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Abstract
Genome wide association studies (GWAS) have identified numerous single nucleotide
polymorphisms (SNPs) that are associated with a variety of common human diseases. Due to the
weak marginal effect of most disease-associated SNPs, attention has recently turned to evaluating
the combined effect of multiple disease-associated SNPs on the risk of disease. Several recent
multigenic studies show potential evidence of applying multigenic approaches in association
studies of various diseases including lung cancer. But the question remains as to the best
methodology to analyze single nucleotide polymorphisms in multiple genes. In this work, we
consider four methods—logistic regression, logic regression, classification tree, and random
forests—to compare results for identifying important genes or gene-gene and gene-environmental
interactions. To evaluate the performance of four methods, the cross-validation misclassification
error and areas under the curves are provided. We performed a simulation study and applied them
to the data from a large-scale, population-based, case-control study.
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Introduction
Genome-wide association studies (GWA) have identified numerous single nucleotide
polymorphisms (SNP) that are associated with a variety of common human diseases. For
many diseases, multiple disease-associated SNPs have been discovered [Davis et al. 2010;
Kathiresan et al. 2009; Meigs et al. 2008; Morrison et al. 2007]. The marginal effect of these
disease-associated SNPs, however, is generally quite modest, and so individual disease-
associated SNPs are not very useful for predicting the risk of disease. Because of the weak
marginal effect of most disease-associated SNPs, attention has recently turned to evaluating
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the combined effect of multiple disease-associated SNPs on the risk of disease. As
knowledge regarding genetic susceptibility to common diseases has increased, interactions
among genetic variants, as well as gene-environmental interactions and epigenetic
processes, are likely to play a significant role in determining susceptibility to the diseases. In
the past, the majority of studies have been single-gene studies, which directly test the effects
of only a single nucleotide polymorphism (SNP) in a candidate gene on disease development
[Hook et al. 2011; Sobrin et al. 2011; Dong et al., 2008; Jo et al., 2008; Houlston et al.,
2004].

More recently, researchers have acknowledged that lung cancer is a multigenic disease that
is more likely associated with the combined effects of multiple genes, not a single gene
effect. Several recent studies have shown the potential of applying multigenic approaches in
association studies of various diseases [Scherer et al. 2011; Heit et al. 2011; Cote et al.,
2009; Kathiresan et a. 2008; Schwartz et al. 2007; Gerger et al. 2007; Imyanitov et al. 2004].
The question remains as to the best methodology to analyze SNPs in multiple genes. In this
work, we consider four methods - logistic regression [Cote et al., 2009], classification tree
[Brieman et al. 1984], random forests [Breiman 2001], and logic regression [Ruczinski et
al., 2003] - to compare the results for identifying important genes or gene-gene and gene-
environmental interactions. Logistic regression models have been most popularly used in
measuring the association between the susceptibility of a disease and genetic and/or
environmental risk factors. However, traditional parametric statistical analyses become more
difficult and often inefficient for investigating interactions because the number of
polymorphisms leads to a dramatic increase in the number of interaction terms requiring a
large study population and the need to address multiple comparisons.

To deal with increasing amounts of information from SNPs, nonparametric methods offer a
possible alternative. Classification and regression tree methods (CART) are the most
commonly used nonparametric methods that require no distributional assumptions. CART
uses tree building methods, a form of binary recursive partitioning, and classifies subjects or
predicts the outcome by selecting the most important genetic and environmental risk factors
available from the study population. This method is becoming more widely used in cancer
research [Goel et1 al., 2009; Wang et al., 2007; Toschke et al., 2005; Lemon et al., 2003;
Zhang et al. 2000]. Nonetheless, the tree models are highly unstable to small changes in the
data, the major drawback of CART analysis. Due to the instability, each tree shows highly
varied predictions, and interpretation can be severely affected by the random variability of
the data. An alternative to solving the problem of instability is ensemble methods such as
bagging, boosting, and random forests. The methods depend on many sets of trees rather
than a single tree. In the random forest method, introduced by Breiman, each tree is built
based on recursive partitioning, and the prediction is made on the average of an ensemble of
trees rather than of a single tree. A growing number of applications of random forests
indicate a wide range of application areas in cancer research [Wu et al., 2011; Rizk et al.,
2010; Buness et al., 2009; Abrahantes et al., 2008]. A fourth method, logic regression, is an
adaptive (generalized) regression methodology to find predictors that are Boolean (logical)
combinations of the original predictors. Since Ruczinski [2003] proposed this approach,
several studies have applied logic regression methods to identify important SNP interactions
[Kooperberg et al., 2006, 2005, 2001; Ruczinski et al., 2004].

The goal of these analyses is to provide a comprehensive comparison among four methods:
logistic regression, classification tree method, random forests, and logic regression, and
apply these methods to a moderate sized case-control study of lung cancer in women. The
statistical analysis of interactions using these four methods is explained in the next section,
and then model validation methods are discussed. To investigate advantages and
disadvantages of those four methods, we conducted a simulation study involving the
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interaction effects among binary outcomes representing SNPs and environmental factors.
Then we applied the methods to a case-control study to identify important, higher-order,
multiplicative interactions for identifying lung cancer risk. The data used in this work came
from a population-based study in metropolitan Detroit and were analyzed using four
methods. To evaluate the performance of the four methods, we used cross-validation
methods and areas under the curves. Finally, we discuss methodological and practical issues
encountered when using these methods in a case-control study setting.

Materials and Methods
Statistical Methods for Analysis of Interactions

Assuming that we want to identify important main or interaction effects among genetic and
environmental risk factors, when the response variable (Y) is the disease phenotype to be
predicted by multiple effects, (X1, …, Xk), a traditional logistic regression model can be
considered. The logistic model including both single factors and two-way interactions terms
of genetic and environmental factors is,

where p is the probability that disease status = 1 for given values of the predictors. To find
the most parsimonious model that explains the data, we performed a model building
procedure by using forward selection that included both 7 environmental risk factors (age,
BMI, pack-years of cigarette smoking, education, history of obstructive lung disease, family
history of lung cancer, and hormone replacement therapy) and 11 candidate genotypes. To
assess which single factor and interaction risk factors were important and whether the
addition of genotype information into this model would improve the fit, we used the
likelihood ratio test to calculate the statistical significance of nested models as new terms
were added. Even though a logistic regression model is the most popular model to analyze
the association between discrete responses and multiple predictor variables, the traditional
logistic models have a few fundamental limitations in multigenic studies. First, when the
number of main effects increases, the number of interaction terms shows a dramatic
increase, which results in loss of power because of large degrees of freedom. Furthermore,
the magnitude of the interaction effect in nonlinear models does not equal the marginal
effect of the interaction term, and its statistical significance is not calculated by standard
software. Analysis based on subsets of the predictors can be used to improve power because
there are fewer degrees of freedom. A tree-based method and logic regression are
alternatives to the traditional logistic regression analysis. Tree-based methods [Breiman et
al. 1984] employ a multistage decision process that attempts to identify a strong relationship
between input values (predictive variables) and target values (response variable).

Unlike the logistic regression, tree-based methods do not assume a prespecified relationship
between the response and predictors. A tree-based method generates primarily the
classification tree on the predictor variables, which are constructed by recursively
partitioning the data into successively more homogeneous subsets with respect to the
variables of interest. The most discriminative variable is selected to partition the dataset into
subsets, and partitioning is repeated until the nodes are homogeneous enough to be terminal.
The output is a tree diagram with the branches determined by the splitting rules and a series
of terminal nodes that contain the response frequency. The tree-building process leads to the
terminal nodes (or leaves) when the nodes cannot be divided anymore and need to be pruned
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to avoid overfitting and to increase efficiency. The Gini criterion was used to express the
decrease in the node impurity function. The Gini index is one of the most commonly used
tree-building criteria with entropy (or information gain) to measure node impurity for
categorical target values, especially for the categorical target values. The Gini index
measures purity of categorical data, which equals 0 for a pure node. The Gini index can be

obtained by  where Pj is a relative frequency of class j in a node.

The splitting process is repeated on each of the two resulting regions of the previous step
and continues until the stopping rule stops the process. This large tree is pruned using cost-
complexity pruning. The biggest drawback of a tree method is that they are instable for the
small changes in observations. More accurate predictions can be obtained by combining
many suitably chosen trees, or tree-based ensembles. Breiman [2001] proposed a random
forest that is an ensemble method that fits many classifications of trees resampled by the
bootstrap method and then combines the predictions from all the trees. Classification tree
approaches use all predictors and all individuals to make a single tree, but random forests
make a forest of many trees (ntree), which are based on a random selection of predictors
(mtry) and individuals by using the bootstrap resampling method. Thus, random forests are
an average of multiple classification trees. Error rates are computed for each observation by
using the out-of-bag predictions and then averaged over all observations. Because the out-
of-bag observations are not used in fitting the trees, the out-of-bag estimates are essentially
cross-validated accuracy estimates. We want the smallest set of SNP-SNP and SNP-
environment interactions to achieve good diagnostic ability.

Variable importance finds the most relevant predictors. At each split of each tree, a variable
contributed to the importance of the impurity measure. We accumulate the reduction of the
impurity measure to find a measure of relative importance of the variables. We permute the
predictor values of the OOB sample at every tree; the accumulation of resulting decrease in
prediction accuracy over all trees is also a measure of importance. The variable importance
of Xj in a tree t is the difference of the number of correct predictions with between-predictor
variables including the original variable Xj and predictor variables including the permuted
variable Xj* for the out-of-bag observations. Let i be the subject index, j be the variable
index, and B(t) be the out-of-bag observations for a tree t, with t ∈ {1,…,ntee}.

Then the variable importance of variable Xj in tree t (VI(t) (Xj)) is

where  is the prediction based on the variables including the original variable Xj for

observation i, and  is the prediction based on the variables including the permuted
variable Xj* for observation i. Then the variable importance of each variable is computed by
averaging over all trees. Thus, the variable importance indicates how much the original
association with the response is broken after randomly permuting the predictor Xj. The
variable with higher variable importance indicates the more importance among variables
used in random forests. Variable importance is used to find the smallest set of predictor
variables to achieve good prediction ability [Strobl et al., 2009; Alvarez et al., 2005; Hastie
et al. 2001]. Ruczinski [2003] proposed a logic regression that is an adaptive regression
methodology that aims to find combinations of binary variables that are highly associated
with an outcome. Let X, …, Xk be binary variables, and Y be a response variable.
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The logic regression model is of the form,

where g(·) is a link function relating the response variable and the related covariates, βi, i =
0,…, p and βi+p, i = 1,…, q are regression parameters, Zi are additional confounders, and Li
is a Boolean expression of the binary predictors Xjs. The link function can be a linear
regression for continuous outcomes and logit function for binary outcomes. An example of a
Boolean expression is X3 ∧ X4, which indicates an interaction between two variables of X3
and X4, and [(X1 ∩ X2) ∪ (X3 ∩ X19)], which expresses a combined information of two
interactions: X1 and X2, and X3 and X19. Therefore, the logic regression is simply a
combination of Boolean expressions. Logic regression uses a “simulated annealing
algorithm” to try to find Boolean statements in the regression model that minimize the
scoring function associated with the model type, estimating the regression coefficients
simultaneously with the Boolean expressions. A score function that reflects the quality of
the model is given for each regression model such as the residual sum of squares for linear
regression and the binomial deviance for logistic regression. To find the best logic
regression model, we need to perform model selection procedure using cross-validation or
permutation tests.

Model Validation
Model assessment needs to be performed to validate the effectiveness of the four models
that identified important single and combined variable effects, and compare their predictive
power. We applied the hold-out method for the cross-validation. For k-fold cross-validation,
the data are split into k approximately equal groups (typically 3 to 10). Each of the k subsets
of the data is left out in turn, the model is fit for the remaining data, and the results used to
predict the outcome for the subset that has been left out. The cross-validation estimate of
prediction error, CV(θ), is then calculated:

The notation of xi = (xi1, ⋯, xip) is a vector of predictors, yi is a response, Ck is the indices
of observations in the k th fold, and L(yi, f̑−k (xi, θ)) is a loss function that measures the
error between the observed values, yi, and the predicted values, f̑−k (xi, θ). The predicted
values come from the data that removed the k th fold. Prediction error is usually taken as the
squared difference between observed and predicted in a regression model, L(y, f̑(x) = (y − f̑
(x))2, and as 0–1 loss for classification models, L(y, f ̑(x)) = 1{y ≠ f̑(x)}.

Once prediction errors are obtained for all k subset groups, the total error is averaged as
dividing by the number of groups [Tibshirani et al., 2009; Bouckaert et al., 2008; Efron et
al., 1983]. For comparison purpose, areas under the curves (AUC) were computed for all
four classifier methods. We used Statistical Analysis Software (SAS; V 9.2, Cary, North
Carolina) and the R software (Version 2.12.1, www.r-project.org).
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Results
Simulation Study

A simulation study was performed to examine which mining method(s) shows better
prediction among the four methods (logistic regression, logic regression, classification tree
and random forests). We generated 10 binary predictors and a case-control disease status of
1000 unrelated subjects. Let X1, X2, …, X10 be predictors (SNPs or environmental factors)
and Y be an outcome. Predictor variables were generated from a Bernoulli distribution with
a probability of 0.5 and were randomly associated with the outcome. Therefore, individual
predictors were not statistically significant with the outcome. We further considered two
interaction terms, X1 ∩ X2 and X3 ∩ X4, that were highly associated with the outcome for
finding better classification performance of the classifiers that are able to correctly identify
important interactions. When the interactions are true, the disease status has the probability
of 0.8 from a Bernoulli distribution. We considered all single predictors and two-way
interactions to find the best logistic model. The multiple logistic approach and stepwise
selection procedure identified six single predictors (X1, X2, X3, X4, X8, X10) and four
interactions (X1 ∩ X2, X1 ∩ X4, X2 ∩ X3, and X3 ∩ X4). The best logistic model is

With the above best fit model, we calculated the probabilities that a subject has a disease for
given values of the predictors. The optimal decisions are based on the posterior class
probabilities P(y|x). For binary classification problems, we can write these decisions as 1 if
the logit of the probability that disease status = 1 is greater than 0, and 0 for otherwise. The
cross-validation prediction error was 0.3481, and the AUC was 0.6836. The recursive
partitioning algorithm was applied to grow the trees while the grown trees were pruned
using a cross-validation technique. Once we built the unpruned trees by using the Gini index
as a splitting criterion, then we found the complexity parameter to lead to an optimal tree
size. The (10-fold) cross-validation error rates were used to prune the tree by using the
standard “1 – SE” rule. Based on the rule, we set the threshold complexity parameter to
0.018. Figure 1 is a plot of the relationship between the cost-complexity parameter (cp),
cross-validation error (x-val Relative Error), and tree size. Figure 2 is classification tree
analysis of the simulated data set including genetic risk factors and environmental factors
showing cut-off values for snp10, snp1, snp2, snp3, and snp4.

The target variable is the disease rate, and the analysis produces seven terminals. The
disease rate in the entire population was 48.6% (486/1000), and the first split is performed
on snp10. This produces two subgroups with respective disease rate of 40.1% (227/566) and
59.7% (259/434). We investigated the subgroups with higher disease rate than the entire
population. Among seven terminal nodes, only three were higher in disease rate than the
entire population: the combination of snp10=1, snp1=0, snp3=1, and snp4=1 shows the
highest disease rate (71.3%), the combination of snp10=0, snp1=1, and snp2=1 has the
second highest disease rate (69.6%), and the combination of snp10=1 and snp1=1 shows
66.9% in disease rate. The tree method identified two important interactions of snp1 and
snp2, and snp3 and snp4 with high disease rate. For this tree model, the cross-validation
error is 0.3310, and AUC is 0.6853. The random forests method was performed to find the
important variables based on (1) the size of variable importance and (2) out-of-bag error
rates. The random forests perfectly identified four important variables of SNP1, SNP2,
SNP3, and SNP4. As seen in Figure 3 (a), the importance values for all SNPs were
calculated to assess the relevance of each variable over all trees of the ensemble. The plot
showed the first four variables were more valuable than the other SNPs because the first four
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had the higher importance values (SNP1=28.6, SNP2=27.2, SNP3 = 27.3, and SNP4=26.7).
The other six SNPs have importance values less than 20. Therefore, the random forests
method exactly divides all SNPs into two groups.

Figure 3 (b) showed that the model including four variables of X1, X2, X3, and X4 showed
minimum out-of-bag error rates of 0.288. The cross-validation error for the random forests
method was 0.2224, the smallest among all four methods. The random forests method had
the largest area under the curve of 0.8795. The logic regression model was executed to
examine the identification ability of important interactions among generated 10 variables.
We picked the parameters of simulated annealing with START=2 and END=−1 that found
the best annealing parameters in R:{LogReg} package. With those parameters, the
acceptance rate was over 90% and no acceptances were after log-temperature of −0.5. The
logic regression identified a best model including a Boolean expression of (snp1 ∩ snp2) or
(snp3 ∩ snp4) that minimized the scoring function. Simultaneously, the logic regression
estimated the regression coefficients of the logic regression as follows: Y = −0.892 + 1.81L
where Y is a disease status and L is a logic expression of (snp1 ∩ snp2) or (snp3 ∩ snp4).
Figure 4 shows the tree of the Boolean expression. The cross-validation error was 0.3220,
which was slightly better than the logistic regression and classification tree methods. The
area under the curve was 0.7110, which was larger than that for logistic regression and
classification tree. Table I summarizes the cross-validation errors and the areas under the
curves for all four models. As expected, the random forests method showed best
performance with the smallest cross-validation error and the largest AUC, the logic
regression showed the second best method, classification tree was third, and the logistic
regression showed the worst classification ability.

Women’s Epidemiology of Lung Cancer Study
Data—The case-control study design and description were described in detail elsewhere
[Cote et al. 2009]. In summary, female lung cancer patients aged 18–74 who were diagnosed
with nonsmall-cell carcinoma in Wayne, Macomb, and Oakland counties between
November 1, 2001, and October 31, 2005, were enrolled through the population-based
Metropolitan Detroit Cancer Surveillance System (MDCSS), a participant in the National
Cancer Institute’s Surveillance, Epidemiology, and End Results (SEER) program. Control
subjects were selected through random telephone dialing and were frequency matched to
cases on race and 5-year age group. In total, 1031 women (504 cases and 527 controls) were
willing to complete a detailed, in-person interview and to provide DNA samples. Among the
1031 women, the largest subpopulation was white smokers: 177 controls and 339 cases
(n=516). Eleven polymorphisms were considered, and all nonbinary polymorphisms were
represented by a binary variable coding a dominant effect of these polymorphisms.
Supplementary Table I details the distribution of genetic polymorphisms evaluated and the
estimated ORs and adjusted ORs for white women who had ever smoked (n=516).
Demographic and environmental data were also measured at baseline. The variables
included in these analysis were age, pack-years of smoking, use of hormone replacement
therapy (ever/never), family history of lung cancer in a first degree relative (yes/no),
personal history of chronic obstructive lung disease (yes/no), education completed in years,
and body mass index (BMI). For better comparison of logic regression with classification
tree, random forests and logistic regression methods, binary variables were created for three
continuous variables: body mass index, pack-years of cigarette smoking, and education in
years. The results from CART analysis were used as respective cut-off values. Pack-years of
cigarette smoking were divided in two with a cut-off of 18.5 packs per year, while body
mass index and years of education were dichotomized at 25 and 14.5, respectively.
Supplementary Table II shows demographic and environmental characteristics for white
women who had ever smoked (N=516).
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Results—Two logistic regression, a logic regression and classification tree, and random
forests methods were applied to identify a panel of genetic and environmental risk factors
that are associated with lung cancer risk. Five models from four methods were developed:
(1) a logistic regression model including single factors (no interaction effects, Model 1), (2)
a logistic regression model including interaction terms (Model 2), (3) a classification tree
model (Model 3), (4) a logic regression model (Model 4), and (5) random forest model
(Model 5). The endpoint for all four methods was lung cancer status of study subjects, which
had a value 1 for cases and 0 for controls. Predictor variables considered were 11
polymorphisms and 7 environmental risk factors.

Logistic regression—Two logistic regression models were considered to select the best
combination of risk factors using a stepwise variable selection procedure to identify
important genetic and environmental risk factors associated with lung cancer. Single factors
selected by stepwise logistic regression are listed in Table II (denoted by Model 1).

The factors were family history of lung cancer, history of chronic obstructive lung disease,
pack-years of cigarette smoking, and body mass index as environmental risk factors
associated with lung cancer and XRCC1 A/A genotype as the genetic risk factor associated
with lung cancer. Model 1 revealed significant positive associations between lung cancer
and (1) family history of lung cancer (OR=2.49 [1.37–4.51]), (2) history of chronic
obstructive lung cancer (OR=2.01 [1.21–3.34]), (3) pack-years of cigarette smoking
(OR=1.04 [1.03–1.05]), and (4) XRCC1 A/A genotype (OR=1.91 [1.01–3.60]). There was a
negative association between body mass index and lung cancer (OR=0.93 [0.90–0.97]). Two
SNPs in addition to XRCC1 A/A were selected in the final model, namely GSTM1
(P=0.14), and COMT A/G or G/G genotype (P=0.62) because the likelihood ratio test
showed a better fit when these two variables were added into the final model. Interestingly,
education years, history of chronic obstructive lung diseases, and hormone therapy use were
not associated with lung cancer status. Model 2 extended Model 1 by incorporating gene-
gene, gene-environmental, or environmental-environmental interactions. Table III lists
identified single and interaction genetic and environmental factors selected by a logistic
stepwise selection method. The selected factors included (1) family history of lung cancer;
history of chronic obstructive lung disease; education in years; pack-years of cigarette
smoking; body mass index; GSTM1, GSTP1 A/A, or A/G genotype; and XRCC1 A/A
genotype as single factors and (2) body mass index and education in years, pack-years of
cigarette smoking and education in years, and body mass index and GSTM1 as two-way
interaction factors. The −2 log-likelihood criteria for model fitting for both Model 1 and
Model 2 were 517.8 and 488.5, respectively. The cross-validation errors are 0.255 for Model
1 and 0.2236 for Model 2 while AUC’s are 0.7948 and 0.8147 respectively.

Classification tree method—Classification tree method produced nine multiplicative
interactions and identified four important multiplicative interactions (Figure 5). The target
value was disease rate of lung cancer (number of cases/total number), and the overall disease
rate was 65.7% (339/516). We believe that this disease rate was improved with appropriate
further partitions, and a primary interest was to find the route that led to best disease rate.
The classification tree analysis detected five environmental and genetic risk factors as
important predictors associated with lung cancer: pack-years of cigarette, education years,
body mass index, history of chronic obstructive lung disease, and CYP1B1 C/C genotype.
Cigarette pack-years were the best predictor, and education was the second best predictor for
lung cancer. For pack-years, the classification tree analysis yielded a split point (threshold)
of 18.5 packs/year. This produced two subgroups with respective lung cancer disease rate of
24% (<18.5 pack-years) and 78% (≥18.5 pack-years). This latter subgroup was further
partitioned on the basis of education, and the classification tree analysis yielded a split point
(threshold) of 14.5 years of education. The resultant groups had lung cancer rates of 59%
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(education ≥14.5 years) and 81.5% (education <14.5 years). We verified the results
produced by the classification tree method by using logistic regression models. Table IV
shows results of multivariable logistic regression analyses for four effective pathways of
genetic and environmental factors for lung cancer identification after adjusting for age, BMI,
and family history of lung cancer. The P-values of all subgroup combinations except the
third combination were statistically significant, indicating that the classification tree method
for identifying important multiplicative interactions worked well. The lowest lung cancer
disease rate (21%; n=102) was observed among of lighter smoking women (<18.5 pack-
years) and BMI >21.3, indicating that, for this subgroup, only 21% of White women who
have ever smoked have lung cancer. This result corresponds to a (negative) likelihood ratio
of 21%/66% = 0.32, indicating that the lung cancer risk in the entire study population was
reduced to one-third among this subgroup. The cross-validation error is 0.2235 and AUC is
0.8159, which are slightly better than Model 2.

Logic regression method—In order to determine best parameters of the simulated
annealing algorithm, we examined the acceptance rates with different starting log-
temperatures and looked at what level of ending temperature. We determined 3 as starting
log-temperature and -1 as ending log-temperature. To find the best model, we used the
cross-validation approach with 3 for the number of trees and 8 for the number of tree leaves.
The cross-validation plot showed that the scores of ntree=1 and nleaves=6 resulted in the
minimum score (data not shown). The logic regression identified a best model including a
Boolean expression (Figure 6) of pack-years of cigarette smoking (packyrs) and (education
level or CYP1b1 or history of chronic obstructive lung disease), and estimated the
regression coefficient of logic regression as follows:

1. Y = −1.133 + 2.45L

where Y is a disease status and L is the logic expression noted above. The cross-validation
error was 0.2137, which was slightly better than two logistic regressions and classification
tree method. The AUC was 0.8207, which was larger than that for logistic regression and
classification tree methods.

Random Forest—The random forests identified pack-years of cigarette smoking as the
most important variable and education level as the second most important variable. Because
our study did not have many variables, we applied 1000 for the number of trees and 5 for
randomly preselected predictor variables for each split. The pack years variable was more
than twice as high as education level. Education, history of chronic obstructive lung disease,
BMI, GSTP1, and CYP1b1 were identified as relatively important variables. The interaction
between pack-years of cigarette smoking and education was the second highest multifactor
variable in significance; pack-years was highest. Figure 7 shows the variable importance
among single and multifactor variables. The top four single and multi-factors were the single
factor of pack-years and three two-way interactions of pack-years and education, pack years
and GSTP1, and pack-years and CYP1b1. The cross-validation error for random forests
method was 0.1627, the smallest among all five models. The random forests method had the
largest AUC (0.8267) as seen in Table V.

Discussion
This work aims to compare the effectiveness for identifying important genes or gene-gene
and gene-environmental interactions among four classification methods of logistic
regression, classification tree, random forests, and logic regression models. We started with
the assumption that a multigenic study increases the chance of detection of disease because
it considers gene-gene interactions and gene-environmental interactions, and environmental-
environmental interactions. Logistic regression models and a tree-based study are selected to
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perform this purpose since these are two of the most commonly used model building
procedures. A logic regression model is also considered because it is a generalized
regression model to produce the importance of interactions among disjointed pairs of risk
factors. In addition to a classification tree which has been a popular nonparametric classifier
in medical research during last a decade, random forests method is included because it is a
generalized version of classification tree method by allowing multiple classification tree and
averaging those results. An interesting in this study is to incorporate environmental factors
into our three analysis models since it is reasonable to assume that inclusion of these factors
would further improve the diagnostic ability.

Table VI lists variables identified by each model. Throughout the five models, pack-years
were the most dominant variable among both genetic and environmental risk factors.
Education, chronic obstructive lung disease, and BMI were the second most dominant
variables. GSTM1, CYP1b1, GSTP1, and XRCC1 were important polymorphisms as
genetic risk factors. It is interesting that two logistic analyses identified GSTM1 and
XRCC1 as important risk factors, but CART and random forests analyses identified only
one polymorphism (CYP1b1) as an important risk factor. No genetic factors (GSTM1,
XRCC1, or COMT) were identified by stepwise selection or by nonparametric methods.
Based on our results, random forests showed the best performance while logic regression
was second best. Classification tree method was slightly better than the two logistic
analyses. For a model including single and two-way interactions, 64 degrees of freedoms
were needed. Because each variable has around 10 samples, a model including two-way
interactions is acceptable. However, 164 degrees of freedoms were necessary to consider
three-way interaction terms, and we needed 329 degrees of freedoms for additional four-way
interactions. It is not possible for a logistic model to include interactions equal to or less than
four-way interactions because the number of variables exceeds the number of samples.

In summary, logistic regression should not be used when the number of predictor variables
is greater than the number of subjects, and a reduction of power results because the degrees
of freedom increase dramatically including higher-order interactions in the model. The
classification tree algorithm rapidly selects significant features resulting in a classification
tree with binary split criteria, and enables automatic classification of lung cancer patients
and control subjects on the basis of their individual genetic profile. Logic regression is a
generalized regression methodology for predicting the outcome in classification and
regression problems based on Boolean combinations of logic variables. Even though a logic
regression is able to include continuous covariates, the predictors must be binary in order to
be considered as a Boolean combination. This can be somewhat limiting when compared to
other tree-based classifiers.

If a continuous variable is transformed into a dichotomous variable to apply logic
regression, information about the variable be reduced, which might lead to loss of power in
detecting important predictors. Nonetheless, several studies have shown that logic regression
can be a good tool in identifying important SNP-SNP interactions [Kooperberg et al. 2005;
Ruczinski et al, 2004]. As mentioned earlier, small changes in data lead to large changes in
classification tree results, which produce instable results. Random forests method is an
ensemble method, which reduces variability of trees by averaging multiple trees from
bootstrapped data sets. Random forests have been widely applied in genetics and related
disciplines within the past few years, because the approach applies to random subsets, which
can be applicable with many more variables than observations (small subjects large
predictor). This fact has added much to the popularity of random forests. Logistic regression
analyses demonstrate the importance of each predictor to be able to explain the outcome
variable. The odds ratios are a core statistic in logistic regression. Unfortunately, they do not
provide information about relative priorities or importance among the predictive variables.
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Logic regression, classification tree, and random forests methods can answer this problem.
In general, it is known that logistic regression and classification tree deliver very similar
results with respect to the variables identified [Muller et al., 2008; Schwarzer et al., 2003].
Our work also supports this. All four methods have advantages and disadvantages in
classification ability and practical applicability. Based on this study, random forests method
shows best performance, but the complimentary application of four techniques seems to be
an efficient procedure for better performance of analyzing and interpreting the results of
multigenic studies.
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Figure 1.
A plot of the relationship between the cost-complexity parameter (cp) and cross-validation
error (x-val Relative Error), and tree size (size of tree). The dashed horizontal line represents
one standard deviation of the minimum cross-validation error.
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Figure 2.
Classification tree analysis of simulated data set including genetic risk factors and
environmental factorsshowing cut-off values for snp10, snp1, snp2, snp3, and snp4. The
target variable is the prevalence and the analysis produces seven terminals. The prevalence
in the entire population was 48.6% (486/1000), and the first split is performed on snp10.
This produces two subgroups with respective prevalence of 40.1% (227/566) and 59.7%
(259/434).We investigated the subgroups with higher prevalence than the entire population.
Among seven terminal nodes, only three were higher in prevalence than the entire
population: the combination of snp10=1, snp1=0, snp3=1 and snp4=1 shows the highest
prevalence (71.3%), the combination of snp10=0, snp1=1 and snp2=1 has the second highest
prevalence (69.6%), the combination of snp10=1 and snp1=1 shows 66.9% in prevalence.
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Figure 3.
(a) Variable importance plot on all SNPs. The importance values for all SNPs were
calculated to assess the relevance of each variable over all trees of the ensemble. The plot
showed the first four variables were more valuable than the other SNPs because the first four
had the higher importance values; (b) A plot of out-of-bag error rates against the number of
variables used. The plot showed that the four variable models had the smallest error rate.
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Figure 4.
This is a logic tree of (snp1 ∩ snp2) or (snp3 ∩ snp4), and the coefficient of the logic tree is
1.8126.
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Figure 5.
Classification tree analysis of environmental and genetic risk factors for lung cancer
showing cut-off values for cigarette packs a year, education years, body mass index, chronic
obstructive disease history, and CYP1B1 C/G or G/G genotype. The target variable is the
prevalence and the analysis produces nine terminals. The prevalence in the entire population
was 65.7% (339/516), and the first split is performed on cigarette packs a year with a split
point of 18.5 packs/year. This produces two subgroups with respective prevalence of 24%
(29/119) and 78.1% (310/397).
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Figure 6.
The plot shows the tree of the Boolean expression, which includes a tree of cigarette
smoking (packyrs) and (education level or CYP1b1 or history of chronic obstructive lung
disease).
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Figure 7.
The variable important among single and multi-factors variables. The left dashed line is a
cut-off for top 4 variable(s) in the variable important values, while the dashed right line
indicates variables on top 14 in the variable importance. The single and multi-factors of top
4 variable important were a single factor of pack years of cigarette smoking, and three two-
way interactions of pack years of cigarette smoking and education, pack years of cigarette
smoking and GSTP1, and pack years of cigarette smoking and CYP1b1.
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Table 1

Resubmission errors, cross-validation errors and area under the curves from simulated data including 10 SNPs
and 1000 subjects using four different classifiers of logistic regression, classification trees, random forests,
and logic regression.

Variables identified Resubmission
Error

Cross-
validation error

AUC

Logistic Regression snp1&snp2 0.3350 0.3481 0.6836

snp1&snp4

snp2&snp3

snp2&snp4

snp3&snp4

Classification Trees snp1&snp4&snp10 0.3250 0.3257 0.6853

snp1&snp2

snp1&snp10

Logic Regression snp1&snp2 0.2880 0.3220 0.7110

snp3&snp4

Random Forests snp1&snp2 0.2200 0.2224 0.8795

snp3&snp4
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Table 2

Estimates of main effects for environmental and genetic risk factors from the most parsimonious model, white
ever smoking women (Model 1).

OR (95% CI) p-value

Age at diagnosis/interview 0.99 (0.98–1.02) 0.8972

Family history of lung cancer 2.49 (1.37–4.51) 0.0026

History of chronic obstructive lung disease 1.93 (1.19–3.12) 0.0068

Pack years of cigarette smoking 1.04 (1.03–1.05) <0.0001

Body mass index 0.93 (0.90–0.97) 0.0006

XRCC1 A/A genotype 1.91 (1.01–3.60) 0.0474

GSTM1 null 1.38 (0.90–2.12) 0.1402

COMT A/G or G/G genotype 1.13 (0.70–1.82) 0.6197
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Table 3

Estimates of main and interaction effects for environmental and genetic risk factors from the most
parsimonious model, white ever smoking women (Model 2)

OR (95% CI) p-value

Family history of lung cancer 2.30 (1.24–4.27) 0.0083

History of chronic obstructive lung disease 1.91 (1.12–3.26) 0.0169

Pack years of cigarette smoking 1.02 (1.01–1.04) <.0001

Body mass index (BMI) 0.71 (0.57–0.89) 0.0032

Education 0.39 (0.23–0.65) 0.0003

GSTM1 null 19.1 (1.91–191) 0.0121

XRCC1 A/A genotype 1.94 (1.01–3.75) 0.0483

GSTP1 A/A or A/G genotype 2.31 (1.15–4.64) 0.0181

BMI and Education 1.02 (1.01–1.04) 0.0051

BMI and GSTM1 0.91 (0.84–0.99) 0.0213

Smoking and Education 1.004 (1.00–1.01) 0.0323
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Table 4

Results of multivariable logistic regression analyses for four important combinations of genetic and
environmental risk factors identified by classification tree methodsafter adjusting for age, BMI, family history
of lung cancer, pack years of smoking, and obstructive lung disease history

Node Subgroup Prevalence in
percentage
(case/total)

Likelihood ratio
over overall
average
prevalence

p-value using
logistic
regression
models *

1 Packs in years greater than 18.5,
education years less than 14.5, body
mass index less than 29.26

86%(213/248) 86%/66%=1.30 0.0004

2 Packs in years greater than 18.5,
education years greater than 14.5,
CONDOBST=0, CYP1B1=1 or 2, body
mass index greater than 25.28

85% (11/13) 85%/66%=1.29 0.0079

3 Packs in years greater than 18.5,
education years greater than 14.5,
CONDOBST=1

81% (13/16) 81%/66%=1.23 0.3238

4 Packs in years greater than 18.5,
education years greater than 10.5 and
less than 14.5, body mass index greater
than 29.26

76% (56/74) 76%/66%=1.15 0.0252

*
adjusted by age, BMI, family history of lung cancer
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Table 5

Cross-validation errors and area under the curves from five different models of two logistic regressions,
classification trees, random forests, and logic regression.

Models Pathways Cross-
validation error

AUC

Model 1 Logistic Regression Single variables 0.2255 0.7948

Model 2 Logistic Regression Two-way
interactions

0.2236 0.8147

Model 3 Classification trees Multi-way
interactions

0.2235 0.8159

Model 4 Logic Regression Multi-way
interactions

0.2137 0.8207

Model 5 Random Forests Multi-way
interactions

0.0627 0.8267
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