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The Autonomic Brain: An Activation Likelihood Estimation
Meta-Analysis for Central Processing of Autonomic Function

Florian Beissner,'* Karin Meissner,? Karl-Jiirgen Bar,' and Vitaly Napadow?

'Pain and Autonomics Integrative Research, Department of Psychiatry and Psychotherapy, Jena University Hospital, 07743 Jena, Germany, Institute of
Medical Psychology, Ludwig-Maximilians-University, 80336 Munich, Germany, and *Athinoula A. Martinos Center for Biomedical Imaging, Department of
Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129

The autonomic nervous system (ANS) is of paramount importance for daily life. Its regulatory action on respiratory, cardiovascular,
digestive, endocrine, and many other systems is controlled by a number of structures in the CNS. While the majority of these nuclei and
cortices have been identified in animal models, neuroimaging studies have recently begun to shed light on central autonomic processing
in humans. In this study, we used activation likelihood estimation to conduct a meta-analysis of human neuroimaging experiments
evaluating central autonomic processing to localize (1) cortical and subcortical areas involved in autonomic processing, (2) potential
subsystems for the sympathetic and parasympathetic divisions of the ANS, and (3) potential subsystems for specific ANS responses to
different stimuli/tasks. Across all tasks, we identified a set of consistently activated brain regions, comprising left amygdala, right
anterior and left posterior insula and midcingulate cortices that form the core of the central autonomic network. While sympathetic-
associated regions predominate in executive- and salience-processing networks, parasympathetic regions predominate in the default
mode network. Hence, central processing of autonomic function does not simply involve a monolithic network of brain regions, instead

showing elements of task and division specificity.

Introduction
The autonomic nervous system (ANS) is involved in virtually
every aspect of our daily life. The motor arm of the ANS regulates
physiology within a variety of systems including respiratory, car-
diac, vasomotor, digestive, and endocrine (Janig, 2008). This
ANS outflow calibrates bodily reactions with contextually adap-
tive behavior to meet the metabolic demands of motor, emo-
tional, and cognitive challenges (e.g., Thayer and Lane, 2000;
Critchley, 2005). Some of the most important integrative control
centers for ANS functions are located in the brainstem and have
been studied extensively in animals. Much less, however, is
known about cerebral and cerebellar regions involved in auto-
nomic regulation. Nevertheless, a central autonomic network
(CAN) has been proposed based on observations from animal
experiments using electrical stimulation and from tracer studies
(Cechetto and Saper, 1990; Benarroch, 1993; Verberne and Ow-
ens, 1998; Saper, 2002).

Since the advent of noninvasive brain-imaging methods, a
direct measurement of such regions has become possible in hu-
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mans. A growing number of studies has investigated the role of
these regions in autonomic control during cognitive, affective,
and motor tasks, as well as during somatosensory and other
modes of bodily stimulation. Based on some of their findings, the
CAN has been approached from different perspectives. Some au-
thors have highlighted the independent roles of single CAN re-
gions, like the ventromedial prefrontal cortex (vmPFC), the
anterior cingulate cortex (ACC), and the insula (Critchley et al.,
2011), while others (Thayer and Lane, 2000) have emphasized
similarities between the CAN and other theoretical constructs,
like the anterior executive region of Devinsky et al. (1995) or the
neural substrate of Damasio’s “somatic marker hypothesis”
(Damasio 1998). A comprehensive interpretation of the results
obtained by imaging studies of autonomic CNS regions, how-
ever, is hampered by their large heterogeneity. Thus, a systematic
review of neuroimaging studies assessing the CAN in humans
seems timely.

We chose the meta-analytic activation likelihood estimation
(ALE) method (Turkeltaub et al., 2002) to evaluate commonly
activated regions across multiple studies. While a recent meta-
analysis focused on assessing brain activity associated with heart
rate variability (HRV) (Thayer et al., 2012), our aim was to per-
form a more comprehensive analysis, including all studies that
had measured an autonomic outflow metric in conjunction with
neuroimaging data. We evaluated the CAN across three task cat-
egories and two ANS outflow metrics. We also investigated the
hypothesis that different subregions of the CAN are specifically
involved in the sensory and motor control of the ANS when
humans are responding to specific stimuli. Furthermore, the
well-known dichotomy of a sympathetic and parasympathetic
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Table 1. Included ANS—fMRI studies with their stimuli and metrics

Stimuli/tasks Metrics
Somatosensory—
n Fod  Affective  motor Cognitive  EDA HFHRV  other

Fredrikson et al. (1995) 16 N X X
Hsieh et al. (1996) 4 10 X X
Critchley et al. (2000a) 6 34 X X X
Critchley etal. (2000b) 6 13 X X

Redouté et al. (2000) 9 7 X
Williams et al. (2001) n 4 X X

Ito et al. (2002) n 12 X
Critchley etal. (2003) 6 32 X X X

Kuniecki et al. (2003) 16 14 X X
Nagai et al. (2004b) 8 38 X

Petrovic et al. (2004) 7 2 X X

Williams et al. (2004) 2 10 X X

Critchley etal. (2005) 15 3 X X
Kimmerly et al. (2005) 8 12 X
Knight et al. (2005) 9 13 X X

Lemche et al. (2006) n 6 X

Macey etal. (2006) m 19 X X
Nicotra et al. (2006) 14 6 X X
Koelsch et al. (2007) 4 4 X X
Lagopoulos et al. (2007) 0 10 X X

Gamer et al. (2007) 14 5 X X

Marci etal. (2007) 0 12 X X X X
Napadow et al. (2008) 713 X X

Wendt et al. (2008) 32 7 X X

Evans etal. (2009) 14 12 X X
Harrison et al. (2009) 14 6 X
Kozel et al. (2009) 31 8 X X

Matsunaga et al. (2009) 12 16 X X

Mériau et al. (2009) 23 8 X X

Mobascher et al. (2009) 27 n X X

Suzuki et al. (2009) 12 26 X X
Urry etal. (2009) 26 2 X X X
Ziegler etal. (2009) 26 1 X
Fechiretal. (2010a) 6 22 X X X
Fechir et al. (2010b) 10 X
Harrison et al. (2010) 12 14 X X
Piché etal. (2010) 14 2 X X

Goswami et al. (2011) 12 8 X X X
Maihofner etal. (2011) 12 56 X X
Nugent et al. (2011) 7 24 X X X X
Beissner et al. (2012) 19 5 X X
Gray etal. (2012) 21 n X X
Napadow etal. (inpress) 18 39 X X X
Total 615 571 12 13 n 19 8 25

division of the ANS (Langley, 1903) that emanates from thoraco-
lumbal and craniosacral regions of the CNS, respectively, is
largely based on peripheral anatomy, but has been difficult to
establish for higher centers of the CNS. Therefore, we aimed to
resolve CAN subnetworks specific to these two important subdi-
visions of the ANS, and to gain insight into which subregions of
the sympathetic and parasympathetic CAN subdivisions are as-
sociated with the performance of specific tasks or responses to
specific stimuli.

Materials and Methods

Study selection. Our aims for the ALE meta-analysis were achieved by first
identifying functional brain imaging studies of healthy subjects that had
measured one or more peripheral autonomic signals. To identify relevant
studies, we performed a literature search in Medline using a logical con-
junction of the following three search terms: (1) a functional brain im-
aging modality, (2) the most relevant adjectives related to the autonomic
nervous system, and (3) autonomic signals typically measured in a neu-
roimaging environment. Functional brain imaging modalities included
positron emission tomography (PET), single-photon emission com-
puted tomography (SPECT), magnetoencephalography (MEG), and
functional magnetic resonance imaging (fMRI). For example, the search
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Figure 1. Results of the pooled analyses of all studies showing general brain regions in-
volved in autonomic processing. Prec, Precuneus; vPCC, ventral posterior cingulate cortex;
mdThal, mediodorsal thalamus; pgACC, pregenual ACC; VTA, ventral tegmental area; Hyp, hy-
pothalamus; SC, superior colliculus; PAG, periaqueductal gray; FIC, frontoinsular cortex; L, left;
R, right.

Table 2. ALE clusters of the pooled analysis of all studies

MNI coordinates (in

Max AE ™M)
Anatomical region Size (mm?®) LR score X y z
Midcingulate Cortex 7864 L/R 0.0283 2 0 40
Thalamus (medial— dorsal nucleus, 6024 L/R 0.0191 —4 =16 8

pulvinar), Superior colliculus/
periaqueductal gray

Amygdala, hypothalamus, ventral 4736 L 00271 -—-20 -6 —18
tegmental area
Anterior insula 3128 R 0.0193 32 18 6
Amygdala, hippocampal formation 2216 R 0.0160 20 -6 —18
Anterior insula 2040 L 00152 —36 22 0
Ventromedial prefrontal cortex, 1896 L/R 0.0168 —4 36 —24
subgenual anterior cingulate
cortex
Pregenual anterior cingulate cortex 1504 LR 0.0143 -2 5 =2
Angular gyrus, supramarginal gyrus 1344 R 0.0144 5 —48 22
Ventral posterior cingulate cortex, 1152 L/R 0.0169 -2 —64 10
precuneous cortex, lingual gyrus
Posterior insula 1064 L 00173 =32 —20 12
Frontoinsular cortex 1040 R 0.0151 46 32 —6

There were 43 studies, 616 subjects, 569 foci, 9.75 mm FWHM, and 1000 permutations. p << 0.01is the cluster-
forming threshold; p << 0.05 is the cluster threshold. L, Left; R, right.

term for fMRI studies was “(‘fMRI’ OR ‘functional magnetic resonance
imaging’) AND (‘autonomic’ OR ‘sympathetic’ OR ‘parasympathetic’
OR ‘vagal’ OR ‘vagus’) AND (‘heart rate’ OR ‘respiration’ OR ‘skin con-
ductance response’ OR ‘skin response’ OR ‘pupil’ OR ‘skin temperature’
OR ‘blood pressure’ OR ‘electrogastrography’).” In the other three
searches, “tMRI” was replaced by one of the remaining imaging modal-
ities (in full and abbreviation).

The literature search was performed on March 8, 2012, and identified 350
studies for fMRI, 125 for PET, 10 for MEG, and 90 for SPECT. All studies
subsequently underwent a selection process consisting of reading the articles’
methods sections and applying the following inclusion criteria: (1) func-
tional brain images and autonomic measures were acquired in the same
experimental session; (2) autonomic measures were used in the analysis for
reasons other than physiological noise correction; (3) only healthy subjects
were studied or their data were analyzed separately from patients’; (4) peak
coordinates of group-level activations were reported; and (5) image acquisi-
tion included at least cerebral and cerebellar cortex and the analysis was not
restricted to predefined regions of interest.

Following this selection process, 43 studies met the inclusion criteria
(32 fMRI, 11 PET, no MEG, no SPECT) and are listed in Table 1. The
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Figure 2.

overall number of subjects was 615 (303 male, 252 female, 60 unclear
from papers’ descriptions) contributing 571 activation foci to the ALE
analysis. Coordinates were extracted for each of these studies and entered
into the ALE analysis.

The methods used to include autonomic recordings in the analyses of
the functional imaging data were very diverse. However, the vast majority
of studies either correlated time courses of autonomic signals directly
with voxel time courses of the imaging data (23 studies) or used auto-
nomic recordings to confirm that their stimuli modulated autonomic
outflow (13 studies). The remaining seven studies either used parametric
designs, where stimulus time courses were weighted by the intensity of
the elicited ANS reaction, or conjunction designs, where the overlap of
stimulus- and ANS-related activation clusters was assessed.

Tasks and divisions. Studies were categorized under two main aspects,
namely, (1) tasks and stimuli (henceforth called “tasks”) used to elicit an
autonomic reaction and (2) the autonomic division predominantly driv-
ing the autonomic signal measured in the experiment (i.e., sympathetic
or parasympathetic).

For the first aspect, three categories were formed: (1) “cognitive” for
cognitively difficult or stressful tasks, like stroop, color word interfer-
ence, or n-back tasks, but also deception or guilty knowledge tasks known
to modulate the autonomic nervous system; (2) “affective” for emotional
(appetitive or aversive) videos, pictures, music, or words, but also fear
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Brain areas associated with sympathetic and parasympathetic regulation as assessed by electrodermal activity and
high-frequency heart rate variability. pgACC, Pregenual ACC; mdThal, mediodorsal thalamus; VTA, ventral tegmental area; M1,
primary motor cortex; MTG, medial temporal gyrus; STG, superior temporal gyrus; L, left; R, right.
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conditioning tasks; and (3) “somatosensory—
motor” for handgrip tasks, tactile stimulation,
acupuncture, and various pain induction
methods.

For the second aspect involving the divisions
of autonomic outflow, two categories were
formed: (1) “sympathetic” for studies using
electrodermal activity (EDA) or related metrics
for skin conductivity (Venables, 1991), like
galvanic skin response, skin conductance re-
sponse, as well as their latencies and deriva-
tives, and (2) “parasympathetic” for studies
using the high-frequency spectral component
of heart rate variability (HF-HRV) (Acharya et
al,, 2006). Although several metrics were used
in the original studies, we chose to include only
EDA and HF-HRV due to their clear interpret-
ability in terms of representing the sympathetic
and parasympathetic division of the autonomic
nervous system: EDA is generally considered a
purely sudomotor, sympathetic metric (Ven-
ables, 1991), whereas HF-HRYV is regarded as a
purely cardiovagal, parasympathetic metric
(Acharya et al., 2006). It should also be men-
tioned that preejection period and muscle
sympathetic nerve activity (MSNA) are un-
equivocal sympathetic measures, too, but no
studies using these methods met our inclusion
criteria. All studies were classified by two of the
authors (F.B. and V.N.) and, if possible, allocated
to one or more categories. This process yielded 11
studies for cognitive, 12 for affective, 13 for so-
matosensory—motor, 19 for sympathetic, and 8
for parasympathetic (Table 1).

To ensure independence of tasks and divi-
sions (e.g., studies with cognitive tasks did not
all cluster to include sympathetic metrics), the
Freeman—Halton extension of the Fisher exact
probability for a two-by-three contingency
table was calculated. Its nonsignificance (p =
0.30) suggested meaningful independent anal-
ysis of tasks and divisions.

ALE. We used activation likelihood estima-
tion (Turkeltaub et al., 2002), a voxel-based
meta-analysis tool, to test for commonly acti-
vated regions across studies. All ALE-related
calculations were carried out in GingerALE 2.3
(http://www.brainmap.org/ale/; Research Imaging Center, University of
Texas, San Antonio, TX) using the nonadditive ALE algorithm (Turkel-
taub et al., 2012). For conjunction analyses (see below, Conjunction
analyses), we additionally used the FSLMATHS and CLUSTER tools of
FSL 5.0.1 (http://fsl.fmrib.ox.ac.uk/; FMRIB, Oxford, UK).

Because some studies reported coordinates in Talairach space, whereas
others (the majority) in Montreal Neurological Institute (MNI) space,
coordinates reported in Talairach space by any included study were
transformed to MNI space using the inverse of the icbm2tal transform
(Lancaster et al., 2007), before the ALE analysis.

The ALE procedure consisted of the following steps: (1) modeling of
single-study activation foci as peaks of three-dimensional Gaussian
probability densities with subject-based full-width at half-maximum val-
ues (Eickhoff et al., 2009); (2) summation of probability densities to
produce a statistical map estimating the likelihood of activation at each
voxel; (3) thresholding of this ALE map based on the null hypothesis of a
uniform distribution of foci; (4) correcting for multiple comparisons by
permutation-based thresholding of the maximum cluster size (Friston et
al., 1994).

We used a cluster-forming threshold of p < 0.05 and a cluster-level
threshold of p < 0.05 for all tests except Analysis 1, where significantly
higher power involved in combining all 43 studies allowed for a threshold

z=14

z=-24
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Table 3. ALE clusters associated with sympathetic and parasympathetic regulation

Beissner et al. @ The Autonomic Brain

MNI coordinates (in mm)

Anatomical region L/R Size (mm?) Max. ALE score X y z

Sympathetic
Midcingulate cortex, paracingulate cortex, supplementary motor area L/R 15,408 0.0190 0 10 40
Supramarginal gyrus, superior parietal lobule, primary somatosensory cortex R 8624 0.0128 48 —26 46
Amygdala, subgenual anterior cingulate cortex, nucleus accumbens, caudate, hippocampal formation L 4784 0.0114 —20 -8 —12
Ventromedial prefrontal cortex, pregenual/subgenual anterior cingulate cortex L/R 4384 0.0129 -2 38 —18
Anterior insula, ventrolateral prefrontal cortex R 3912 0.0125 44 18 —6
Thalamus (medial— dorsal nucleus), nucleus ruber, periaqueductal gray L/R 3856 0.0094 —4 —16 6
Supramarginal gyrus, superior parietal lobule, primary somatosensory cortex L 3432 0.0085 —44 —36 v}
Secondary somatosensory cortex, posterior insula, putamen L 3176 0.0099 —-32 —20 14
Cerebellum (lobulus crus ) L 312 0.0122 —46 —66 —-28
Dorsolateral prefrontal cortex R 2984 0.0088 20 36 34

Parasympathetic
Hippocampal formation R 8416 0.0096 30 —22 —16
Amygdala, ventral tegmental area, hypothalamus L 5784 0.0124 —20 —6 —18
Anterior insula, caudate L 5376 0.0072 —40 0 12
Precuneus, dorsal posterior cingulate cortex L/R 5360 0.0084 —6 —44 34
Primary motor cortex, temporal pole L 5176 0.0115 —56 6 8
Medial temporal gyrus, superior temporal gyrus R 4024 0.0071 50 —24 2
Supramarginal gyrus, angular gyrus R 4008 0.0078 44 —38 14
Cerebellum (lobuli VI and vermis VI) L 3960 0.0070 =10 —62 —20
Anterior insula R 3752 0.0072 40 2 12

There were 19 studies, 296 subjects, and 172 foci, 9.57 mm FWHM, for EDA; 8 studies, 106 subjects, and 94 foci, 10.00 mm FWHM, for HF-HRV; and 1000 permutations. p << 0.05 is the cluster-forming threshold and the cluster threshold.

L, Left; R, right.

of p < 0.01 to be used for cluster forming, pro- mcc/
viding for greater localizing power. The number Pt
of permutations was 1,000 for all calculations of

simple ALE maps.

The following ALE meta-analyses were cal- Cognitive

SPL

culated. Analysis 1 is a pooled analysis of all 2=46

studies, independent of their categorization to
form a group map of brain areas generally
involved in autonomic regulation. This can
be considered a liberal interpretation of the °
CAN. Analysis 2 uses group maps for brain
regions associated with activity in both the

pMCcC

Affective

sympathetic and parasympathetic divisions z=40

of the ANS. Analysis 3 uses group maps for moc
brain regions supporting ANS outflow for all

three task categories (somatosensory—mo-

tor, affective, cognitive). -

The results of Analysis 3 were calculated as a
prerequisite for conjunction analyses (see be-
low) and therefore not reported. In addition,
for Analyses 1 and 2, we were interested in
hemispheric differences, which we assessed by
converting the thresholded ALE maps to z sta-
tistic maps and contrasting the original map
with its right-left flipped version. A p value of
0.05 was considered significant. Note that we
did not apply a correction for multiple com-
parisons to the laterality tests. This is because
we had already established a significant activation in these regions, and
the right-left difference is orthogonal to the bilateral effect per se.

Conjunction analyses. Using the results of the analyses detailed above,
we also performed two conjunction analyses. These analyses used the
conjunction null hypothesis (Nichols et al., 2005) and tested for brain
areas that were activated in all conditions under consideration. We cal-
culated the overlap of thresholded ALE maps, again applying a minimum
cluster size of 100 mm>. The two conjunction analyses were as follows:
Analysis 4 used conjunction analyses for each task type and each ANS
division to identify sympathetic and parasympathetic contributions to
CAN modulatory regions observed for different tasks. Analysis 5 used a
conjunction across all three task categories to identify regions mediating
autonomic activity regardless of the task used to stimulate ANS outflow.

Somatosensory-
motor dPCC

Figure 3.
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Conjunction analyses for three common task categories and the two ANS division to identify sympathetic and para-
sympathetic contributions to CAN modulatory regions observed for different tasks. pSMA, Presupplementary motor area; pMCC,
posterior MCC; SI, primary somatosensory cortex; Thal, thalamus; mdThal, mediodorsal thalamus; VTA, ventral tegmental area;
Hyp, hypothalamus; PAG, periaqueductal gray; L, left; R, right.

This provided a more specific interpretation of the CAN compared to
Analysis 1.

Results

The pooled analysis of all studies (Analysis 1, 43 studies, 615
subjects, 571 foci) revealed a widespread network of cortical and
subcortical regions consisting of ACC; midcingulate cortex
(MCC); ventral posterior cingulate cortex; thalamus; bilateral
anterior (aINS), left posterior (pINS), and right frontal insular
cortices; vimPFC; bilateral amygdala; right hippocampal forma-
tion (HF); hypothalamus; midbrain and brainstem regions; and a
lateral parietal area comprising parts of the right angular (AG)
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Table 4. ALE clusters of the conjunction analyses for the three task types and the two ANS divisions showing sympathetic and parasympathetic contributions to CAN

modulatory regions observed for different tasks

MNI coordinates (in mm)

Anatomical region L/R Size (mm?) Max. ALE score X y z
Cognitive and sympathetic
Midcingulate cortex, paracingulate cortex, supplementary motor area L/R 7960 0.0120 -2 16 44
Anterior insula, frontal operculum, temporal pole R 1752 0.0078 48 18 —6
Cerebellum (lobulus crus 1) L 1648 0.0106 —46 —64 —26
Secondary somatosensory cortex, posterior insula L 1576 0.0092 —38 —12 12
Ventromedial prefrontal cortex, subgenual anterior cingulate cortex L/R 1352 0.0088 —4 38 —16
Superior parietal lobule, supramarginal gyrus L 1304 0.0077 —32 —48 'y}
Amygdala L 656 0.0051 —22 -8 —16
Cognitive and parasympathetic
Amygdala L 480 0.0051 =22 -8 —16
Anterior insula R 400 0.0054 34 20 4
Affective and sympathetic
Amygdala L 3184 0.0114 —20 -8 —12
Supramarginal gyrus, primary somatosensory cortex R 2752 0.0089 48 —26 44
Posterior midcingulate cortex L/ 2616 0.0084 4 0 48
Anterior insula, ventrolateral prefrontal cortex R 2496 0.0103 38 24 —20
Secondary somatosensory cortex, posterior insula, putamen L 1872 0.0084 —18 —16 18
Thalamus (mediodorsal nucleus) L 968 0.0072 —6 —-12 4
Supramarginal gyrus, angular gyrus, superior parietal lobule R 624 0.0067 38 —46 36
Affective and parasympathetic
Amygdala L 3920 0.0124 -20 —6 —18
Hippocampal formation, amygdala R 2840 0.0095 30 -22 —16
Anterior insula, caudate L 2192 0.0071 —30 26 8
Anterior insula R 2184 0.0071 44 12 6
Somatosensory—motor and sympathetic
Midcingulate cortex L/R 5392 0.0165 2 12 40
Amygdala, hippocampus L 944 0.0082 —18 -8 —16
Supramarginal gyrus, angular gyrus R 784 0.0080 58 —40 22
Supplementary motor area L 704 0.0086 =10 4 62
Secondary somatosensory cortex, posterior insula L 664 0.0086 —34 —20 14
Red nucleus, periaqueductal gray L/R 624 0.0057 -2 —16 -8
Ventromedial prefrontal cortex, pregenual/subgenual anterior cingulate cortex L 464 0.0061 —4 38 12
Ventromedial prefrontal cortex, pregenual/subgenual anterior cingulate cortex R 352 0.0059 8 42 —6
Somatosensory—motor and parasympathetic
Precuneus, dorsal posterior cingulate cortex L/R 2856 0.0076 —6 —42 32
Amygdala, ventral tegmental area, hypothalamus L 2176 0.0083 —18 -8 —16
Anterior insula R 1984 0.0072 40 2 12
Anterior insula L 1304 0.0072 —40 0 12
Angular gyrus R 1104 0.0063 58 —50 22
Hippocampal formation R 1024 0.0055 22 -12 —20
Cerebellum (lobulus vermis V) R 144 0.0055 -2 =72 —24

There were 11 studies, 145 subjects, and 165 foci for cognitive stimuli/tasks; 12 studies, 230 subjects, and 107 foci for affective stimuli/tasks; 13 studies, 136 subjects, and 245 foci for somatosensory—motor stimuli/tasks; 19 studies, 296

subjects, and 172 foci for EDA; and 8 studies, 106 subjects, and 94 foci for HFHRF. L, Left; R, right.

and supramarginal gyrus (SMG) (Fig. 1; Table 2). Hemispheric
differences were found for the amygdala (left > right).

Brain areas associated with sympathetic regulation (Analysis
2,19 studies, 296 subjects, 172 foci) were ACC, MCC, paracingu-
late cortex, thalamus, right aINS, left pINS, vmPFC, left
amygdala, left HF, right SMG, left primary (S1) and secondary
(S2) somatosensory cortex, supplementary motor area (SMA),
bilateral superior parietal lobule (SPL), ventrolateral (vIPFC) and
right dorsolateral (dIPFC) prefrontal cortices, midbrain, and left
cerebellum (Fig. 2; Table 3). No hemispheric differences were
found.

In contrast, regions of parasympathetic regulation (Analy-
sis 3, 8 studies, 106 subjects, 94 foci) comprised the dorsal
posterior cingulate cortex (dPCC)/precuneus, bilateral aINS,
left amygdala, right HF, right SMG/AG, left primary motor cor-
tex, right medial and superior temporal gyri and left temporal
pole, hypothalamus, midbrain, and left cerebellum (Fig. 2; Table
3). Here, once again, hemispheric differences were found for the
amygdala (left > right).

We also investigated conjunctions of tasks and ANS divisions
[Analysis 4, using foci for cognitive (11 studies, 145 subjects, 165
foci), affective (12 studies, 230 subjects, 107 foci), and somato-
sensory—motor (13 studies, 136 subjects, 245 foci), as well as foci
reported for Analyses 2 and 3 above]. Regions associated with
sympathetic outflow included MCC, right aINS, left pINS,
vmPFC/subgenual ACC (sgACC), left SPL, left amygdala, and left
cerebellum for cognitive tasks; MCC, right aINS, left pINS, right
SMG/AG, left amygdala, and left thalamus for affective tasks; and
MCQC, left pINS, vimPEC/sgACC, right SMG/AG, left amygdala/
HF, and periaqueductal gray for somatosensory—motor tasks
(Fig. 3; Table 4). For parasympathetic outflow, we found right
aINS and left amygdala to be associated with cognitive tasks;
bilateral aINS, left caudate, left amygdala, and right HF with af-
fective tasks; and dPCC, bilateral aINS, right AG, left amygdala,
right HF, and ventral tegmental area for somatosensory—motor
tasks.

Conjunction analysis of all task categories (Analysis 5) showed
four regions to be consistently involved in autonomic regulation
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Figure4.  Core regions of the CAN as revealed by a conjunction analysis of autonomic mod-

ulatory regions across the three task categories. L, Left; R, right.

across tasks (Fig. 4), namely, the posterior MCC (MNI coordi-
nates, x = 4,y = 0, z = 48), left amygdala (—22, —8, —16), right
aINS (34, 20, 4), and left pINS (—32, —18, 12). It should also be
noted that a cluster in the pregenual anterior cingulate cortex
extending to the vmPFC was just under threshold for the affective
task category and thus for the conjunction map across all tasks.

Discussion

Several regions identified by our human neuroimaging meta-
analysis are fully consistent with a central autonomic network as
proposed by many authors based on the results of animal exper-
iments (Cechetto and Saper, 1990; Benarroch, 1993; Verberne
and Owens, 1998; Saper, 2002). For instance, the results of the
pooled analysis (Fig. 1) show anterior and midcingulate cortices,
insula, ventromedial prefrontal cortex, mediodorsal thalamus,
amygdala, HF, and hypothalamus as component regulatory areas
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of this network. Other regions, however, such as the angular
gyrus, pulvinar, and precuneus, have been less often reported in
this context and should be explored in more detail by future
studies to better understand their role in regulating the ANS.

Separate analyses of the brain regions supporting sympathetic
and parasympathetic regulation (Fig. 2) revealed largely diver-
gent networks. Sympathetic regulation mainly involved prefron-
tal, anterior, and midcingulate, right ventral anterior insular and
left posterior insular cortices, while parasympathetic regulation
involved PCC, lateral temporal cortices, bilateral dorsal aINS, and
HE. Importantly, the few regions that showed a dual role as both
sympathetic and parasympathetic regulation centers included the
left amygdala, right inferior parietal lobule, and a small area in right
aINS, where the ventral sympathetic and dorsal parasympathetic
clusters overlapped.

Concerning task specificity, our analysis revealed divergent
networks for each task category (Fig. 3). We found a predomi-
nance of sympathetic regions in cognitive tasks consistent with
the important role the sympathetic nervous system plays in cognitive
stress (Anderson et al., 1991). Affective and somatosensory—motor
tasks, in contrast, showed a more balanced contribution of sympa-
thetic and parasympathetic regions. While each network had its
distinctive features, we were more interested in the consensus re-
gions mediating autonomic activity across tasks. As the pooled anal-
ysis (Fig. 1) detected any region reported by a sufficient number of
studies, regardless of task, we conducted a conjunction analysis of
the three task categories to identify a more specific set of regions. This
analysis revealed four regions, which we posit to be the core of
the central autonomic network (Fig. 4). They comprised the MCC,
the right aINS, the left pINS, and the left amygdala. Among these, the
amygdala was the only region with both sympathetic and parasym-
pathetic regulatory function.

The amygdala is best known for its role in emotional process-
ing, especially in the evaluation of aversive stimuli (Weiskrantz,
1956; LeDoux, 1992), which is consistent with a strong linkage to
sympathetic regulation. More recent work has focused on deter-
mining the amygdala’s role in regulation or modulation of cog-
nitive functions, including attention, perception, and explicit
memory (Ledoux, 2007). Its involvement in parasympathetic
regulation, however, is an interesting and new finding that may
reflect the need for balancing both increased sympathetic and
decreased parasympathetic outflow in response to aversive stim-
uli. Furthermore, left lateralization of amygdala function, as
noted in our results, has been shown before in the context of
emotion processing (Morris et al., 1998; Wager et al., 2003), es-
pecially, when subjects were aware of the presented stimuli. Left
dominance was also described by Thayer et al. (2012) in their
meta-analysis of HRV-related brain activity.

The insula is a functionally heterogeneous structure and has
been shown previously to consist of at least three functional sub-
regions exhibiting differential connectivity with the cingulate
cortex (Deen et al., 2011). Its involvement in autonomic func-
tions and interoceptive feedback has been studied extensively
(Critchley et al., 2000a; Craig, 2002). Our results suggest different
autonomic roles for left and right, anterior and posterior, as well
as dorsal and ventral portions of the insula. While the dorsal aINS
was bilaterally associated with parasympathetic regulation, the
right ventral aINS showed sympathetic predominance extending
to the adjacent frontal operculum (Fig. 2). Interestingly, previous
meta-analyses found that while dorsal aINS was associated with
cognitive processing, ventral aINS was associated with affective/
emotional processing (Kurth et al., 2010). Moreover, although no
explicit lateralization was found in our analysis for regions other
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than amygdala, the results of Analyses 2 and 4 support previous
theories of functional specialization of the right anterior insula as
a sympathetic regulatory center (Craig, 2005; Cechetto and Shoe-
maker, 2009). However, as some authors noted for the case of
emotional responses (Hagemann et al., 2003; Wager et al., 2003),
the hypothesis of a more generalized left/right dichotomy with
respect to forebrain (and insular) (Craig, 2005) specialization in
parasympathetic/sympathetic regulation is probably untenable.

Like the insula, the cingulate cortex is a functionally and struc-
turally heterogeneous structure (Vogt et al., 1992). Three of the
four major subregions that have been proposed to describe its
different functions were found to be involved in autonomic reg-
ulation by our study, namely, the ACC, MCC, and PCC, with the
largest cluster in the MCC. Anterior regions (ACC, MCC) were
primarily associated with sympathetic, while posterior regions
(PCC) were associated with parasympathetic outflow. Interest-
ingly, the overlap of cingulate clusters between our different
ANS-linked task categories was surprisingly small. The only re-
gion that was involved in ANS regulation for all tasks was the
posterior MCC, an area usually reported in the context of cuta-
neous nociception (Vogt, 2005), response selection, and skeleto-
motor body orientation (Devinsky et al., 1995).

Our results can also be interpreted from the perspective of
known large-scale brain networks. For instance, Fox et al. (2005)
suggested in their influential paper that the activity of the brain at
rest can be divided into a task-negative and a task-positive net-
work that are temporally anticorrelated. The former is now
widely known as the default mode network (DMN) (Raichle et
al., 2001; Buckner et al., 2008); the latter consists of at least three
subnetworks that vary in nomenclature. For example, Power et al.
(2011) differentiated a dorsal attention network, a frontoparietal
control network, and a cingulo-opercular task control system.
Similarly, Seeley et al. (2007) differentiated the task-positive net-
work into a central executive network (Selemon and Goldman-
Rakic, 1988; Beckmann et al., 2005) and a salience network
(Mufson and Mesulam, 1982; Seeley et al., 2007). As Figure 2 and
Table 3 demonstrate, most of the DMN regions involved in auto-
nomic processing (PCC, LTC, HF, and IPL) show a predilection
toward parasympathetic regulation. A notable exception was the
vmPFC, often considered a DMN region. However, the ventral por-
tion of the vmPFC that contains a significant sympathetic regulation
cluster has been suggested to belong to a separate “limbic” network
rather than the DMN itself (Yeo et al., 2011). In stark contrast, most
regions of the task-positive networks involved in autonomic regula-
tion showed sympathetic predominance (dIPFC, vIPEC, aINS,
MCC, and SPL). Together, these findings support divergent CAN
subregions for regulating the sympathetic versus parasympathetic
divisions of the ANS (Cannon, 1929; Recordati, 2003). The para-
sympathetic system prepares the body for internal physiological ac-
tivity, thus the connection with the DMN, whose functional
correlates are usually ascribed to self-referential cognition (Buckner
et al., 2008). The sympathetic nervous system, in contrast, orches-
trates bodily functions aimed at interacting with the external
environment, which explains the colocalization of sympa-
thetic regulatory regions with task-positive (sub)networks.

Interestingly, a linkage between DMN activity and autonomic
regulation has been described in several previous studies (Nagai et
al., 2004a; Wong et al., 2007; Dhond et al., 2008). Parasympathetic-
modulatory brain regions were identified in our analysis by studies
adopting HE-HRYV, a cardiovagal metric. Previous studies have
found that posterior portions of the DMN are particularly sensi-
tive to physiological (cardiorespiratory) artifact correction algo-
rithms (Khalili-Mahani et al., 2013), underscoring the important
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neurophysiological role of brain regions such as the PCC in car-
dioautonomic modulation.

In general, the interdependence of brain regions previously
thought to subserve cognitive or executive associative brain func-
tions with those found by our study as relating to central auto-
nomic modulation raises several provocative possibilities. For
instance, a nonnegligible component of the neuronal activity pre-
viously attributed in neuroimaging experiments to cognitive or
executive control functions may instead (or in addition) signal
medullary premotor nuclei underlying autonomic processing
that calibrates bodily reactions with contextually adaptive behav-
ior appropriate for these “higher” order functions (Thayer and
Lane, 20005 Critchley, 2005).

Some limitations need to be discussed. Our meta-analysis did
not differentiate between increases and decreases, or positive and
negative correlations, of the PET and fMRI signals associated
with sympathetic/parasympathetic activity. A more precise ap-
proach would be to form four categories, one for each combina-
tion of BOLD activation/deactivation and increase/decrease of
the autonomic metric. However, given the low number of avail-
able studies, this would have precluded a meaningful meta-
analysis at this time. Furthermore, our choice of EDA as the
sympathetic metric and HF-HRV as the parasympathetic metric
cannot rule out the possibility that some of our results were in-
fluenced by organ-specific autonomic systems (i.e., skin vs
heart). Finally, although we chose to exclude studies from our
meta-analysis that recorded brain imaging and ANS data in dif-
ferent experimental sessions (Kingetal., 1999; Dalton et al., 2005;
Macefield et al., 2007; Wong et al., 2007; Burton et al., 2009;
Sander et al., 2010; Gianaros et al., 2012), it should be noted that
many of these studies reported brain areas (amygdala, cingulate,
insular, and prefrontal cortices, etc.) consistent with our descrip-
tion of the central autonomic network.

In conclusion, our human neuroimaging meta-analysis iden-
tified a set of consistently activated brain regions, comprising the
left amygdala, right anterior and left posterior insular, and
midcingulate cortices that form the core of the CAN. The sym-
pathetic and parasympathetic divisions have largely divergent
regulatory networks differentially involved in affective, cognitive,
and somatosensory—motor tasks.
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