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Summary

Linearity, sometimes jointly with constant variance, is routinely assumed in the context of
sufficient dimension reduction. It is well understood that, when these conditions do not hold,
blindly using them may lead to inconsistency in estimating the central subspace and the central
mean subspace. Surprisingly, we discover that even if these conditions do hold, using them will
bring efficiency loss. This paradoxical phenomenon is illustrated through sliced inverse regression
and principal Hessian directions. The efficiency loss also applies to other dimension reduction
procedures. We explain this empirical discovery by theoretical investigation.
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1. Introduction

In the sufficient dimension reduction literature, two essential conditions are linearity and
constant variance. Denote X'the p-dimensional random covariate vector, and let the
dimension reduction subspace be the column space of a full rank p x dmatrix 8. The
linearity condition assumes £(.X| BT.X) = PX, where P=YB(B"Y /)L B is a px p matrix
and ¥ = cov(X). The constant variance condition assumes cov (X| 8'.X) = Q, where Q=Y —
Py PT. These two conditions have played a central role throughout the development of the
sufficient dimension reduction literature. For example, the linearity condition, sometimes
jointly with the constant variance condition, permitted the establishment of sliced inverse
regression (Li, 1991), sliced average variance estimation (Cook and Weisberg, 1991),
directional regression (Li and Wang, 2007), discretization-expectation estimation (Zhu, et al,
2010b), cumulative slicing estimation (Zhu, et al, 2010a), ordinary least squares (Li and
Duan, 1989), and principal Hessian directions (Li, 1992; Cook and Li, 2002), etc. It is no
exaggeration to call linearity and constant variance the fundamental conditions of dimension
reduction.

It is a different story regarding the validity of the linearity and constant variance conditions
and how to verify them in practice. Hall and Li (1993) showed that the linearity condition
would hold in an asymptotic sense when p goes to infinity. Yet whether the asymptotically
true result suffices for a finite dimensional problem remains unclear. This has prompted
researchers to relax these conditions. For example, Li and Dong (2009) and Dong and Li
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(2010) replaced the linearity condition by a polynomial condition. Ma and Zhu (2012)
completely eliminated both conditions.

Following the relaxation of the linearity and constant variance conditions, a natural question
arises: What do we lose by ignoring these conditions when they hold? It is natural to
conjecture that this will cause estimation variance inflation. However, our discovery is
exactly the opposite.

We illustrate this paradoxical phenomenon empirically. Consider

Model1:Y =g7X/ o.5+(5§x+1.5)2} e,
Model IT:¥  =(87x)"+(87X) '+,

where 8, =107Y2(1,1,1,1,1,1,1,1,1, )7, o =1012(1,-1,1,-1,1,-1,1,-1, 1,-1)T and
e is a standard normal random variable. Thus, p=10, d=2 and g = (B, B) in these models.
We generate X from a multivariate standard normal distribution. Thus both the linearity and
the constant variance conditions hold. For Model I, we implement classical sliced inverse
regression and its semi-parametric counterpart where the linearity condition is not used. For
Model 11, we compare classical principal Hessian directions and its semi-parametric
counterpart where neither condition is used. Here, the sliced inverse regression and principal
Hessian directions are identical to their semi-parametric counterparts, except that the sliced
inverse regression and principal Hessian directions utilize the linearity and the constant
variance conditions to obtain £.X| A'.X) and cov(X| B'.X), while their semi-parametric
counterparts estimate £(X| A".X) and cov(X| B7.X) nonparametrically. See Ma and Zhu
(2012) for details on these semi-parametric estimators. We generate 1000 data sets each of
size n= 200, and summarize the results in Figure 1. To make a fair comparison, we estimate
the kernel matrix of the classical sliced inverse regression by using kernel smoothing rather
than the usual slicing estimation. This allows us to avoid selecting the number of slices,
which usually adversely affects the performance. Thus, sliced inverse regression is
implemented in its improved form.

Figure 1(a) contains the box plots of the four estimation procedure results, measured by a
distance between the estimated and the true dimension reduction subspaces. This distance is

—_ -1
defined as the Frobenius norm of 5 _ p, where Pis as defined before, P:Zﬂ(ﬁrzﬁ) B" and

B= (,él,ﬁz) is obtained from the aforementioned estimation procedures. This distance
criterion is widely used to evaluate the performance of different estimation procedures, with
a smaller distance indicating better estimation of the dimension reduction subspace. Figure
1(a) shows clearly that the semi-parametric counterparts outperform their classical versions.
Thus, not taking advantage of the linearity condition or the constant variance condition,
although both are satisfied, seems to bring a gain in estimating the dimension reduction
subspaces.

Figure 1(b) contains the box plots of the same results measured by the trace correlation,

defined as trace (Pa /d. A larger value of this criterion indicates better performance. Figure
1(b) demonstrates again that the semi-parametric counterparts outperform their classical
versions respectively, once again indicating that not taking advantage of the linearity or the
constant variance condition, even though both hold, brings a gain.

Finally, Figure 1(c) shows the results by yet another popular criterion, the canonical
correlation, defined as the average of canonical correlation coefficients between 5Tx and
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B" X Under this measure, larger values indicate better estimation results, and the conclusion
from Figure 1(c) is consistent with those from Figure 1(a) and Figure 1(b).

Having observed these unexpected results, our goal here is to demonstrate that the
improvement is not merely a sporadic phenomenon. This improvement is theoretically
verifiable. Because it is already well understood that using the linearity and the constant
variance conditions when they do not hold causes bias, here we consider exclusively the
case when the covariate vector satisfies the linearity condition and, if required, the constant
variance condition. This means that the aforementioned original methods, such as sliced
inverse regression and principal Hessian directions, are valid and will provide consistent
estimation. Although this is the classical setting of the dimension reduction literature and
seems well understood, we will formally establish that if we ignore the linearity and the
constant variance conditions, and instead, estimate the conditional expectation £.X| A'.X) or
more generally £{a(X) | 7 X} nonparametrically, then the performance of sufficient
dimension reduction methods will improve. The improvement is in the asymptotic variance
of the estimated dimension reduction subspace, in that not using the linearity or the constant
variance condition will yield a more efficient estimator than using them, even when these
conditions are indeed true.

2. Some Preliminaries

We first lay out the central subspace and the central mean subspace models and some
notation we use throughout. Let Y'be a univariate response variable and X and g be defined
as in Section 1. Throughout this paper we assume that X satisfies both the linearity and the
constant variance conditions. Using an invariance property (Cook, 1998, page 106), we
assume without loss of generality that £(.X) = 0 and cov(X) = /, The essence of the
sufficient dimension reduction literature is to assume that Y depends on X only through a
few linear combinations AT.X; then to identify the space spanned by the columns of 8. There
are mainly two types of links between Yand X'that are commonly studied, one is the
conditional distribution, and the other is the conditional mean function. Specifically, in the
first model type (Li, 1991; Cook, 1998), one assumes that

FOIX)=F(y8"X), yeR, (

where F(y| X) = pr(Y'< y| X) denotes the conditional distribution function of Y given X
The smallest column space of g satisfying (1) is called the central subspace, Sy |X. In the
second model type (Cook and Li, 2002), one assumes that the conditional mean function
satisfies

EXX)=E(Y8'X). @

The corresponding smallest column space of Sis called the central mean subspace Sgyx)-
Estimating Sy;xand Sg yx) is the main purpose of sufficient dimension reduction. In the
following development, we focus on the classical sliced inverse regression and principal
Hessian directions methods as representative estimators for Sy xand Sg yx) respectively,
although the conclusion applies to other sufficient dimension reduction method as well.

To further ensure that the identifiability of Sy xor Sg yx) implies the identifiability of 3,
we require the upper @x dsub-matrix of Sto be the identity matrix. Through this
parameterization, estimating Sy x or Sg y1x) is equivalent to estimating the lower (0 —d) x d
sub-matrix in 8. This sub-matrix contains all the unknown parameters involved in the
estimation of Sy x or Sg y;x) and uniquely defines the corresponding space Sy;x 0r Sg y|x)-
The particular parameterization is simple and enables us to study the properties of the space
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estimation through studying the properties in estimating the parameters in g. Other
parameterizations can also be used.

We further introduce two matrix operators. We use vecl(f) to denote the length (v — a)d
vector formed by the concatenation of the columns in the lower (p — @) x dsub-matrix of g,
and use vec(M) to denote the concatenation of the columns of an arbitrary matrix M.

3. Theoretical Explanation of the Paradoxical Phenomenon

Following Ma and Zhu (2012), to identify Syjxin model (1), the sliced inverse regression
solves for the parameters contained in S from an estimating equation based on the relation

E[Ex (X" - E(x"B"X)}]=0. ()
When the linearity condition holds, (3) simplifies to

QE {E (X|Y) X"} =Qcov {E (X|Y)} =0,

where Q= l,~ P=I,— B (B"B) B". Consequently, solving (3) is equivalent to calculating
the eigen-space of the matrix cov{£(.X| Y)} associated with its &nonzero eigenvalues.

Similarly, to identify in Sgyx) in model (2), the principle Hessian directions method solves
for the parameters contained in S from an estimating equation based on the relation

E[(y-EW) {xx" - E(xx""X)}| =0. ()
When both the linearity and the constant variance conditions hold, (4) simplifies to

E[{y - EW)XX"|=PE[{Y - E(Y)} xX"| P.

Thus, solving (4) is equivalent to computing the eigen-space of the matrix £[{ Y- A Y)}
XXT] associated with its @nonzero eigenvalues.

To simultaneously consider both the sliced inverse regression in (3) and the principal
Hessian directions in (4), we consider a unified form

Elg M {a %) - E(aB"X)}]=0. @)

where g* is a fixed function of Y'that satisfies £(g* | X) = E(g* | 87 X), and &* is a fixed
function of X. Clearly (5) contains both sliced inverse regression and principal Hessian
directions as special cases, by choosing g* = £(X| ¥) and @* = X7 to yield (3) or g* = Y-
E(Y) and @ = XXT to yield (4). Denote the observations by (X Y)(/= 1,...,7). To facilitate
our subsequent inference procedure, we further perform the following operations. We first
vectorize the sample version of (5), then we perform a generalized method of moment
treatment to reduce the number of estimating equations to (p— d)d, then finally we simplify
these estimation equations to obtain

n_ g
22181 fa; ) - E(alg™)] =0.

i=1 j=1
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where g{Y) is a scalar or column vector that satisfies £g;| X) = £gj] B'X), and ajis arow
vector, for j=1,...,g. A more detailed description of how to obtain (6) from (5) is given in
the Appendix. We also assume (6) has a unique solution when 7 — oco. We remark here that
(6) is equivalent to (5) when n— oo, hence we can view (6) as a compact expression of the
sample version of (5).

We now study the asymptotic properties of the estimating equation (6), both when the £(a;|
B" X)s are known and when they are estimated nonparametrically. The analysis of (6) for g>
1 can be readily obtained after we study (6) for g =1, so in the sequel, whenever
appropriate, we shall focus on the case g=1 in (6) and ignore the subscript /.

When we decide to give up using any properties of the covariate X such as linearity or
constant variance, we need to estimate £(a| B7.X) nonparametrically. For example, we can
estimate £(a| B"X) through

E (alg™%) =) "Ki (8"X: = BTX) a (X / ) Ki (B X: — BX).

i=1 i=1

Here K(-) = K(-/h)lhis a kernel function and /s a bandwidth which can be estimated by

leave-one-out cross-validation. Replacing £(a| A7.X) in (6) with E(a IBTX), we obtain an
estimator 3 by solving the equation

ig (¥) {a () - E (alB™:)} =0. (7)
i=1

Cross-validation is one possible way of selecting 4, and its validity in the nonparametric
context can be found in Hérdle, et al (1988). In the semiparametric context, the final
estimate is insensitive to the bandwidth choice. This is reflected in the condition (C4), where
a range of bandwidths is allowed, all of which will yield the same first order asymptotic
property of the estimation on . In terms of finite sample performance, bandwidth has also
been observed to have low impact, see for example Maity et al (2007). Theorem 1 states the

asymptotic properties of 3.

Under the regularity conditions given in the Appendix, g satisfies
—n!/2Avecl (E—B)
n 8
= w12 Svee [ {g (1) - E (870} a (%)~ E (ag™,)|| 0, (1) ®
where

. [avec [{e ) - E(g18™%)Ha 00 - E (alg™X)}]
dvecl(B)T '

1/2 ) -1 -1\T . .. .
Hence, when 7 = o7 "vecl (B-p)— {O’A Bi(a”") } in distribution, where
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By=cov (vee|{g (¥) — E (gI8"X)} {a (X) — E (al8”X)}]).

Remark 1—We consider only the situation where g* and hence g are fixed functions. In
practice, sometimes g* and hence g are estimated, thus more careful notation is g*and g.
However, as long as the estimated function g converges to g at a proper rate (Mack and

Silverman, 1982), the first order result in Theorem 1 stays unchanged if we replace g with

g .

Alternatively, & | f7X) may have a known form, say A& | B7.X) = /(8" X, B), where
f7(°) is a known function. This will further yield a known form for &4 | BT X) in (6), which
we denote hj(,BTX, p) (G=1,..., g). For example, under the linearity condition, for &(X) =
X, (B X, B) = PX = BT(B" B)~1(B" X); under both the linearity and the constant variance
conditions, for #(X) = XXT, /#(B'X, B) = O+ PXXTP= I,— BB A1A" + BB B BT X)
(B"X)T(BT B)~1B. This allows us to solve a simplified version of (6). For g = 1 and ignoring
the subscript /, we only need to solve

ig ¥ {aX) - h (X, B)} =0 (9)
i=1

to obtain an estimator 3. The asymptotic properties of 3 are given in Theorem 2.

Assume h is differentiable with respect to B, then j satisfies

—n'?Avecl (B —ﬁ) =n_l/zznlvec [g (Y) {a X)-E (a TX[)}] +o, (1), (10)
i=1
where A Is given in Theorem 1. Hence, when n— oo,
n'vecl ('é _B) =N {O’A_IBZ(A_I)T} in distribution, where

Bs=cov (Vec [g 09 {a X)-E (a TX)}]) .

A direct comparison between B; and B, reveals the difference between g from solving (7)
and g from solving (9), as stated in Proposition 1.

Proposition 1

Under the condiitions in Theorems 1 and 2, n [COV {Vecl (B)} —cov {Vecl (,E)}] is positive
definite when n— o,

Combining the results in Theorems 1, 2 and Proposition 1, we are now ready to state the
main results in Theorem 3. Its proof combines that of Theorems 1, 2 and Proposition 1, and
is omitted to avoid redundancy.

Biometrika. Author manuscript; available in PMC 2013 June 19.
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Let gand E solve (6) with E(a; | BTX) replaced by hj(BTX, B) and by its nonparametric
kernel estimator E(“j IIJ’TX) respectively. Under the regularity conditions given in the

Appendix, 7 [COV {Vecl (B)} —cov {Vecl (E)}] is positive definite when n — oo,

We emphasize that 3 and 5 solve the same estimating equation (6), except that 3 takes

advantage of the known forms of £{(a;| BT X) while 5 does not. They are estimators of the
same parameter B. Therefore, Theorem 3 states the interesting result that by giving up using
the linearity and constant variance conditions, we enjoy a decreased estimation variance.

In estimating the central subspace Sy x, any function of Y'is a qualified g* function, because
Hg* | X) = Eg* | B"X) by the model assumption (1). Specifically, choose g*(Y) = £ X|
), &(X) = X', and /(8" X, 8 = BT (B"A (BT X). After vectorizing and using a
generalized method of moments to reduce the number of estimating equations, the over-

identified estimating equation Zi:lg* Y {a X)) - E (a*I,BTXi)} =0 reduces to (6). Theorem
3 then directly shows that giving up using the /; functions, hence giving up the linearity
condition, will reduce the variance of sliced inverse regression. In estimating the central
mean subspace Sg y;x) defined in (2), Y- cis the only qualified g* function, where cis an
arbitrary constant. Specifically, choose g*(¥) = Y= &(Y), &(X) = XXT, (BT X,8) = /,-
BB BB + BBTA LB X)(B"X)T(B' B)~1B. Vectorizing the estimating equations and
using the generalized method of moments to reduce the number of estimating equations will
again yield an estimating equation of the form (6). Theorem 3 shows that giving up the
linearity and constant variance conditions will reduce the variance of principal Hessian
directions.

Ma and Zhu (2012) studied many other forms of the sufficient dimension reduction
estimators that use the linearity and constant variance conditions. Those estimators can all
be written in the form (6). Following Theorem 3, these estimators suffer the same efficiency
loss as sliced inverse regression and principal Hessian directions, in that their estimation
variance can be decreased by nonparametric estimation of £(a;| ' X). Since we work in the
semiparametric framework, our analysis does not apply when Y'is categorical and Xis
multivariate normal given Y. Under these two conditions, the model is parametric and the
sliced inverse regression is the maximum likelihood estimator and cannot be further
improved.

To keep the vital information simple and clear, we have presented the inverse regression
methods in their idealistic forms, where the knowledge £(X) = 0 and cov(X) = /is directly
incorporated into estimation. In practice, one might need to replace £(.X) with ¥ and cov(X)
with cov (X), and proceed with the estimation. Denote the resulting estimator 3. However,
the estimation of £(.X) and cov(.X) does not recover the efficiency loss caused by using the

linearity and constant variance conditions. In other words, 7 [COV {Vecl (B)} —cov {Vecl (E)}] is
still a positive definite matrix. We omit the proof because it is very similar to the proofs of
Theorems 1, 2, Proposition 1 and Theorem 3.

4. Discussion

The surprising discovery that the linearity and constant variance conditions cause efficiency
loss reminds us of the situation widely experienced in using inverse probability weighting

idea to handle missing covariates. There it is well known that using the true weights yields a
less efficient estimator than using the estimated weights. Such a phenomenon has been well
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studied in Henmi and Eguchi (2004), and a nice geometrical explanation was provided there.
However, our problem shows several important differences. First, the efficiency
improvement in the inverse probability weighting scheme can be obtained through any valid
parametric estimation of the weights, while the efficiency improvement is not guaranteed
when we view the linearity condition as a truth, and replace it with an arbitrary valid
parametric estimation. This makes the geometric explanation in Henmi and Eguchi (2004)
invalid in our context. Second, our efficiency gain is achieved through replacing the linearity
condition with a nonparametric estimation, while only parametric estimation is considered in
Henmi and Eguchi (2004).

Finally, having focused on the drawback of using the linearity and the constant variance
conditions when they do hold, we acknowledge that using these conditions does ease the
computation. When these conditions hold, a nonparametric estimation procedure can be
avoided, which results in less programming effort and fast computation. However,
nonparametric estimation is more or less routine in modern statistics, while the linearity and
constant variance conditions remain uncheckable. As estimation is the eventual goal and this
is better achieved without using the linearity or constant variance conditions, whether or not
they hold, one would expect that giving up computational convenience for better statistical
results can be sensible.

Appendix 1:
A.l. Obtaining (6) from (5)

We first vectorize the estimating function in (6) to obtain

g (V) [a; X) - Efa; (X) 187X
f(Y’ X’ﬁTX) = : . (AD)
g (N [a; X) - E{a; %) 187x}]

Here we assume a* contains /columns, denoted a7, ..., a;. Assume g* (Y) aj (X) contains /
rows. We then perform the generalized method of moments step to obtain

! 1
Dy (Y.X.A"X)=) Djg" (V)[4 (X) ~ E {a; (X)18"X}] = > g, () [ 4 (X) - E{a; () B"x]]
=1 Jj=1

J

where

ovecl (B)

{6fT (r.X.5"X) }
D=(Dy,....D)=E{——=D"

has (p— d)drows and Djis a (p— @)ax I matrix, j=1,...,/ Here D* is an arbitrary positive-
definite /7 x // matrix, with the optimal choice being O* = £(ff')71, and g(YV) = Djg“(V). In

(A1) aj (X) is either a scalar, such as in sliced inverse regression, or a column vector, such
as in principal Hessian directions. When the a; (X) s are column vectors, we further expand

the matrix multiplication g () [} (X) - E {a () 18"X}] (j=1,.... D) so that eventually, after
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simplification through combining terms that are redundant, each summand contains a scalar
function a and a scalar or column vector g{ ¥). We use gto denote the total number of
summands By now the form of DA Y, XB" X) is almost the desired form in (6), except that if
several different a; (X) — E {a,- X8 X} are multiplied by the same g{ ¥) functions, we can

write them more concisely by forming a row vector of the corresponding aj-’s and this is
what we name &;in (6). For example, writing X'= (Xl,...,Xp)T, for sliced inverse regression,
we have

p
Df (Y, X,8"X)=>"D,E(XIV) {X; - E (X,16"X)},

J=1

hence g= p, g{Y) = D;E(X| Y), which is a column vector, and a{.X) = X, which is a scalar,
in (6). For principal Hessian directions, we have

™M~

Df(Y.X.A'X) =Y (Y- EV)}D;{(XxX; - E(XX,/87X)}

Il
—_

d (A2)

M"c

1il{y E (V)} Dy {XiX; - E (XeX;18°X)}
J=

where Djhas dimension (p— d)d* p, and Dji stands for the Ath column of D We rewrite
(A.2) into a matrix form as

p
DY —EX™D. X - E(XTD X6 X)) (az)
k=1

where D. isa px (p— d)dmatrix with jth row Dj i (k=1,.... p). Using (A.3) to form (6), we
hence have g=p, g{¥) = Y- E(Y), a scalar, and a{(X) = ’'d D. jXj, a row vector, in (6).

A.2. List of regularity conditions

(C1) The univariate kernel function K{(:) is symmetric, has compact support and is Lipschitz
continuous on its support. It satisfies

[K @) du=1, [u'K () du=0(i=1,...,m—1), 0 # [lul"K (u) du<oo.

Thus K'is a m-th order kernel. The g~dimensional kernel function is a product of ¢ univariate

a_TT¢ d d
kernel functions, that is, K (W) =K (u/h) /h =1—L~=1Kh (”J) =1_L-:1K(“f/h) Th" for u= (u,
., Up)T. Here we abuse notation and use the same K regardless of the dimension of its
argument.

(C2) The probability density function of BT.X, denoted by AB".X), is bounded away from
zero and infinity.

(C3) Let (BT X) = E{a(X) | BT X}AB" X). The (m - 1)-th derivatives of /(B".X) and 8" X)

are locally Lipschitz-continuous as functions of ATX.

(C4) The bandwidth #= O( %) for (2m)~ < x < (2a)~L. This implies m> d.

Biometrika. Author manuscript; available in PMC 2013 June 19.
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A.3. Technical details
Let /(8"Xi)=(n - l)_lzﬁth (X8 - X7B) and
?(ﬁTXf) =(n—17" Z]‘#’Kh (XJT'B - XiTﬁ) a (Xj). Write ;=87 X;, n=" X, 7:=B" X

Lemma Al
Assume E (e | ) = 0. Under Conditions (C1)-(C3), we have

%Zn:s,- {E (aln:) - E (@ n)} =0, {W" [n'2+1?" +10g?n/ (nii)}
i=1

Proof of Lemma Al—Recall that 7 (7)) =E (a|n) f (n) from condition (C3), and
7)) =E (a|n) (7). We write

13 ei(Ein) - E@in) =}

l

{WTI;)—r(n,-)} 1l ra)| Fn)—F o)

i) n e 20

() -rm{ Fn-r ) (A4)
F@f)

[r(rn){ﬁm-)—f(n.-)f ]
Ei|l—m—————1|.
1

i

12 f )

By the uniform convergence of nonparametric regression (Mack and Silverman, 1982), the

third and the fourth summations are order O {h2m+10g2n/ (nhd)}. The first two summations
in the right hand side of (A.4) have similar structures, thus we explain in detail only the first

one. We write 7™ Zi: 7 () &/ f (1) as a second-order U-statistic:

j 1
Z;((?h K Py l)th (= n)) {&'a (X)) /f ) +eja (X)) /£ (77]')} .
i#]

By using Lemma 5.2.1.A of Serfling (1980, page 183), it follows that

Z () IZ": IE{Kh(TIi_Uj)E(a“U) |T”‘}:Op{l/(nhd/z)}’

T n&” £ )

(A5)

because the difference on the left hand side is a degenerate U-statistic. Next we show that

K 7]1— alnj) 1nip—r(m)
ZZ : )fﬁm) i =0, (™'PH"). a9)

Following similar arguments in Lemma 3.3 of Zhu and Fang (1996) for calculating the bias

term, we easily have S;})'E {Kh (775 B nj) E (a ! 77;) | m} =0 (") by assuming that the
(m—- 1)-th derivative of /(m) is locally Lipschitz-continuous. This proves (A.6). Combining
(A.5) and (A.6), we obtain
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%i&, {7(’7;)0(77[?(77:)} {1 (n2) 217 )

i=1

This result together with (A.4) entails the desired result, which completes the proof.

Under Conditions (C1)-(C4), we have

D E@IMIE@in) —E@ln)=) E@n){E) @ln) - a(xo} +o,(n'?).

i=1 =1

Proof of Lemma A2—Using the definition of the function () in condition (C3), and the
bandwidth conditions 7727 — co and n/* — 0 in (C4), we obtain

SE I {E@in) ~Ealn)

r(’][){ﬂ’]{)‘f(’?i)} {Fi) =)

n
= . _ 1/2
= zEslm [ &) o | +or ().

Furthermore, since the bandwidth / satisfies 72/2” — 0 under condition (C4), Lemma A.2 of
Zhu and Zhu (2007) yields

r){Fan—-F )
Eelm) ey — “n

[E (g \m) E (alm) - EXE (g 1mi) E (a| )] +o, (n'/?).

M=TMs

Similarly, invoking Lemma A.3 of Zhu and Zhu (2007), we obtain

{rm) —r ()} B 12 (A.
ZE(I,) o ;[E(gm,)aoc) E{E (g|n)E (a| )] +o, (n'/?). 5

Combining (A.7) and (A.8), we obtain the results of Lamma A2.

Proof of Theorem 1—We rewrite the estimating equation
Do 8 W {a (X - E (a7} =0 to obtain

~Y E@In){aX)-E(@m)}=) {g(¥) - E@In}{aX)-E@[m)}. @9
i=1 i=1

We first study the left hand side of (A.9):

SEGIm) (a0 - E@m)] =5E @I a®) - Ealm)+ZEGmIE@)

~E@m)+ LE g {E@in - E@lm). 10
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From Lemma A2, the summation of the first two terms on the right hand side of (A.10) is
0,,(/71/2). Using Taylor’s expansion and the weak law of large numbers, denoting Kronecker
product as ®, i.e. M® B = (mB) for any matrices Mand B, we rewrite the vectorized form
of the third summation on the right hand side of (A.10) as

vec [zl Eln)|E@in) - E(a m)}] -5 {f’E(“WL;’T‘) ® E (g1 pveel (B - §) o, (n' )
=—-nkE {M(a L) ®F (g 7])} vecl (E—ﬁ) +o, (n]/z) .

Avecl(B)T

T T_ T T
Using ‘9V6C(fg )/OX =g ®0f/0X"+0g/0X" ® [ \ye obtain that

dvec[ {gN—E(g | PHaO—E(a | )]
A E( dvecl(B)T )
— a(X)—-E(a T
E|(a(0) — E (al )T o AL | p | a00-H D 10 () — (g )|
a T
=~ E[la(0 - Ealn)T o ZLL| - |2l g g () - E (1)
—_ _ T o 9E@gIn)
=—E{at0-E@nT e 280 |,

where the last equality is because £(g| X) = E(g| n). Hence

dvec[E(g|n){a(X) — E (a|m}]
Bvecl(ﬁ)T

=0,

Dvecl BT ®E(gln)} +A= — (

since E[E(g]| m) {a(X) — E(a| n)}] = 0 for all B. Thus, the vectorized form of the left hand

side of (A.9) is —nAvecl (,E—ﬁ) +0p (n”z). Next we study the right hand side of (A.9). We
write

=

% {8 (¥~ E glm)} {a () ~ E (al )}

i=1

Il
M:

X (g (YD) ~ E(glm} a(X) - E ] m)}+§ {g(Y) = E(gIn)HE (aln) — E (aln)

+2 {g(¥) — E@InHE (@ln) - E (al 7).

Because E{g(Y)) - E(g| M) | nZ} =0, adirect appllcatlon of Lemma Al entails that the
second term is of order Op {/M2# + nfP"" + (log? n)A~%, which is o(/*2) when nP? —
oo and /™ — 0. By Taylor expansion, the vectorized form of the third term is

vec[Z{g(Y) E(glm)}{f(alm)—E(alﬁf)}]

- —i [HE(a 1) o {g¥)-E(g| m)}] vecl (E_,g) +o, (nl/z)

ﬁvecl(ﬂ)T

= -nE [6E(a L) ®{g(Y)-E (gl 7])}] vecl (E—ﬁ) +0p (nl/z)

dvecl(B)T
= o).
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where the last equality is again because £(g| X) = E(g| n). The proof of Theorem 1 is
completed by combining the results concerning the left and right hand sides of (A.9).

Proof of Theorem 2—A standard Taylor expansion around g yields
0= n_l/zgvec [g 00 {a X)—-h (ﬁi,[i‘)}]

- n‘l/zﬁlvec[g(Yi){a(Xi)_h(ni’ﬁ)}]

1B 3 veelg(¥h(y ) .
ot & SRS, el (B=B)] oy 1)

w1 Svee [g (V) la (X) ~ E almol] - E {5508 @ g (1) ' {veel (B - )} +0, (1)

where B* is on the line connecting 3 and B. From the proof of Theorem 1, we have

{6E(aT|7]) } {8E(aT|n) }
Eq———=0g(Y)=Eq——=®E(g|n=—A.

dvecl(B)" dvecl(B)T

Thus, we have

0=n"12 "vec [g (Y7 {a (Xi) — E (a | mi)}] +An'"* {vecl (B - B)} +0, (1),
i=1

hence the theorem is proven.
Proof of Proposition 1—From Theorem 1 and 2, we can easily obtain that

By — Bi= cov(vec[E(g|m){a(X) - E(a|m}])
+cov (vec[{g(Y) - E(gIm}fa(X) - E(aln}],
vec[E (g|m) {a(X) — E (a|m)}])
+cov (vec [E (g|m{a(X) - E (a|m)}],
vec[{g(Y) — E (g Im}{a(X) - E (a|n)}])
= cov(vec[E(gIm{a(X)—E(@ln}]),

which is clearly positive definite. The last equality holds because £(g| X) = E(g| n). Hence
~ 141 N\T. . ..
cov {Vecl (,8)} - cov {Vecl (,73)} =n"A" (B» - B)) (A ) is positive definite.
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Fig. 1.

Comparison of sliced inverse regression (SIR) and principal Hessian directions (PHD) with
their semiparametric counter parts (SEMI-SIR, SEMI-PHD) in model (1) (left half in each
panel) and model (I1) (right half in each panel). Results are based on 1000 simulated data
sets with sample size 7= 200.
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