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Learning Causes Reorganization of Neuronal Firing Patterns
to Represent Related Experiences within a Hippocampal
Schema

Sam McKenzie, Nick T. M. Robinson, Lauren Herrera, Jordana C. Churchill, and Howard Eichenbaum
Center for Memory and Brain, Boston University, Boston, Massachusetts 02215

According to schema theory as proposed by Piaget and Bartlett, learning involves the assimilation of new memories into networks of
preexisting knowledge, as well as alteration of the original networks to accommodate the new information. Recent evidence has shown
that rats form a schema of goal locations and that the hippocampus plays an essential role in adding new memories to the spatial schema.
Here we examined the nature of hippocampal contributions to schema updating by monitoring firing patterns of multiple CA1 neurons
as rats learned new goal locations in an environment in which there already were multiple goals. Before new learning, many neurons that
fired on arrival at one goal location also fired at other goals, whereas ensemble activity patterns also distinguished different goal events,
thus constituting a neural representation that linked distinct goals within a spatial schema. During new learning, some neurons began to
fire as animals approached the new goals. These were primarily the same neurons that fired at original goals, the activity patterns at new
goals were similar to those associated with the original goals, and new learning also produced changes in the preexisting goal-related
firing patterns. After learning, activity patterns associated with the new and original goals gradually diverged, such that initial general-
ization was followed by a prolonged period in which new memories became distinguished within the ensemble representation. These
findings support the view that consolidation involves assimilation of new memories into preexisting neural networks that accommodate

relationships among new and existing memories.

Introduction

Recent studies on memory consolidation have explored the
mechanisms by which the hippocampus supports the assimila-
tion of new experiences into preexisting networks of knowledge,
called schemas (for review, see McKenzie and Eichenbaum,
2011). The important role of schemas in memory formation was
introduced to cognitive science in the classic studies of Piaget
(1926) and Bartlett (1932), who proposed that new memories
that are consistent with preexisting knowledge are readily assim-
ilated within existing memory networks, often requiring updat-
ing or modification of the existing schema to accommodate the
new information. McClelland et al. (1995) introduced the idea
that the hippocampus supports schema assimilation and accom-
modation in an influential model of hippocampal- cortical inter-
actions during consolidation. Subsequent experimental evidence
indicates that hippocampal-dependent consolidation is speeded
when new memories are incorporated within a schema (Tse et al.,
2007; van Kesteren et al., 2012), that hippocampal-dependent
schemas support inferential memory expression (Bunsey and
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Eichenbaum, 1996; Dusek and Eichenbaum, 1997; Heckers et al.,
2004; Zeithamova and Preston, 2010), and that prefrontal-hip-
pocampal interactions are critical to schema formation, modifi-
cation, and expression (Tse et al., 2011; Zeithamova et al., 2012).
Furthermore, the phenomenon of reconsolidation may reflect
the updating of a preexisting schema (Hardt et al., 2010; McKen-
zie and Eichenbaum, 2011; Dudai, 2012).

Despite a wealth of evidence that the hippocampus plays a
central role in schemas, the mechanism by which neuronal net-
works in the hippocampus integrate memories into schemas has
received little attention. Indirect evidence has come from studies
that observe a “partial remapping” of hippocampal spatial firing
patterns after alterations in salient spatial cues, which could re-
flect both assimilation of new information and accommodation
of existing network representations (for review, see Eichenbaum,
1999). Several other studies have reported similarities in the fir-
ing patterns of hippocampal neurons associated with traversing
similar routes through different mazes (Singer et al., 2010), with
objects in different locations (Wood et al., 1999) or in different
examples of the stimuli with the same meaning (Hampson et al.,
2004; Quiroga et al., 2005). The common coding of events that
are shared among memories could act as “nodes” that connect
different memories within schematic networks. However, no
studies have examined how common representations develop as
new memories are added to a preexisting framework. In the pres-
ent study, we extend previous findings on hippocampal neurons
that develop firing patterns associated with goal locations when
goals are moved in water mazes (Hollup et al., 2001) and open
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fields (Dupret et al., 2010), by exploring how the hippocampus
represents the addition of new goals within an environment for
which the spatial representation of preexisting goals has been
characterized. Pursuing the neural representations that underlie
characteristics of schemas described by Piaget (1929), we ex-
plored how new goals are assimilated into a preexisting hip-
pocampal schema and how the original schema is modified to
accommodate the new related information. The results show that
a preexisting schema assimilates new goal memories while distin-
guishing preexisting memories and accommodates its structure
to integrate the new knowledge within the preexisting network
representation.

Materials and Methods

Subjects

Five male Long-Evans rats (Charles River Laboratories) were housed
within the Laboratory Animal Care Facility on the Boston University
Charles River Campus. Subjects were individually housed and kept on a
12 h light/dark cycle. During behavioral testing, subjects were food and
water deprived, ensuring a minimum of 85% free-feeding weight (300—
500 g) with access to 15 min of water per day. All animal protocols were
approved by the Boston University Charles River Campus Institutional
Animal Care and Use Committee.

Surgery

Rats were anesthetized using a mixture of 3% isoflurane in oxygen and
were injected with atropine (0.03 mg/kg, s.c.) and buprenorphine (0.1
mg/kg, s.c.) before surgery and meloxicam (1 mg/kg, s.c.) immediately
after surgery. An ophthalmic ointment was applied to the eyes, and tem-
perature was maintained between 37°C and 38°C. Ringer’s solution was
injected to maintain hydration. Stainless steel bone screws, including two
ground screws, were inserted into the skull. A 2.0-mm-diameter hole was
drilled into the skull using a dental drill, and the dura was removed. The
base of the microdrive was aimed at the CAI region of the left dorsal
hippocampus (—3.5 mm anteroposterior, +1.9 mm mediolateral). The
craniotomy was sealed with Kwik Sil (World Precision Instruments), the
microdrive and ground wires were secured in place using dental acrylic
(Henry Schein) and CandB Metabond (Parkell), and the surgical site was
sutured shut.

Electrophysiological recordings

Individually movable 24-tetrode microdrives were built in-house. Te-
trodes were spun from 12.5 wm nickel-chromium Kanthal fine wire
(Sandvik) and gold plated for an impedance of 200 k() at 1 kHz. At the
end of surgery, each tetrode was lowered ~850 wm into the brain. After
5 d of recovery, the tetrodes were lowered over 7-14 d toward the CA1
layer. After the experiments, 25 A of current was passed through each
tetrode for 30 s before perfusion and histological confirmation of tetrode
placement.

As reported previously (MacDonald et al., 2011), the electrical signal
was referenced to a common skull screw and differentially filtered for
single-unit activity (154 Hz to 8.8 kHz) and local field potentials (LFPs)
(1.5-400 Hz). The amplified spikes from each wire were digitized at 40
kHz, whereas the field potential was digitized at 1 kHz and monitored
with the Multineuron Acquisition Processor (Plexon). Individual pyra-
midal neurons were isolated using Offline Sorter (Plexon) by visualizing
combinations of waveform features (peak valley, valley, peak, principal
components, and timestamps) extracted from wires making up a single
tetrode (i.e., “manual cluster cutting”). Single-neuron selectivity was ver-
ified by the interspike interval histograms that contained no successive
spikes within a 2 ms refractory period. Single-neuron stability was veri-
fied by comparing cluster stability across a recording session.

Behavioral paradigm

Before surgery, water-deprived rats were trained to retrieve water at sev-
eral locations on a symmetrical wooden circular track (107 cm in diam-
eter) that contained 20 potential reward sites. The reward sites were small
water dishes with adjacent LEDs connected by an angle bracket. The
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location of the goal for each trial was chosen pseudorandomly among
four to five evenly spaced locations, with the goal never repeating more
than three consecutive times. Each trial began with a blinking LED (300
ms on, 700 ms off) at the selected location, and, when the rat was within
15 cm of an LED-cued goal location, the light was held on for 5 s, after
which 75 ul of water was delivered from the adjacent water port. If the rat
did not wait at the reward site within 2 min, there was a 15 s intertrial
interval, and then the task progressed to the next trial.

After surgery, rats were retrained on the LED-cued version of the task.
When tetrodes were positioned in dorsal CA1, three new spatially defined
goallocations (SP1, SP2, SP3) were introduced over the course of 1 week;
these goallocations were not cued by an LED and could only be identified
by memory of their location relative to extra-maze cues (overhead lights
and large white cue card). On day 1, 30 LED-cued trials were presented,
and then SP1 was introduced with water delivered to that site before the
rats’ arrival. Rats initially found the new site by first searching unsuccess-
fully for water at the well-learned cued sites and then searching each well
around the maze. After finding the new spatial goal, SP1 and LED-cued
trials alternated such that, after completion of each LED-cued trial, the
rat could run to the SP1 location and await a reward delivery; over the
course of the first seven SP1 trials, the interval between arrival to the SP1
site and reward delivery ramped from 0.3 to 5 s. Data collected at the new
goal sites during “ramped training” trials were not included in neural or
behavioral analysis. On day 2, rats were trained to alternate between SP1
and LED-cued locations for the shorter of 100 trials or 60 min. On day 3,
the rats were given a block of 30 SP1 and LED-cued trials before SP2 was
introduced. Between LED-cued trials, rats were required to first visit SP2
and then SP1, waiting at each location for 5 s before a reward was pre-
sented. On day 4, the rat continued to be trained on SP2-SP1 and LED-
cued trials. Day 5 began with a block of 30 SP2—SP1 and LED-cued trials,
before SP3 was introduced. Between LED-cued trials, rats were required
to visit three spatial locations in the order SP3—SP2-SP1, waiting for 5 s to
receive water at each place. Day 6 involved continued training on the
three spatial locations along with the original LED-cued locations. After
this sequence, rats were overtrained on the sequence of three positions
for 1-12 d and then given atleast 2 d on LED-cued trials only before being
trained on a second sequence of spatial locations that never overlapped
with LED-cued locations. One rat was also trained on a third sequence.

To assess the development of a schema as reflected in facilitation of
new spatial sequence learning after initial sequence acquisition, we com-
pared the latency to arrive at SP1 leading to a reward for trials on the first
sequence to that for the second sequence over initial blocks of training
trials (Fig. 1E). Analyses of learning focused on the trials after “ramped
training” when rats were required to wait 5 s at the appropriate reward
site.

Neural data with only SP1 and the cued sites are reported from 11
sessions from five rats. Data with SP2 and SP1 are reported from nine
sessions with four rats, and neural data with SP1, SP2, and SP3 are re-
ported from seven sessions from three rats. Data are reported from 15
learning sessions (SP1, SP2, or SP3) from five rats, seven sessions in
which the new goal location is 1 d old (from four rats), three sessions
when the new goal is 2 d old (from three rats), and 27 sessions in which
the new goal is 8.34 * 3.61 d old (from three rats).

Analyses
The timestamps of unit action potentials, rat position, and reward deliv-
ery times were imported into MATLAB R2012b (MathWorks) for all
analyses.

Behavioral events were distinguished as periods of waiting (WAIT)
when the animal arrived at a goal and remained within 15 cm of the goal
site for 5 s before, and not including, reward delivery and epochs of
running (RUN) at velocity over 10 cm/s within 4.2 cm of a goal site,
excluding events 7 s before through 3 s after reward delivery.

Three spatial firing rate maps were constructed: (1) one for WAIT
events, (2) one for clockwise RUN events, and (3) one for counterclock-
wise RUN events. Occupancy on the circle track was linearized and
binned at 8.4 cm and not smoothed. Analyses were performed separately
for rate maps in each running direction and then averaged for a single
RUN metric.
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where A(t) is the trial-averaged firing rate at
position i at time ¢ relative to reward onset,
A1) is the firing rate at the equivalent time ¢
relative to reward onset at position j, and A,
is the maximum average firing rate observed
for that cell in any time bin at any location.
Firing rates below a sliding threshold were then
set to zero, driving the product to zero, and
resulting in a metric of CPA over time that cap-
tures when high activity is present in two loca-
tions. With a threshold up to 5 Hz, a significant
increase in CPA was observed on arrival to the
goal location.

Firing pattern selectivity index. The degree to
which cells had different firing patterns across
locations was measured with a selectivity index
(SI) (Wirth et al., 2003; Komorowski et al.,
2009):
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Figure 1.

Temporal analysis of WAIT epochs was based on perievent time his-
tograms (PETHs) centered on reward delivery and binned at 250 ms. We
also defined cells as activated during WAIT events if a cell had an average
firing rate above 2 Hz and 30% of the maximum firing rate around
reward delivery in any 250 ms bin during the WAIT epoch (=5 to 0 s
to reward delivery). The maximal firing rate was calculated =20 s around
reward delivery.

The LFP was taken from a channel with spiking units. Theta power was
the power of the LFP bandpass filtered between 6 and 10 Hz. Sharp-wave
ripples were events that were 7 SDs higher in power than the average LFP
filtered at 140—200 Hz with minimum duration of 20 ms and maximum
duration of 150 ms. The time of the ripple was the timestamp of the
maximum waveform.

14

A, The rat must visit the two spatial positions (SP1and SP2) in order, waiting at each for 5 s for water reward. The next
sequence begins with an LED-cued trial in one of four positions chosen pseudorandomly. B, The average velocity and acceleration
profile as the rat approached and waited at the goal sites. C, The percentage of time a rat spent in the new spatial position not
including reward consumption in a sliding 2 min window throughout an example session. Red tick marks indicated the time in
which the new spatial location was first introduced. D, The average percentage of time rats spent in the new spatial location before
and after its introduction for all rats and for one, two, or three spatial goal locations (SP1, SP2, and SP3, respectively). E, The
latencies to arrive at SP1 for the first and second spatial sequence significantly differed in the early trials (trials 1—4) at the full 55
wait period, thus showing that learning one spatial sequence facilitated the learning of another. **p = 0.01.
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where # is the number of goal locations, A(t) is
the trial-averaged firing rate at position i at
time ¢ relative to reward onset, and A, .(#) is
the maximal trial-averaged firing rate at any
position at time ¢. SI values range from 1, indi-
cating activity at only one location, to 0, indi-
cating equivalent activity at all locations (see
Fig. 3A,B).

Spatial SI. Spatial selectivity was calculated
based on each of the three firing rate maps.
Unlike the firing pattern S, A; and A,,,.¢ did not vary over time and were
based on the average firing rate recorded at the goal locations (8.4 cm
bin) from either the WAIT map (spatial SI WAIT) or the RUN maps
(spatial SIRUN) (see Fig. 3E).

Temporal pattern ensemble correlation. Population vectors were
composed of the mean firing rates for simultaneously recorded cells at
each reward location at each time bin centered on reward delivery.
The average similarity over time, COR(Z), was measured by calculat-
ing the Pearson’s correlation coefficient of the population vectors,
X;(t) and X;(1), at every time point, t, at pairs of locations, i and j. Only
ensembles of cells with more than eight units with a baseline rate <4
Hz were considered (22 ensembles; average = SD number of cells,
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14.9 * 5.63; range, 8—-30). Low correlations indicate distinctive cod-
ing (see Fig. 3F):

COR(t) = <c0rr(X,-(t),Xj(t))>.

Spatial ensemble correlation. As with the SI, ensemble correlations were
also calculated using the same three spatial firing rate maps: the WAIT
map and the two RUN maps. The spatial ensembles were constructed by
average firing rates recorded at the goal locations (8.4 cm bin) during
either WAIT or RUN. The spatial ensemble correlation was calculated by
taking the average Pearson’s correlation coefficient of the spatial ensem-
bles recorded at each goal site (see Fig. 6D-F).

Bayesian decoding. The extent to which firing patterns across locations
differ should be reflected in accurate decoding. The spatial posterior
distribution was calculated using the firing rates from both RUN and
WAIT epochs using every other 500 ms block of spiking and positional
data. Time was binned at 250 ms, and the spatial firing rate map was
binned as described above. Decoding accuracy was defined as the condi-
tional probability of occupying the actual location given the observed
spike counts for the time blocks not used to create the posterior distri-
bution (Zhang et al., 1998) (see Fig. 4). Decoding was only applied to
sessions with ensembles of cells of more than eight units with baseline
rates <4 Hz.

Changes in firing patterns on the day of learning. To measure the extent
to which neuronal firing patterns changed with learning, spatial firing
rate maps were made for all periods when the rat’s velocity was >10 cm/s
before and after introduction of the new goal or for the first and second
half of a session without new learning. Remapping was measured by
Pearson’s correlation of the before and after rate maps of each cell.

To measure learning-related changes in firing patterns during WAIT
events, ensemble vectors of the average firing rates recorded at each
WAIT site before and after learning were correlated (see Fig. 6F).

Changes in firing patterns over days. Two methods were used to study
how cells encoded WAIT events across days. First, the spatial ensemble
correlation was used to compare the new WAIT site to each of the well-
learned, LED-cued sites. The average of these pairwise correlations was
used as a metric for ensemble discrimination of the new WAIT event (see
Fig. 6E). Second, we used a single-cell metric to analyze cells that were
active at the new WAIT site on every day after learning. For these active
cells, the average rate of a cell at the new site (8.4 cm bin) was subtracted
from its rate at the other LED-cued WAIT sites. The minimum firing rate
difference between the new and original sites was then calculated to
measure the degree to which a new WAIT site was differentiated from any
other WAIT site.

Principal component analyses. For visualization purposes, principal
component analysis was used to reduce the n-dimensional (where 7 is
number of cells in the ensemble) representation of the goals. PETHs
recorded on each trial were converted into z-scores based on overall
firing rate means and SDs. The firing rates were then transformed into
principal component space using the covariance of firing rates between
neurons recorded *20 s around goal delivery. For each goal location, the
trial-averaged scores of the first two components are plotted as a function
of time to reward (see Fig. 7B).

To show how the spatial representation of new and old WAIT events
changed over days, firing rate maps for each cell were computed as de-
scribed and then z-score normalized. Ensemble vectors were created us-
ing the average rates for each cell at each goal location. These vectors were
then transformed into principal component space based on the covari-
ance of the firing rates recorded across all locations. For each goal loca-
tion, the first two components of the spatial ensemble representation are
plotted (see Fig. 7C).

Significance testing. Metrics that were normally distributed were com-
pared using ANOVAs and Student’s ¢ test. However, most metrics were
not normally distributed, and therefore, significance testing of means
was done using Monte Carlo sampling with replacement with 10,000
repetitions (bootstrap). Changes from baseline were measured as the
difference between the averages at every time point against a baseline
calculated from the average —20 to +20 s around reward delivery.
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Results

Behavior

Rats were trained on a task that required them to learn new goal
sites in an environment with several well-learned goal locations
(Fig. 1). Rats first learned to wait 5 s at one of several LED-cued
locations to retrieve a water reward. Over the course of 6 d, one to
three new spatially defined goal sites were progressively intro-
duced (SP1, SP2, SP3). Rats learned these new goal locations as
reflected in significantly increased percentage of time spent in the
rewarded area (not including reward consumption) after intro-
duction of the reward (Fig. 1C,D; two-way ANOVA, main effect
of time, F(; 4, = 91.55,p = 11.6 °).

Schemas are commonly characterized as facilitating new
learning that is consistent with previous accumulated knowledge
(Tse et al., 2007). Here, to examine whether initial acquisition of
a spatial goal sequence facilitated subsequent learning of a second
spatial goal sequence, we compared the latency to arrive at the
first spatial goal (SP1) of the first learned spatial sequence to that
for the second spatial goal sequence. As shown in Figure 1E,
during initial spatial sequence acquisition, rats arrived in sub-
stantially longer latencies in first trials after the response require-
ment reached 5 s (see Materials and Methods), and thereafter
latencies shortened. During learning of the second spatial se-
quence, unlike in the first sequence, latencies were initially low
(two-way ANOVA, main effect of sequence, F(, 5y = 19.93,p =
0.0004; time X sequence interaction, F(, 5, = 0.0038, p = 0.0038;
post hoc paired t test for trials 1-4, t;, = 5.11, p = 0.014) and
remained low throughout testing. Savings in learning, as reflected
by the significantly lower latencies during the second sequence,
suggest that rats developed a schema for learning goal sequences
that occurred within the familiar context.

Hippocampal neurons activate during multiple well-learned
WAIT events

We first characterized how learned WAIT events are organized
within a well-established schema of goal locations for which the
rat has had at least 2 d of training. Within a well-established
schema, it is expected that related memories will be both differ-
entiated and linked via “nodes” that are characterized by similar
representations of the common features between events. To in-
vestigate whether hippocampal networks contain a schema of
WAIT events at multiple goal locations, we first asked whether
the same behaviors at different locations were represented simi-
larly by firing patterns of hippocampal neurons. Then, we also
asked whether these WAIT representations also differentiated
distinct memories of goal locations.

Several single neuron and ensemble analyses were adopted
to characterize firing patterns of putative CA1 pyramidal cells
(n = 410; average firing rate, 0.40 = 0.021 Hz) through time
and space. These analyses focused on WAIT events when rats
stopped at the goal loci before reward delivery and RUN ep-
ochs when rats ran through the locations and no reward was
available. WAIT epochs allowed us to assess firing associated
with anticipatory behavior at the goal location, whereas RUN
epochs provide a baseline of spatial firing without the antici-
patory behavior.

Examination of firing patterns before and during WAIT
events revealed that many cells fired at multiple goal locations
(Fig. 2A). For example, Cell 1 in Figure 2A had two firing fields
around the spatially separate goals sites 1 and 12 and did not fire
at other goal locations, whereas Cell 2 fired at goals 1, 12, and 17.
An analysis of the number of locations where activation occurred
during WAIT events revealed that 40% of neurons were active
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Figure2. A, Example rate maps (both RUN and WAIT events) for 12 cells that fired at multiple goal locations (numbered). The color for each rate map is scaled to the maximum firing rate of each
cell reported in parentheses by the cell label. B, Histograms from twao cells centered on reward delivery at t = 0s. Each block is a different reward site. The gray bars indicate the 5 s the rat waited
for reward. Black arrows show burst of firing on arrival, and red arrows show slight decrease in baseline firing rate as rats wait for reward. ¢, Mean cell firing rate during active WAIT event (black) and
during non-active WAIT event (red). Black bar s significant firing above baseline (p < 0.05) for the active cells, and red bar is significant firing below baseline for the non-active cells. D, The CPA was
calculated as the product of the normalized firing rate of a cell during approach to two goal locations. On average, cells were more likely to be active in multiple locations during the beginning of the
WAIT period. E, The power of theta decreases on arrival to the goal site and further still after reward consumption. In contrast, the number of sharp-wave ripples increased only after reward
consumption, indicating that the burst of activity on arrival to the goal is not attributable to a ripple event. Black bars show data above baseline, and red bars represent data below. The top error bars
show significance testing for theta power, and the bars underneath correspond to analysis of sharp-wave ripples.

during WAIT events at one location, 15.6% at two locations, and
9.8% at more than two goal locations, indicating that 39% of the
neurons that were active during at least one WAIT event fired
during more than one WAIT event.

Firing associated with WAIT events was not uniform in time
such that, on arrival to a subset of goal areas, neurons often
released a burst of spikes, followed by either a period of decaying
activity or silence (Fig. 2 B, C). This firing pattern can be observed
clearly in the firing behavior of Cell 6 in Figure 2B, which in-
creased firing rate on arrival to locations 1 and 12 and decreased
firing at the other two locations. Comparing the average response
from all cells that activated during WAIT events versus those that
did not, activation during WAIT events was characterized by an
increase in firing rate on arrival (5 s before water delivery) to the
goal site, followed by a slowly tapering level of firing during
WAIT events. In contrast, cells that did not exceed the activation
threshold at WAIT locations decreased firing rates from baseline
(Fig. 2C).

To examine the similarity of activation patterns across lo-
cations, we measured CPA between all pairwise combinations
of WAIT events at well-learned sites for all cells. This analysis
revealed a common activity peak at the beginning of WAIT
events, followed by diminished CPA during the course of the
ensuing WAIT event (Fig. 2D). The CPA increase at the outset
of WAIT events was observed even after setting rates below a
sliding threshold to zero (see Materials and Methods) to mea-
sure only time points of high activity in both goal locations.

The activation of cells at the goal site coincided with the rat
decelerating (Fig. 1B), thus possibly confounding a change in
neural activity attributable to reduction in running speed with
firing that encodes the WAIT event per se. The firing rate of
hippocampal cells is generally positively correlated with run-
ning speed (McNaughton et al., 1983; Geisler et al., 2007),
except for the brief bursts of activity during sharp-wave rip-
ples when the animal is typically not moving (Buzséki et al.,
1983; O’Neill et al., 2006). Here we also observed a positive
correlation between running speed and population firing rate
in the 20 s before arrival to goal sites (r = 0.24, p = 4.9'%)
and a weak but significant positive correlation between accel-
eration and population rate during the same epoch (r = 0.02,
p =0.01). In contrast, during WAIT epochs, population firing
rate was negatively correlated with acceleration (r = —0.11,
p = 5.77"), although the positive correlation with velocity
was maintained (r = 0.25, p = 4.35%). Most importantly,
although the velocity and acceleration profiles were very sim-
ilar at all goal sites, cells were never active at all the goal loca-
tions. Also, the probability of observing sharp-wave ripples
was lowest on arrival to the goal sites (Fig. 2E). Combined,
these observations show that the burst of activity on arrival to
the goals cannot be explained simply by changes in running
speed, acceleration, or spiking in a sharp-wave burst, suggest-
ing that they likely reflect neural processing related to behav-
ior during the WAIT events.
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Hippocampal activity distinguishes well-learned WAIT
events at different locations

explored whether any of these three coding scenarios could de-
scribe how cells distinguish goal sites from one another.

In addition to relating memories by their common features, sche-
mas must distinguish memories by differences in their features.
There are potentially many ways by which hippocampal ensem-
bles could discriminate memories. A simple mechanism for gen-
erating a high degree of memory separation would be for cells to
activate during a single event and remain silent for others. An-
other possibility is that cells distinguish events based on firing
rate, and previous studies have shown that rate differences could
allow for comparable discrimination as the simpler, binary cod-
ing scheme (Leutgeb et al., 2005). Finally, it is possible that, al-
though single cells may discriminate a subset of events poorly, on
the ensemble level those events are well discriminated because of
the contribution of other cells that are selective to that subset. We

Although many neurons were active at the outset of multiple
WAIT events, these events could be potentially discriminated by
firing rate and differing temporal patterns of activity. For exam-
ple, Cell 6 depicted in Figure 2B fired during WAIT events in two
locations, with different firing rates at different times and de-
creased firing rate at the other two locations. To evaluate the
extent to which WAIT events at different locations were associ-
ated with distinct temporal firing patterns, we calculated the SI
for each cell (n = 410) during WAIT events at all well-learned
goal locations. There was a prominent increase in SI that began
on arrival at the goal and persisted throughout the 5 s WAIT
period, indicating that single neurons highly discriminated those
events at different locations (Fig. 3A). When these analyses were
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restricted to cells that were active in multiple locations (n = 164),
there was a drop in selectivity for the locations in which a cell
showed CPA (Fig. 3B). This drop in SI can be seen in Figure 3B on
arrival to the goal site, the same time at which cells showed high
CPA. Although many cells discriminated WAIT events by being
active only at a single site, other cells encoded a subset of the
WAIT events similarly by increasing firing rate on the outset of
the events.

Although the SI analysis can capture the temporal dynamics as
rats remain within the 15 cm of the goal site, this time series
analysis is potentially confounded by differences in occupancy of
specific locations; so, firing rates at the goal locations were addi-
tionally analyzed based on the average firing rates, as calculated
from the spatial rate map, at goal locations during WAIT and
RUN events. As can be seen in the examples in Figure 3C, cells
showed different firing rates during WAIT and RUN epochs
through the same goal locations. In the example shown in Figure
3C, Cell 1 fired in locations 6 and 17 during RUN epochs but
during WAIT epochs only fired in location 6 and was virtually
silent in the other locations, as demonstrated by the low firing
rates in locations 1, 12, and 17 during the WAIT event in the
adjacent histogram. In both examples, the cells fired in more goal
locations during RUN events. The difference in firing rate during
RUN epochs was not a general increase in drive to the cells be-
cause there was no difference in firing rate during WAIT epochs
(mean rate, 2.30 * 0.13 Hz) compared with the RUN epochs
(mean rate, 2.20 = 0.11 Hz) through the goal location in which a
cell was active (bootstrap, p = 0.56) (Fig. 3D). In goal locations in
which a cell was not active during WAIT events, firing rates in-
creased during RUN events (mean rate WAIT, 0.30 = 0.03 Hz;
mean rate RUN, 0.49 * 0.03 Hz; bootstrap, p < 0.0001) (Fig.
3D). It is important to note that cells never fired at all goal loca-
tions during WAIT events despite identical behavioral demands.
By definition, locations in which a cell was active were associated
with significantly higher average firing rates than locations in
which a cell was not active (bootstrap, p < 0.0001).

As suggested by these rate differences, hippocampal neurons
discriminated locations during WAIT events (spatial SI, 0.83 *
0.01) better than during RUN events (spatial SI, 0.79 = 0.01)
through the same locations (bootstrap, p = 0.039). This differ-
ence in spatial discrimination during WAIT and RUN epochs was
more pronounced in the cells that were active in multiple loca-
tions (spatial STWAIT, 0.77 = 0.01; spatial SIRUN, 0.72 = 0.01;
bootstrap, p = 0.009) (Fig. 3E). However, for the same cells, there
was no difference in spatial SI when the analysis was restricted to
only the subset of goals in which a cell was active (spatial SI
WAIT, 0.58 = 0.02; spatial SIRUN, 0.58 = 0.02; bootstrap, p = 0
0.93) (Fig. 3E). Therefore, single cells better discriminated goal
locations during WAIT events by limiting the number of events
for which they were active and not by increasing rate differences
in the subset of active locations.

Given that many cells fire at multiple locations, we tested the
extent to which the pattern of population activity distinguished
WAIT events at different locations. As rats approached the re-
ward site and waited for the water reward, the pairwise correla-
tion of ensemble activity of all putative pyramidal cells recorded
at well-learned goal locations decreased on arrival and remained
low throughout the 5 s WAIT epochs (Fig. 3F). Therefore, as the
rat arrived at different goal locations, there was a rapid change in
hippocampal activity that resulted in the associated neural en-
sembles becoming less similar. Spatial ensemble correlation also
indicated that goal locations were less correlated during WAIT
epochs (spatial ensemble correlation, 0.176 * 0.02) than RUN
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events (spatial ensemble correlation, 0.22 * 0.02) through the
same location (bootstrap, p = 0.044). These findings show that,
although a subset of cells showed common activity in a subset of
WAIT locations, the ensemble of neurons discriminated WAIT
events throughout the entire 5 s WAIT period.

The analyses above relied on averaging firing rates over space
or over time and only considered how distinct goal locations were
from one another rather than being globally distinguished from
other maze locations. To estimate the overall discrimination of
WAIT events at each moment in time, we examined Bayesian
decoding of neural activity for the locations of different WAIT
events. The best decoding accuracy was observed at the beginning
of the WAIT epochs when there was the highest probability of the
rat occupying its actual location based on ensemble activity (Fig.
4A). Consistent with our results on high spatial selectivity and
low ensemble correlation during WAIT epochs, the beginning of
WAIT events was also associated with low probability of the rat
occupying the other goal locations spatially separate from the
rats’ actual location (Fig. 4B). In addition, the overall uncertainty
of the rats’ location (Shannon’s entropy) was lowest during the
beginning of the WAIT epochs (Fig. 4C), showing that the rat was
least likely to be in any other location other than its actual loca-
tion during WAIT events. Therefore, despite the subset of cells
that fired in multiple goal locations, on the ensemble level, WAIT
events were well discriminated from one another and from loca-
tions elsewhere on the track.

Hippocampal coding of new and previously learned WAIT
events changes over days

We also explored characteristics of firing patterns before new
learning that predict the assimilation of representations of new
WAIT events with learning. Based on the property of schemas by
which new learning is accelerated for material that is most con-
sistent with existing schema structure (Bartlett, 1932; Tse et al.,
2007), we hypothesized that cells that begin to fire during WAIT
events with learning would be the same cells that already fired
during WAIT events before new learning.

To examine this prediction, we introduced a new, spatially
defined goal location midway into a recording session to deter-
mine how cells change firing at the new and old goal locations
with learning. We distinguished cells (# = 44 of 192) that were
activated (see Materials and Methods) during the WAIT event at
the new goal site from those that fell below this activation thresh-
old (Fig. 5, Cells 1-3). These cells showed clear activity at the new
WAIT location but also at previously learned WAIT locations
(Fig. 5, Cell 2 in location 6).

The average response during the WAIT event of all cells that
were active at the new site was a strong initial burst of activity on
arrival to the site, followed by a decrease in average firing rate as
cells that were active stopped firing (Fig. 6A). Also, cells that were
not active during new WAIT events showed a slight decrease in
firing rate during the WAIT event as can be seen by the lower-
than-baseline firing rate starting 5 s before reward delivery (Fig.
6A).

Before the new goal site was introduced, 91.3% of cells that
would become active at the new goal site were active at the pre-
viously learned WAIT locations. These active cells also fired at
more of the previously learned WAIT locations (2.26 = 0.22
sites) than those cells that were not active at the new site (1.39 =
0.07 sites; bootstrap, p < 0.0001) (Fig. 6B, inset). CPA analysis
showed that this activity common to multiple locations occurred
as rats arrived to the goal locations (Fig. 6B). These results suggest
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Figure4. A, Bayesian decoding of hippocampal spiking data revealed the highest probabil-
ity of the rat occupying its actual location on arrival to the WAIT site. Also during arrival, the
probability of decoding the rats’ position to the wrong location (B) and the overall uncertainty
of the rats’ location (C) (Shannon’s entropy) were less than baseline (red line). Black bars indi-
cate significant (p << 0.05) deviations from baseline.

that the networks that encoded the new goal locations were those
that were active during other WAIT events.

After introduction of the new WAIT site, cells that were active
at the new WAIT site also showed activity at previously learned
WAIT sites (mean number of sites, 2.29 = 0.20) as reflected in a
high CPA between the new goal location and the other goal loca-
tions upon arrival (Fig. 6C). To determine whether the high CPA

McKenzie et al. @ Learning Reorganizes Hippocampal Schemas

between new and original locations was associated with similar
ensemble activity at new and original WAIT events, spatial en-
semble correlations (10 ensembles with 16.0 = 1.25 cells) were
calculated in a pairwise manner between the new WAIT site and
original WAIT sites before and after learning (52 pairs total).
These analyses showed that, before learning, activity during
RUNSs through the to-be-rewarded site was poorly correlated
(r = 0.10 £ 0.04) with activity during RUNs through the other
goal sites (Fig. 6D). However, after the introduction of the new
WAIT site, the ensemble activity at the new site became more
correlated with activity at the previously learned goals during
both RUN (r = 0.32 = 0.04, p < 0.0001) and WAIT (r = 0.33 =
0.08, p = 0.003) events (Fig. 6D). This high correlation between
the new WAIT site and previously learned WAIT sites was in
contrast to the low ensemble correlations restricted (r = 0.14 *
0.04) to the previously learned WAIT events (bootstrap, p =
0.02) (Fig. 6D).

To address at what point activity at the new WAIT site became
decorrelated with activity at other WAIT sites, we tracked activity
during WAIT events in the days after learning. Activity at the new
WAIT site was only compared with the overtrained LED-cued
sites to see how new information was incorporated into the well-
established schema. On the first day of learning, the ensemble
activity at the new WAIT site showed the highest correlation with
activity at the LED-cued sites (Fig. 6E). Over the course of days,
the spatial ensemble correlation between the new WAIT site and
the overtrained LED-cued sites decreased, such that there was a
significant correlation between time since learning and the aver-
age spatial ensemble correlation between new and original WAIT
sites (r = —0.45, p = 0.009).

High average ensemble correlations between new and orig-
inal WAIT sites were thought to be attributable to single cells
that fired at a similar rate at the new WAIT and at one or more
of the original WAIT sites. As suggested by the change in
ensemble correlation, the smallest rate difference between the
new and original sites was observed on the day of learning
(rate, 1.73 = 0.49 Hz) and increased over the course of days,
giving rise to a significant correlation between minimum rate
difference and days after learning (see Materials and Methods)
(r=0.42, p = 0.02).

The pair of locations that produced the minimum rate differ-
ence was not necessarily the closest two locations in actual space
because there was no correlation between the distance separating
the goal sites and minimum rate difference (r = 0.12, p = 0.53).
Furthermore, there was no correlation in the total amount of
distance traveled during the WAIT epoch and the number of days
since learning (r = —0.14, p = 0.36), suggesting that there was no
systematic change in behavior at the new WAIT site in the days
after learning.

These data suggest that integrating the new goal location into
the preexisting schema involved cells initially generalizing the
original WAIT events to the new WAIT event, but over extended
time, the full set of goal locations became well distinguished by
hippocampal cell activity.

Learning induces modification of preexisting schemas to
accommodate new memories

After characterizing the dynamics of the schema for previously
acquired goal locations, we next analyzed how an established
schema changes to assimilate new WAIT events. We observed
that learning a new goal location caused a remapping of spatial
firing patterns as shown by a lower correlation of the spatial firing
rate maps before and after learning (r = 0.44 * 0.02) than the
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Figure 6. A, The average firing rate at the new WAIT site for cells that were active and those that were not (blue). Red bar shows epochs of firing rate significantly above baseline for the active
cells, and the blue baris epochs below baseline for non-active cells. B, Cells that were active at the new goal site (red) fired on arrival to multiple WAIT events before the introduction of the new goal
site, as can be seen by the high CPA. Black bar shows epochs in which the CPA before learning is above baseline and higher for cells active at the new goal site compared with the CPA for cells not active
atthe new goalsite (blue). Inset, Distribution of the number of sites in which cells (red, active at new site; blue, not active at new site) were active before the introduction of the new site. C, Cells that
fired at the new WAIT location fired at original WAIT locations after learning as seen by a high CPA between original and new sites. Inset, Distribution of the number of sites in which cells (red, active
atnew site; blue, not active at new site) were active after the introduction of the new site. D, Before introduction of the new WAIT site, ensemble activity at the goal sites was poorly correlated (new
vs old). After the new WAIT site was introduced, ensemble activity at the new site became more correlated with activity at the previously learned goal sites (new vs old). In contrast, ensemble
correlation at the original goal locations remained low throughout learning (old vs old). E, In the days after the introduction of a new WAIT site, the average ensemble correlation between that
location and the well-learned LED-cued location decreased, indicating increased distinctiveness of the WAIT event representation over time. F, The distribution of ensemble correlations of the
overtrained LED-cued sites for the first and second half of a recording session on learning days (blue) and days with only LED locations (red). The distributions significantly differed, and the
representation of the well-learned locations changed more on learning days as shown by lower average ensemble correlations (inset). *p << 0.05, **p << 0.01.

correlation of rate maps of the first and second half of a session
without new learning (r = 0.53 = 0.02; bootstrap, p = 0.002).
Rate map correlations did not differ between the learning ses-
sions for the first (r = 0.45 = 0.04), second (r = 0.45 = 0.04), and
third (r = 0.43 = 0.04) goal locations (all p > 0.19), and the rate

map correlations for each of these three types of learning session
were lower than the rate map correlations on days without learn-
ing (bootstrap, all p < 0.05). These results indicate that each new
learning event caused an equivalent extent of reorganization in

hippocampal networks.
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Figure 7. A, The circle track consisted of 20 possible water ports 22 cm apart of which four to eight ports could be rewarded during a single session. B, The number boxes are the identity of
rewarded water ports, and the new goal site is depicted in black with white text. The ensemble representations of the WAIT events are plotted by the first two principal components at each time
relative to reward. The top row is the prelearning schema, and the bottom row is the postlearning schema with the addition of the new goal location plotted in the same principal component space.
Atarrival (—5s to reward), the representations of the goal locations became less correlated because of the fact that the ensemble representation of the goal locations occupy different regions of
hippocampal state space. In the postlearning schema, preexisting locations are represented differently by the same ensemble, but original WAIT events are still well discriminated by the
hippocampal network. ¢, Immediately after learning, the new WAIT site is represented similarly to preexisting WAIT sites, as visualized by the new and original WAIT sites occupying a similar region
of principal component space. Over the course of days, the new WAIT site is represented differently from the original WAIT sites as seen by an increase in the distance between the new WAIT site to
the old. The data are plotted from different sessions and different rats to clearly depict the trend described in Figure 6£.

More specific to theories of schema modification, it is ex-
pected that the assimilation of new information causes changes in
the preexisting schema to accommodate new memories, and this
should be reflected in substantial changes in firing rates during
the WAIT events. To calculate how the representation of a goal
site changed over the course of a session, the spatial ensemble
correlation was calculated between the first and second half of the
recording sessions. Low correlations indicate a change in the rep-
resentation of the WAIT sites. On days with only LED-cued lo-
cations, the majority of WAIT events had a stable representation
as indicated by the high average spatial correlation between the
first and second half of the session (Fig. 6F). In contrast, on days
with learning, some sites maintained a stable representation
throughout learning (Fig. 5, Cell 2 in location 6), whereas other
locations were associated with cells that changed their firing rates
as the new goal location was learned (Fig. 5, Cell 4 in location 6,
Cell 6 in location 10). The learning of the new goal site was ac-
commodated by changes in firing rate in at least a subset of the
original goal locations as seen by a lower average spatial correla-
tion between the first and second half of sessions with learning
(r=10.57 = 0.05) versus days without (r = 0.79 = 0.03; bootstrap,
p = 0.002) and a significantly different distribution of correla-
tions for days with and without learning (Kolmogorov—Smirnov
statistic = 0.38, p = 0.004) (Fig. 6F).

Schemas are dynamic during task performance and

across days

We examined the structure of neural ensemble representations of
the WAIT events at different locations (Fig. 7A) in terms of pro-
jections onto the first two principal components of the ensemble
(see Materials and Methods) (Fig. 7B,C). This analysis revealed
that hippocampal schemas of WAIT events were dynamic in two
ways. First, during stable performance, as the rat traversed the
maze and arrived at the goal, there was a rapid distortion of the

schema (Fig. 7B). On arrival and as the rat awaited reward,
the WAIT events were represented in different regions in hip-
pocampal state space, thus increasing the spatial selectivity of the
cells and decreasing ensemble correlation between locations.
Thereafter, the representations of WAIT events converged.

Second, on learning a new WAIT location, the existing schema
accommodated during learning to assimilate the new WAIT
events. The WAIT events in the updated schema were repre-
sented in a different part of hippocampal state space, but as be-
fore, the preexisting goals were well distinguished (Fig. 7B). The
new WAIT events in the updated schema were initially repre-
sented similarly to the preexisting WAIT events. Over the course
of days, the new WAIT location became well distinguished from
the old, as visualized by an increase in the distance between the
new and original goal locations in the principal component space
(Fig. 7C).

Discussion
Here, we begin to explore the neural substrate of a hippocampal
schema as reflected by network activity that links and distin-
guishes reward-anticipatory behaviors at different locations in an
environment, integrates new memories to preexisting schemas,
and modifies the preexisting schema to accommodate additional
memories. Bartlett (1932) emphasized that new information that
is consistent with preexisting knowledge is readily assimilated
within existing schemas. Piaget (1929) acknowledged that the
assimilation of new memories would usually require updating
the schema to accommodate new information. Under this frame-
work, Tse et al. (2007) demonstrated the essential role of the
hippocampus in the assimilation of new memories into a preex-
isting schema for the locations of food rewards.

We observed that incorporating a new goal location into a
preexisting schema of goal locations changed the hippocampal
network in several ways. First, cells that fired at original goals
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began to fire at the new goal site in addition to firing at the
previously learned goal sites. The common activity across the new
and original goal locations diminished the discriminability of the
new goal location by hippocampal cell firing. Only in the days
after learning did the representation of the new goal location
become decorrelated from those recorded at the original goal
locations. We also observed that firing at the original goal sites
changed as the new goal location was learned. Despite the plas-
ticity that occurred as new goal information was accommodated,
the ensemble continued to discriminate the well-learned goals
during reward anticipation.

Several previous studies have reported that changing a goal
location does not influence place cell firing (Speakman and
O’Keefe, 1990; Trullier et al., 1999) whereas others report shifts in
the mapping of goal locations (Gothard et al., 1996; Kobayashi et
al., 1997), and more recent studies have shown that there may be
an overrepresentation of goal areas in a water-maze task (Hollup
etal., 2001) and in paradigms that require association of reward
and location (Dupret et al., 2010). However, in all of these stud-
ies, goal locations were moved, rather than added as in the cur-
rent study, and were aimed at examining the influence of the goal
event on spatial mapping. By exploring the addition of goal loca-
tions to a preexisting and continuing representation of goal
events, we are able to observe the evolution of a schema for the
same behavior at multiple goal sites within an environment.

Our findings that cells change their firing patterns at both
original and new sites parallel several studies that have focused on
the spatial firing patterns of hippocampal place cells as animals
explore multiple environments with overlapping features. These
studies have shown that alterations in salient spatial or nonspatial
cues often result in a “partial remapping” of the spatial firing
patterns of hippocampal neurons, reflected in a combination of
subsets of place cells that maintain their spatial firing patterns
and other cells that cease firing or develop a new spatial firing
pattern. Partial remapping has been observed when spatial cues
are eliminated or reorganized (Shapiro et al., 1997), when rats
move between environments with identical local spatial cues (Sk-
aggs and McNaughton, 1998) and in the same environment when
task demands are changed (Markus et al., 1995). Partial remap-
ping could both distinguish experiences that share overlapping
features and bind related experiences via coding elements that are
common across representations (Eichenbaum, 1999). The
learning-induced partial remapping at the overtrained goal loca-
tions may be essential in maintaining the structure of original and
new location memories, and blocking this plasticity could result
in the reconsolidation deficits observed in many studies (Debiec
et al., 2002; Morris et al., 2006).

Other studies that have also included common stimuli or be-
havioral events in different places have observed hippocampal
neurons that fire in response to the common events. Wood et al.
(1999) reported similar firing patterns of hippocampal neurons
when rats sampled the same odors in different places while per-
forming a delayed non-match-to-sample task. Similarly, Singer et
al. (2010) reported “path equivalence” of spatial firing patterns of
hippocampal neurons as rats traversed separate but parallel seg-
ments of routes through a maze. Notably, in these experiments,
and in several others in which rats traversed a common path
segment while pursuing different trajectories (Frank et al., 20005
Wood et al., 2000; Ferbinteanu and Shapiro, 2003; Smith and
Mizumori 2006; Bahar and Shapiro, 2012), some neurons have
similar activity associated with the common events, whereas oth-
ers fire distinctly, thus disambiguating overlapping memories. In
monkeys (Hampson et al., 2004) and humans (Quiroga et al.,
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2005), neurons have been observed that fire similarly in response
to stimuli that are visually quite various but are similar in mean-
ing (e.g., a cell that fires to various views of the same famous
person and even the name of that person). Such “categorical”
(Hampson et al.,, 2004; Lin et al., 2005) and “invariant” (Quiroga
et al., 2005) firing patterns are consistent with the findings on
rodents indicating that hippocampal neurons can link between
related memories via common coding elements (Eichenbaum,
2004).

In the well-learned schema, the common coding of reward
sites was not at the expense of pattern separation, although this
was not the case for newly learned goal locations. The cells that
fired in the new goal learning were those that fired at other goal sites,
suggesting the incorporation of new cells into related networks. The
stronger correlation between the new and original goal locations
may share a common mechanism with the overrepresentation of the
escape platform in a water-maze paradigm (Hollup et al., 2001; Fyhn
et al., 2002). In those studies, when the goal was moved, some cells
that fired at the original goal locations shifted firing to the new goal
location, although only during the early phase of learning. Further-
more, just as we have reported, several of the cells had multiple fields
on the annular water maze. However, because the goal location was
moved—and not added—in the water-maze experiments, it is un-
clear whether cells in those studies came to relate the new and old
goal locations through common firing.

We observed that, although cells fire at multiple locations
duringlearning, the disambiguation of those locations takes days,
potentially involving processes of consolidation. These results are
reminiscent of previous studies that have shown that multiple
exposures can be necessary for CAl cells to distinguish arenas
that differ only by the color of a cue card (Bostock et al., 1991) or
remap in response to rotations of proximal and distal cues (Sha-
piro et al., 1997; Brown and Skaggs, 2002). When a rat must
choose between one of several well-learned trajectories through
the same space, the different trajectories are encoded by anti-
correlated representations in CA1 (Bahar et al., 2011), suggesting
that experience may increase the degree to which one represen-
tation suppresses competitors.

Common firing across locations was especially prominent
during running through goals compared with waiting in the same
locations. In mice (Kentros et al., 2004) and rats (Fenton et al.,
2010), goal-directed behavior increases the spatial information
(spatial discrimination) of hippocampal activity, and it has been
suggested that decreases in spatial information during foraging
may be attributable to multiple representations that are tran-
siently expressed (Harris et al., 2003; Jackson and Redish, 2007;
Kelemen and Fenton 2010; Jezek et al., 2011). Hok et al. (2007a)
observed that a large proportion of the cells are active when rats
run to an unmarked goal zone in an open arena and proposed
that the activity reflected a transient reward prediction signal
(Hok et al., 2007a,b). We also observed cell activity on arrival to
goal sites, although this activity clearly signaled more than the
possibility of reward because decoding of this activity led to the
best estimate of a rat’s location. It is unknown whether cell as-
semblies are composed of cells that fire in response to multiple
related events or whether the separate goals are encoded by cells
that can be part of distinct cell assemblies that are not simultane-
ously active. In either scenario, cell activity at multiple reward
sites during running, and potentially on arrival to the goals, may
reflect a decision-making process that requires transiently relat-
ing spatially separate events.

We hypothesize that learning in a familiar environment adds
new hippocampal neurons to a preexisting neural network to
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support the memory of the relationship to the new memory with
the old. The addition of new information to an existing schema
causes reorganization of related networks; in our case, those that
represent events at other goal locations. Learning also alters pre-
existing memory networks by incorporating new neurons into
the ensemble that is active during recall. The reorganization of
original memories to accommodate new information establishes
new meaningful relationships and also maintains the preexisting
similarities and differences of the original network. We propose
that consolidation of new memories within preexisting networks
is the reconsolidation of those existing networks, a process that
ultimately stores new and original relationships within a com-
mon schema (McClelland et al., 1995; Tse et al., 2007; McKenzie
and Eichenbaum, 2011).
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