergoes
significant fluctuations.

3.2. Flux-controlled depolymerization
Varga et al. found that their experimental data for depolymerization of stabilized
microtubules by Kip3p are consistent with filament depolymerization being determined by
the flux of motors to the end [13]. In this model, a motor would in principle remain bound to
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the filament end forever, unless displaced from the tip by the arrival of another motor. When
unbinding, each motor is assumed to shorten the microtubule by a length δ (where δ could
equal the lattice spacing a if each motor removes exactly one tubulin dimers, but could differ
from a depending on the motor depolymerization processivity). Therefore the

depolymerization speed is w = δJ(L), where  is the flux of motors to
the end of the filament. Note that steric interactions between motors that decrease the flux
are neglected here. The length of the microtubule changes in time according to

(8)

At steady state,  and the motor occupancy is the steady-state value. Therefore u =
δρmaxvp(Lss), and the steady-state length in the flux-controlled model is

(9)

(10)

As above, the approximate solution applies when the second term inside the logarithm is
small. Note that there is no steady-state solution if u/(vδp0ρm) ≥ 1. This implies that the
motor density must be larger than the critical value p0c = u/(vδρmax) for a steady-state length
to occur; this corresponds to a critical bulk motor density cc = koffρmaxu/(kon(vδρmax – u)).
This requires vδρmax > u; in practice, for parameters for the budding-yeast motor Kip3
vδρmax must be a few times u to get steady-state lengths of a few microns.

We show the dependence of the steady-state length on the bulk motor concentration in
figure 2. The results of stochastic simulation of flux-controlled depolymerization agree
quantitatively with the predictions of the mean-field theory for identical parameters (figure
2, details of the simulations are described in section 5). Compared to the density-controlled
depolymerization model, the flux-controlled depolymerization model shows decreased
fluctuations and a relatively narrow length distribution. This may occur because in this
model depolymerization is controlled by the motor flux to end of the filament, which is a
collective property of multiple motors.

The structures of the steady-state solutions are similar in the two models, having the
approximate form (equations (7) and (10)) L ~ u/konc times a factor with units of inverse
length related to how motors are removed from the end. These approximations to L make
clear the strong dependence of the steady-state length on the bulk motor concentration,
implying that length regulation by this mechanism requires tight regulation of the motor
concentration c. In the density-controlled model the motor unbinding rate from the end of
the filament and the difference w – u between the maximum speed of depolymerization and
the filament growth rate are important in controlling the length reached. In the flux-
controlled model the steady-state length takes a simple form, depending primarily on u,
konc, and δ.

In both cases, there is a minimum motor occupancy required to reach a steady-state length,
as expected, because a minimum number of motors is required for depolymerization to
balance polymerization. The steady-state filament length is quite different from the
dimensional length scale λ which characterizes the motor density profile.
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4. Length regulation by altering catastrophe
In cells, microtubule filaments typically don’t grow constantly as in the simple model above,
but instead undergo dynamic instability, characterized by long-lived growing and shrinking
regimes with transitions between these two states. Studies of Kip3p in cells [11] and in vitro
[29] and of other kinesin-8 motors [25, 35], as well as modeling work [37] suggest that in
cells these proteins may act to promote catastrophe (the transition from growing to
shrinking) of dynamic microtubules. Therefore, it is necessary to understand the
consequences of length-dependent changes in filament dynamics (rather than merely
shortening) to predict the effects of these motors in cells.

Here we develop a theory of motors that promote filament catastrophe in a length-dependent
manner. The number probability density n(L) = nG(L)+nS(L) for filaments of length L is
made up of two populations, growing (G) and shrinking (S) filaments. The total number of
filaments is N = ∫n(L) dL. In this model, we neglect pauses (neither growth nor shrinkage)
exhibited by dynamic microtubules in cells. The distributions evolve according to

(11)

The terms in the first equation represent filament growth with speed u, catastrophe with
frequency fc, and rescue with frequency fr. The terms in the second equation represent

filament shortening with speed w, catastrophe, and rescue. At steady state, . The
solution to this equation (consistent with the boundary condition that the number of
filaments drops to zero as L → ∞) is nS = (u/w)nG. Then the steady-state equation for the
total number of filaments n = nG + nS simplifies to

(13)

If the catastrophe and rescue rates are spatially constant, the microtubule length distribution
is exponential, n(L) = n0 exp(–(fc/u – fr/w)L), so the distribution is a bounded exponential if
fc/u > fr/w and has characteristic length uw/(fcw – fru).

In the case of length-dependent rates, we have the formal solution

(14)

Here, we assume that only the catastrophe rate fc(L) varies with length (as observed for the
kinesin-8 motors Klp5/6 in fission yeast cells [25]), and other rates are all constant. Then

(15)

4.1. Density-controlled catastrophe
As above, we assume that the motors move faster than the filament growth, so the motors
track the end and the motor density is at steady state. In the density-controlled catastrophe
model, we assume that the catastrophe frequency increases linearly with the motor
occupancy at the end of the filament:
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(16)

The motor occupancy at the end is determined by equation (4). At steady state, the
occupancy at the end of the growing filament is

(17)

with b = (v – u)p0/a. Using the integral

(18)

the length distribution is

(19)

where  is the maximum possible increase in the
catastrophe frequency in the density-controlled model. We see two effects due to motors:
first, there is an effective increase in the catastrophe rate of Δfden. Second, there is an
additional multiplicative factor in the length distribution. This factor approaches one in the
limit of short filaments (L ⪡ λ) and for typical experimental parameters varies slowly with
L.

Note that in this model the unbinding of the motor from end of the filament is controlled by

the rate constant . This means that a motor can processively track the end of a
depolymerizing filament, and this processivity tends to increase motor concentration at the
end of the filament and therefore enhance the filament-shortening effects of motors.

4.2. Flux-controlled catastrophe
In the flux-controlled catastrophe model, we assume that the catastrophe frequency increases
linearly with the flux of motors to the end:

(20)

The flux to the end of the microtubule is J = p(L)ρmax(v – u). Note that in this model α is
dimensionless and that steric interactions between motors that decrease the flux are
neglected. The length distribution is then

(21)

where Δfflux = α(v – u)ρmaxp0 is the maximum possible increase in the catastrophe
frequency in the flux-controlled model. Again, we see two effects from the length-dependent
catastrophe: there is an effective increase in the catastrophe rate of Δfflux, and there is an
additional multiplicative factor in the length distribution which is an exponential of an
exponential of the length. This factor approaches 1 in the limit of short microtubules (L ⪡
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λ) and approaches the constant factor  as L → ∞; for typical
experimental parameters this factor is of order 1.

We show simulations of filament length as a function of time, calculations of the variation
of catastrophe frequency with filament length and filament length distributions in figure 3.
We chose parameters from experiments on the increase in catastrophe frequency associated
with the kinesin-8 motor Klp5/6 in fission yeast [25], which found a catastrophe frequency
fc = 0.2 min−1 in cells lacking kinesin-8 motors and a length-dependent increase in the
catastrophe frequency up to a maximum of 0.5 min−1 for filaments 8 μm long in cells
containing motors. With the correct choice of parameters, the length-dependent increase in
catastrophe frequency due to motors is qualitatively similar to that measured by Tischer et
al. [25].

The results of stochastic simulation are shown for comparison with mean-field theory. For
density-controlled catastrophe, there is excellent agreement between stochastic simulation

results and mean-field theory if the parameters  and α are slightly modified. The flux-
controlled catastrophe model predictions of the dependence of catastrophe frequency on
filament length show only rough qualitative agreement with mean-field theory; the shapes of
the curves are quite different. Even this level of agreement requires modification of the
parameters kon and α.

4.3. Mean filament length
The length-dependent catastrophe induced by motors changes the microtubule length
distribution in two ways: the effective catastrophe frequency increases, and the length
distribution is multiplied by an additional function. When the additional change in the
functional form due to this multiplication can be neglected, including only the effective
increase in the catastrophe frequency gives a simple result for the change in mean filament
length. The approximate length distribution is

(22)

We define , the mean filament length in the absence of motors, and the

mean length including motor effects is . The mean length is

(23)

The fractional change in the mean length is

(24)

This expression is an approximation that typically overestimates the change in filament
length due to motors, but has the advantage that it has a simple analytical form that can be
used to understand which parameters control the mean length. The mean filament length is
related to the maximum increase in catastrophe frequency that can be achieved by the

motors. In the density-controlled model , and in the
flux-controlled model Δfflux = α(v – u)ρmaxp0.
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The change in the mean filament length varies with the bulk motor concentration (through
the occupancy p0), the difference between the filament growth speed and the motor walking
speed, and the motor unbinding rate from the filament end in the density-controlled model
(figure 4). This suggests that in cells length regulation could be tuned by altering motor
concentration, motor/filament velocity, or motor off rate at the end of the filament in the
density-controlled model. For typical experimental parameters, the fractional change in
mean filament length varies from 0.1 to 0.9 with changes in these parameters. While
changes in bulk motor concentration can alter the mean filament length, relatively large
changes in the concentration (over two orders of magnitude) lead to only modest changes in
mean filament length. We find that in comparison to stochastic simulation the approximate
expressions calculated above tend to overstate the changes in mean filament length
achievable through bulk motor density changes. Particularly for the flux-controlled model,
mean filament length is more sensitive to alterations in motor speed. Varying motor speed
over a factor of 4 allows approximately factor of 10 change in the mean filament length.
Comparison to stochastic simulations shows that mean filament length changes due to
variation in motor speed are accurately captured by the approximate model.

In the density-controlled model, the rate constant  controls the residence time of a motor
at the end of a filament. In the limit that this rate becomes large compared to other rates in
the problem, the motors rapidly unbind upon reaching the filament end and the changes in
filament length due to motors become smaller.

The increase in catastrophe due to motors can shift the filament length distribution from the
unbounded growth regime to the bounded growth regime. If fr/w > fc/u, the filament
dynamics are in the unbounded growth regime, with no defined mean filament length. If the
increase in catastrophe due to motors Δf is large enough, the presence of motors can shift
the distribution back to the bounded growth regime characterized by an exponential length
distribution and a well-defined mean filament length. This requires that Δf > fru/w – fc. This
relationship implies a minimum motor concentration to shift from unbounded to bounded
growth.

5. Stochastic simulation
We developed a kinetic Monte Carlo simulation of the model as shown in figure 1. The
model considers a single filament (equivalent to representing a microtubule by a single
protofilament) made up of a varying number of monomers. Each motor occupies a single
filament monomer. Typical time scales of motor and filament processes are of order seconds
to minutes, so we chose a simulation time step of 0.01 s. At each time step a number of
monomers equal to the total number of monomers currently in the the filament is randomly
sampled and one step of the polymerization dynamics at the end of the filament is
performed. Each site on the filament except the last site has the same rules: a motor can bind
to an empty site, if the next site forward is empty a motor can step forward, and a motor can
unbind to create an empty site.

The behavior of the last site (the end of the filament) varies depending on the model
considered. In the model of length regulation by depolymerization (figure 1A), the filament
can grow by addition of a monomer. Growth is independent of motor occupancy at the last
site. The filament can shrink by one monomer depending on the motor occupancy at the end
of the filament. In the density-controlled depolymerization model, removal of the terminal
monomer can occur if the terminal site is occupied by a motor. In this model the motor can
processively track the depolymerizing filament: if the penultimate site is empty, the motor at
the last site steps backward when the terminal monomer is removed. If the second-to-last
site is occupied, the motor on the terminal site is removed when the terminal monomer is
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removed. The motor at the terminal site can also directly unbind from the filament without
removal of a monomer. In the flux-controlled depolymerization model, removal of the
terminal monomer occurs when the last and penultimate sites are both occupied by motors
and the motor at the penultimate site attempts a forward step. In this case the terminal motor
and monomer are both removed.

In the model of length regulation by catastrophe (figure 1B), the filament stochastically
switches between growing and shrinking states. Speeds of growth and shrinkage as well as
the rescue frequency are independent of motor occupancy at the last site. The catastrophe
frequency is increased depending on the motor occupancy at the end of the filament. In the
density-controlled catastrophe model, the catastrophe frequency is increased by α if the
terminal site is occupied by a motor. In this model the motor can processively track the
depolymerizing filament: if the filament is shortening and the penultimate site is empty, the
motor at the last site steps backward when the terminal monomer is removed. If the second-
to-last site is occupied, the motor on the terminal site is removed when the terminal
monomer is removed. The motor at the terminal site can also directly unbind from the
filament without removal of a monomer. In the flux-controlled catastrophe model, the
increase in the catastrophe frequency by α occurs when the last and penultimate sites are
both occupied by motors and the motor at the penultimate site attempts a forward step. In
this case the terminal motor is removed independent of whether or not a catastrophe occurs.

In all versions of the model, if the filament fully depolymerizes (0 sites remain) a new
filament is nucleated containing 1 site. For each parameter set we performed 5-10
simulations of 106 – 108 time steps.

6. Conclusion
We have considered an example of biophysical length regulation by motors that walk along
a filament and promote filament shortening, inspired by experiments on the effects of
kinesin-8 motor proteins on microtubule dynamics. The motors bind to microtubules and
move toward their plus ends, and the presence of motors at the filament end alters
microtubule polymerization dynamics.

The first mechanism we considered is a simplified model of length regulation, in which the
motors directly catalyze depolymerization of the filament from its plus end. When the action
of the motors is balanced by a constant filament polymerization rate, a steady-state filament
length can be reached. This mechanism neglects any fluctuating filament dynamics: only a
single steady-state length is reached. In the stochastic simulation, fluctuations due to
stochastic motor/filament dynamics lead to a spread about the mean length but the
distribution of filament lengths remains strongly peaked. There is a minimum bulk motor
concentration on the filament to reach a steady-state length, because if there are too few
motors, motor-induced depolymerization can never be fast enough to balance the intrinsic
polymerization. In addition, inequalities involving the motor motion constrain the parameter
regime where steady-state solutions are possible. The steady-state filament length differs
from the length scale λ which characterizes the motor density profile. The steady-state
filament length depends sensitively on the bulk motor concentration, implying that this
mechanism of length regulation requires tight control of total motor number to operate
successfully.

Other recent theory work has addressed length regulation due to depolymerizing motors and
filament kinetics described by constant growth [39, 41] or treadmilling [40]. Govindan et al.
considered a similar model for motor motion, but used an absorbing boundary condition for
motors at the filament plus end, an approximation that doesn’t apply to filaments with
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biologically realistic growth and shrinkage rates. Their work found an exponential filament
length distribution for typical parameter values corresponding to Kip3 [39]. Melbinger et al.
improved the model of Govindan et al. by studying in detail how effects of motor crowding
near the microtubule end control the depolymerization dynamics. They discovered a
parameter regime in which filament length is well regulated, and how the length depends on
motor kinetics [41]. Johann et al. considered the related problem of how length regulation
can be achieved by depolymerizing motors on filaments that undergo treadmilling dynamics
(addition of subunits at one end and removal at the other) [40].

In the model of length regulation by depolymerization we have discussed, constant growth is
balanced by length-dependent depolymerization. In the balance-point model of flagellar
length regulation in Chlamydomonas, a constant rate of flagellar disassembly is balanced by
a length-dependent rate of flagellar assembly, leading to a fixed flagellar length [10, 45].
While the underlying microscopic mechanisms of flagellar length regulation differ from
those discussed here, the conceptual similarity is striking. Perhaps this basic idea of
regulating length by making assembly or disassembly length-dependent while the other
process (disassembly or assembly) is length independent could be a general paradigm for
length regulation, at least of microtubule-based structures.

A more biologically relevant model for the length regulation of dynamic microtubules is
length regulation by altering catastrophe, in which the filament undergoes dynamic
instability characterized by long-lived growing and shrinking states with transitions between
growth and shrinkage. The effect of the motors at the end is then not to directly
depolymerize the filament but to increase the catastrophe frequency. We calculate how the
filament length distribution is altered by the motor-dependent increase in catastrophe
frequency, and derive a simple approximate expression that relates the mean filament length
to the maximum increase in catastrophe frequency that can be achieved by the motors. The
mean filament length varies modestly with bulk motor concentration but is sensitive to the
difference between the filament growth speed and the motor walking speed.

The increase in catastrophe frequency associated with the kinesin-8 motor Klp5/6 in fission
yeast cells was measured by Tischer et al. [25], who found a catastrophe frequency fc = 0.2
min−1 in cells lacking Klp5/6 and a length-dependent increase in the catastrophe frequency
up to a maximum of 0.5 min−1 for filaments 8 μm long in cells containing motors. With the
correct choice of parameters, our model displays a length-dependent increase in catastrophe
frequency due to motors which is qualitatively similar to that measured by Tischer et al.
Using these parameters in our model, changes in the mean length of a factor of 2 can be
achieved by this mechanism.
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Figure 1.
Schematic of the model. (A) Model of length regulation by depolymerization. Filament
growth at the plus end is balanced by motor-induced depolymerization. Motors bind to and
unbind from the filament, move toward the filament plus end, and catalyze removal of
filament subunits from the plus end. This leads to a length-dependent depolymerization rate,
so a single filament length is favored, depending on the model parameters. (B) Model of
length regulation by altering catastrophe. The filament undergoes dynamic instability at its
plus end, characterized by stochastic transitions between growing (blue) and shrinking
(green) states. Motors bind to and unbind from the filament, move toward the filament plus
end, and catalyze catastrophe (transition from the growing to the shrinking state) at the
filament plus end. Motor effects make the catastrophe frequency length dependent, which
leads to a broad distribution of filament lengths determined by the properties of the motors.
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Figure 2.
Filament dynamics and steady-state filament length for length regulation by
depolymerization. Blue (top), density-controlled depolymerization; red (bottom), flux-
controlled depolymerization. Left, example trace of filament length versus time in the
stochastic simulation for c = 10 nM. Middle, normalized filament length distribution in the
stochastic simulation for c = 10 nM, averaged from 10 stochastic simulations after removal
of the initial transient. Right, steady-state filament length predictions of mean-field theory
and the stochastic simulation (error bars are standard deviations of steady-state length
distributions). The steady-state length varies rapidly with the bulk motor concentration. The
two models give similar predictions, and the approximate expressions (eqns 7 and 10) for
the steady-state length are within a factor of two of the exact expressions (eqns 6 and 9)
except for very low bulk motor concentrations. The mean-field theory uses the parameters v

= 3 μm min−1, kon = 2 nM−1μm−1 min−1, koff = 0.25 min−1,  min−1, w = 1.025 μm
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min−1, a = 8 nm, δ = 8 nm, and ρmax = 125 μm−1; for the density-controlled model u = 1.0
μm min−1 while for the flux-controlled model u = 0.5 μm min−1. The stochastic simulation

uses the same parameters except w = 1.5 μm min−1 and  min−1 off for the density-
controlled model.
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Figure 3.
Dynamics of length regulation by altering catastrophe. Top, density-controlled model.
Bottom, flux-controlled model. Left, example trace of filament length versus time in the
stochastic simulation. Middle, catastrophe frequency as a function of filament length,
comparing mean-field theory (line) and stochastic simulation (points). Right, length
distribution of dynamic filaments for the model with and without motors, comparing mean-
field theory and stochastic simulation. The presence of the motors leads to a significant
decrease in the mean filament length. This figure uses the parameters v = 3 μm min−1, u = 1
μm min−1, w = 7 μm min−1, minimum catastrophe frequency fc = 0.2 min−1, rescue
frequency fr = 0.05 min−1, a = 8 nm, and ρmax = 125 μm−1. For the density-controlled model

the parameters are kon = 1 nM−1μm−1 min−1, koff = 0.25 min−1,  min−1, bulk motor
concentration c = 2 nM, and α = 0.35 min−1. The simulation of the density-controlled model

has the same parameters except  min−1 and α = 0.38 min−1. For the flux-controlled
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model the parameters are kon = 3 nM−1μm−1 min−1, koff = 0.25 min−1, bulk motor
concentration c = 4 nM, and α = 7 × 10−3. The simulation of the flux-controlled model has
the same parameters as the corresponding mean-field theory except kon = 1.5 nM−1μm−1

min−1 and α = 2 × 10−3.
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Figure 4.
Mean filament length and changes in filament length as a function of motor parameters.
Left, variation as a function of bulk motor concentration. Center, variation as a function of

motor speed. Right, variation as a function of  in the density-controlled model. This
figure uses the same parameters as figure 3 except where noted in varying the bulk motor
concentration and motor speed: v = 3 μm min−1, u = 1 μm min−1, w = 7 μm min−1,
minimum catastrophe frequency fc = 0.2 min−1, rescue frequency fr = 0.05 min−1, a = 8 nm,
and ρmax = 125 μm−1. For the density-controlled model the parameters are kon = 1 nM−1

μm−1 min−1, koff = 0.25 min−1,  min−1, bulk motor concentration c = 2 nM, and α =
0.35 min−1. The simulation of the density-controlled model has the same parameters except

 min−1 and α = 0.38 min−1. For the flux-controlled mean-field model the parameters
are the same as for the density-controlled mean-field model except kon = 3 nM−1μm−1
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min−1 and α = 7 × 10−3. The simulation of the flux-controlled model has the same
parameters as the corresponding mean-field theory except kon = 1.5 nM−1μm−1 min−1 and α
= 2 × 10−3.
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