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Abstract
We describe a novel knowledge-based protein-ligand scoring function that employs a new
definition for the reference state, allowing us to relate a statistical potential to a Lennard-Jones
(LJ) potential. In this way, the LJ potential parameters were generated from protein-ligand
complex structural data contained in the PDB. Forty-nine types of atomic pairwise interactions
were derived using this method, which we call the knowledge-based and empirical combined
scoring algorithm (KECSA). Two validation benchmarks were introduced to test the performance
of KECSA. The first validation benchmark included two test sets that address the training-set and
enthalpy/entropy of KECSA The second validation benchmark suite included two large-scale and
five small-scale test sets to compare the reproducibility of KECSA with respect to two empirical
score functions previously developed in our laboratory (LISA and LISA+), as well as to other
well-known scoring methods. Validation results illustrate that KECSA shows improved
performance in all test sets when compared with other scoring methods especially in its ability to
minimize the RMSE. LISA and LISA+ displayed similar performance using the correlation
coefficient and Kendall τ as the metric of quality for some of the small test sets. Further pathways
for improvement are discussed which would KECSA more sensitive to subtle changes in ligand
structure.
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Introduction
Knowledge-based protein-ligand scoring functions1–18, building on the idea of potential of
mean force (PMF),19 are derived from structural information regarding protein-ligand
complexes. Their pairwise interaction parameters are directly converted from the frequency
of occurrence of given atom pairs contained in a large database of complexes. The concept
of the potential of mean force can be illustrated by a simple fluid system of N particles
whose positions are r1… rN.

The average potential ω(n)(r1… rN) is expressed as:
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(1)

where g(n) is called a correlation function. β=1/kBT and kB is the Boltzmann constant and T
is the system temperature. Hence the mean potential of the system with N particles is strictly
the potential that gives the average force over all the configurations of the n+1…N particles
acting on a particle at any fixed configuration keeping the 1…n particles fixed. The mean
potential can be described as follows:

(2)

where U is the total potential energy of the system. Described by Sippl and others,1–5 the
average potential is expressed as Equation 3 for the special case of a system with an
observed particle number of n=2, as is the case herein (pairwise atoms from the protein and
ligand).

(3)

where g(2)(r) is the pair distribution function, ρij(r) is the number density for the atom pairs
of types i and j observed in the known protein structures and ρ*

ij(r) is the number density of
the corresponding pair in a reference state. In order to obtain the pure interaction potential
between atoms, a reference state is required to remove the contribution of the ideal-gas state
potential. So, in the reference state, the system of particles is like an ideal-gas state defined
by fundamental statistical mechanics, in which particles would be evenly distributed in the
binding site. Equation 3 can also be expressed as:

(4)

where nij(r) and n*
ij(r) are numbers of atom pairs of type i and j, respectively, at distance r

for the observed structures and the reference state.

In potential of mean force methods, the number of the corresponding pairs in the reference
state cannot be exactly obtained for protein-ligand systems due to the effects of connectivity,
excluded volume, composition, etc.6 Therefore, the pairwise interaction potential cannot be
accurately calculated. Nonetheless, this idea of PMF scoring has advantages over empirical
scoring, because it directly relates pairwise interaction to structural data instead of fitting to
known binding affinity data. Additionally, the PMF is more efficient than force field scoring
due to the avoidance of higher expense computations. Our intent is to introduce a new
concept of the reference state, in order to relate the statistical potential to atomic pairwise
interaction potential. Hence the atomic pairwise interaction model can be parameterized
exclusively from structural data instead of binding data or quantum calculations.

Methods and Results
Construction of traditional statistical potentials starts by collecting structural information
from large numbers of protein-ligand complexes, in order to simulate a "mean force" state in
which the protein-ligand atomic pairwise radial distribution arises from all possible
interactions in the binding site. Various reference states have been designed to remove the
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non-interacting energy from the "mean force" state in order to correlate the pairwise radial
distribution to the interaction potential between selected atoms of a specific atom type i, j
with all other atoms in the protein-ligand binding site.

Our goal is to equate the statistical potential to the Lennard-Jones potential for each pairwise
interaction. However, the LJ potential reflects pairwise interactions between two types of
atoms, while a statistical potential is an average potential contributed by all atoms within the
binding region. In this case, when trying to equate the statistical potential to a pairwise
interaction potential, we need to remove all interactions except the pairwise interaction
between atoms of type i and j in the binding region by defining a new reference state
(denominator) in the PMF model. Unlike the traditional reference state, in which the
selected atom pairs i and j are at an infinite separation where the interaction energy is zero
(as in the ideal gas state), within this new reference state (which we will call reference state
II), a system of particles is under an average force contributed by all atoms in the binding
region excluding the interaction force between the selected atom pairs i and j. In other
words, the only difference between the mean force state and the reference state II is that the
latter state does not contain the pairwise interaction potential between the selected atoms of
type i and j. Figure 1 provides a graphic illustration of the KECSA statistical potential
model.

When equated to the LJ potential, the statistical potential can be expressed as:

(5)

where σ is the distance at which the inter-particle potential is zero and ε is the well depth.
The exponents for the repulsive term and attractive term are α and β, respectively. We
derive the exponents instead of assigning “typical” exponent values (i.e., 12–6), because (1)
the repulsive and attractive forces change with different types of pairwise interactions and
(2) Eij(r) in Equation 5 includes both van der Waals and electrostatic interactions, which
means the LJ-potential formula on the right hand side of Equation 5 accounts for two
components:

(6)

The reason we use the LJ formula on the left hand side of Equation 6 instead of partitioning
them into van der Waals and electrostatic potentials is that the LJ potential reaches 0 at σ

and R, while reaching its minimum value when r is . Based on these properties,
equations can be derived in order to determine the unknown parameters.

In Equation 5,  and nij(r) are the number of protein-ligand atomic pairwise interactions
in the bin (r, r+Δr), with the volume 4πraΔr in reference state II and in the training set that
mimics the mean force state, respectively. Δr is defined as 0.005Å. We introduce a to-be-
determined parameter a for the shell volume because of the inaccessible volume present in
protein-ligand systems, and because of the deviation of nij(r) in the training set from the
"perfect" pairwise number. Hence, the expectation is the parameter a will adopt values other
than 2.
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The central issue in the KECSA model construction is to build up the radial distribution
function of the selected atom pairs in reference state II. A way in which to do this is to
measure the similarity of the reference state II with two known states: the mean force state,
and ideal gas state. Then build the radial distribution function with information collected
from these two states. In reference state II, the radial distribution of a certain atom pair i and
j is associated with a certain "background interaction" which is related to the total number of
selected atom pairs Nij. Because the "background interaction" potential contains all atom
pairwise interactions in the binding site excluding the "selected interactions" between atom
pairs i and j, the difference in energy between the mean force state and reference state II for
each atom pair type depends on the total number of the selected atom pairs Nij and the total
number of atom pairwise interactions N found in the binding site. The "background

interaction" energy approaches the "mean force" state energy as  becomes smaller, while

the energy difference increases when  becomes larger. Hence we decide to make the
"background interaction" potential, as well as the radial distribution function, a function of

. The modeling of the atom pairwise number distribution function in reference state II

starts from the two extreme situations for : (1) When Nij approaches zero (Nij →0), the

background energy ≈ the "mean force" state energy, resulting in . (2) When Nij

approaches to N (Nij →N), the background energy ≈ the ideal-gas energy, resulting in 
resembling an ideal gas state radial distribution. The radial distribution function for an ideal

gas state is defined as  implying that the number of the selected atom pairs i and
j is evenly distributed in the binding site which has an average volume V. The average V of

protein-ligand binding site is given as , with the same to-be-determined parameter
a as introduced above. Hence, the two extreme situations for reference state II can be
defined as:

(7)

(8)

At certain distance r,  is a function of  with a range from  to nij(r). In
addition, with Nij tending towards 0 or N, the reference state II would be more similar to the

mean force state or the ideal gas state, respectively. Hence,  is defined as a weighted
combination of both the ideal gas state and the mean force state radial distribution functions.

Due to the fact that the integral of  from 0 to R (cutoff distance where the atomic
interaction is regarded as zero) is Nij, a linear combination (Equation 9) of the weighted
radial distribution functions for both the ideal gas and mean force state meets all the
necessary conditions:

(9)
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In this way the new reference state is designed as state intermediate between the ideal gas
and the mean force state. At a certain distance between the atom pairs of type i and j, the

total energy of reference state II , or the "background interaction" energy is:

(10)

A plot illustrating the relationship between the number fraction  and the new reference

state potential  is shown in Figure 2, to better illustrate the differences in energy
between the different states.

Combining Equations 5 and 9 we obtain:

(11)

Using  and using the fact that the Lennard-Jones potential is zero at rij = σ and
at rij=R, we arrive at:

(12)

(13)

In addition, the LJ potential reaches its minimum value when r is . So the first

derivative (D) of the statistical energy term with respect to r is zero at .

(14)

To simplify the resultant expressions the factor  is given as η.

(15)

Simplifying Equations 12, 13 and 15 yields:
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(16)

(17)

and

(18)

Although we don't know the values of α and β yet, we do know that the value of η is unique
for each combination of α and β. Supplementary Table 1 lists all η values for each integer
combination of α and β from 2-1 to 15-14. Different η values will be chosen for every

pairwise interaction, to satisfy the well depth distance at ησ (e.g.,  σ is 21/6σ or rij*
(well-depth at the minimum) for the 12-6 potential).

In order to find the a, σ and η values within Equations 16–18, we still need to determine the
value of R, the cutoff distance. We introduce a nonlinear programming method to find a
reasonable R for each pairwise interaction type instead of assigning a fixed R value. Ideally,
R should be as large as possible since the LJ potential approaches 0 when the distance
approaches infinity. Meanwhile, for any r between σ and R, the potential value is below 0.
Here we use the following inequality constraint in our nonlinear programming approach:

(19)

which can be simplified as:

(20)

With the goal of maximizing the value of R, coupled with the three constraint equations
(Equations 16–18) and an inequality constraint (Equation 20), a, σ and η can be determined.
The values of η obtained in this way can then be compared with the η values in
supplementary Table 1, in order to determine the closest α and β pair. Inserting these values
into Equation 11 we can calculate all of the corresponding ε values.

One important issue in the parameterization of KECSA is that the LJ potential parameters
for each type of pairwise interaction should be independent of the other types of interactions,

instead of being  dependent. Derivation of a, σ, α, β and R comes from Equations 16–18
and 20, none of which contains the total interaction number N. This indicates that for each

type of pairwise interaction, the average volume , the distances at which the LJ

potential reaches zero and has a minimum , the relative strength of the
repulsive and attractive forces in the LJ potential (α and β), and the long-range cutoff
distance (R) are independently derived in KECSA. The only issue lies in the derivation of

the ε values from Equation 11, where the probability of occurrence  is included in the
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calculation. In order to avoid relative energies generated for each interaction type based on

their probability of occurrence in protein-ligand binding sites, we used a normalized  for
each interaction type. Thereby the number fractions for all interaction types are identical.

In the present work, all pairwise interactions among 18 atom types (listed in Table 1) were
examined resulting in 49 significant interaction types being identified. The remaining
interaction types were abandoned or merged into similar interaction types due of the paucity
of data to fit to or because they are randomly distributed across the observed distance range.
The chosen interaction types included 38 van der Waals and 11 hydrogen bonding
interaction types. In this case, all interaction types share the same probability of occurrence

 in protein-ligand binding sites. Equation 11 can be rewritten as follows in order to
generate the ε values. All derived parameters are listed in Table 2.

(21)

With all of the enthalpy terms determined in the analytical manner described above, the
entropy terms are then decided upon in an empirical manner. Structural information such as
the number of rotatable bonds, number of double and aromatic bonds, molecular mass,
counts of carbon/oxygen/nitrogen atoms, buried surface area, etc. were collected for all
ligands contained in the training set. The selection of entropy terms is based on their
contribution to our linear regression model, whose 95% confidence interval should not
include 0. Finally, 9 entropy terms are selected: number of rotatable bonds in the ligand, the
molecular mass of the ligand, number of aromatic bonds in the ligand, number of oxygen
atoms in the ligand, number of nitrogen atoms in the ligand, the nonpolar buried surface
area, total buried surface area, the ratio of the nonpolar buried surface and total ligand
surface area and, finally, the ratio of the total buried surface area and the total ligand surface
area. The PDBbind v2010 data set21,22 including 5054 protein-ligand complexes is chosen
as the training set for the parameterization of the enthalpy terms. We chose 1982 protein-
ligand complexes found in the PDBbind v2011 refined data set as the training set for the
selection and parameterization of the entropy terms.

Model Validation and Discussion
I) Validation to Detect Over-Fitting and Ligand-Size Dependence

Several validation benchmarks were introduced to test the performance of KECSA. The first
benchmark included two test sets in order to examine the dependence of KECSA on the
training set. Because the entropy term was obtained by fitting to experimental binding free
energies care was taken to ensure that the resultant model was not over-fit. First, a leave-
one-out cross validation was used against the training set, which includes 1982 protein-
ligand complexes used in the KECSA entropy term parameterization. Comparison of the
Pearson correlation coefficient r, RMSE (root-mean-square error) and Kendall τ between the
training set and the leave-one-out cross validation are shown in Table 4. The three statistical
measures all showed small differences between the training set and the leave-one-out
prediction, indicating that the KECSA entropy model was properly built.

Second, we introduced a test set including 1934 protein-ligand complexes chosen from the
PDBbind v2011 dataset, with no overlap with the training set used above. From the total of
6051 protein-ligand complexes with binding affinity data in the PDBbind v2011 dataset,
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complexes forthis test set were selected following four criteria: (1) Crystal structures of all
selected complexes had X-ray resolutions ≤ 2.5Å. (2) Only complexes with pKi or pKd
values distributed between 2 to 8 were selected, mimicking what might be found in a virtual
screening database or a pharmaceutically relevant ligand database. (3) Only complexes with
molecular weights (MWs) distributed from 80 to 800 were selected, to avoid ligand size-
dependent prediction results. (4) Complexes used in the KECSA entropy term training set
were excluded.

The second test set was used to verify the robustness of KECSA against and external dataset
as well as investigating the contributions of the enthalpy and entropy terms in KECSA’s
binding affinity prediction. In addition, because the entropy term in KECSA was modeled as
a linear combination of several ligand properties including ligand size/mass information this
test demonstrated that KECSA was not ligand size-dependent. We split the KECSA scoring
function and used both LJ potential and entropy terms for binding affinity prediction and
then compared with the full KECSA scoring function. We also calculated the correlation
coefficient between the experimental pKi or pKd with ligand MW. The predictions and
ranking results are listed in Table 5.

KECSA produces a Pearson's r of 0.590 and a Kendall τ of 0.404. Comparison to the
training set result (a Pearson's r of 0.610 and a Kendall τ of 0.442) indicates that KECSA
gives robust predictions against an unknown binding affinity dataset. When just using the
ligand MW for binding affinity prediction, the Pearson's r drops by 0.128 and the Kendall τ
drops by 0.08 when compared to the LJ potential only prediction, while Pearson's r drops by
0.140 and the Kendall τ drops by 0.08 when compared to the entropy term prediction. The
drop in prediction is even greater when compared to the full KECSA score function. This
result suggests that the KECSA prediction is minimally affected by MW considerations. The
LJ potential and entropy only predictions are quite similar, but lower than the full KECSA
prediction (see Table 5). None of the two independent parts, enthalpy or entropy, shows a
significant performance over the other, suggesting that both enthalpy and entropy play
important roles in the KECSA scoring function. RMSE is not listed for comparison because
the LJ potential is generated from a statistical potential while entropy is derived by fitting to
pKd or pKi values, which results in different scales making comparison difficult.

II) Validation Benchmark for Comparison with LISA, LISA+ and Other Scoring Methods
KECSA is the second-generation scoring function we have developed after LISA23 and
LISA+.24 The latter two were developed for the fast calculation of protein-ligand binding
affinity (pKd and pKi), and were successful in the SAMPL3 challenge (first rank for all
scoring methods), which was a blind test for docking and scoring methods.24 Comparisons
between KECSA and other scoring methods including LISA and LISA+ are necessary for
further understanding its performance. The second validation benchmark consists of two
large-scale test sets and four smaller test sets for comparison of KECSA with LISA/LISA+,
as well as one small scale test set (Wang’s test set25) with 100 diverse protein-ligand
complexes for comparison of KECSA and several other well-known scoring methods.

First, two large scale test sets both with more than 1000 complexes were introduced to
KECSA, LISA and LISA+. The first test set contained 1399 complexes from the PDBbind
v2010 database, which was previously used for LISA validation. KECSA reproduces a
Pearson correlation coefficient r of 0.553, an RMSE of 2.46kcal/mol and a Kendall τ of
0.401, while LISA reproduces a Pearson correlation coefficient r of 0.534, an RMSE of
2.65kcal/mol and a Kendall τ of 0.378. LISA+ was trained based on this data set, so it was
excluded from this validation benchmark. A larger test set was applied for all three scoring
functions, including 2456 protein-ligand complexes from the PDBbind v2011 refined data
set, of out which 290 complexes had Zn-ligand binding. For those 2166 non-metal
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containing complexes, KECSA gets an r of 0.589, an RMSE of 2.31kcal/mol and a Kendall
τ of 0.429, while LISA gets an r of 0.542, an RMSE of 3.06kcal/mol and a Kendall τ of
0.397, LISA+ yields an r of 0.572, an RMSE of 2.81kcal/mol and a Kendall τ of 0.419. For
those complexes with Zn-ligand binding, KECSA has an r of 0.415, an RMSE of 2.33kcal/
mol and a Kendall τ of 0.267, LISA has an r of 0.409, an RMSE of 3.08kcal/mol and a
Kendall τ of 0.252, and LISA+ has an r of 0.420, an RMSE of 3.00kcal/mol and a Kendall τ
of 0.257. Calculation and statistical results of KECSA, LISA+ and LISA for all large-scale
validation studies are shown in Table 6 and Figure 3.

In the large-scale test, KECSA yields a better prediction than our two first-generation
scoring functions. It produces better predicted results based on RMSE and more reliable
binding affinity ranking based on Kendall τ compared with the other two scoring methods.
LISA+ can compete with KECSA based on correlation coefficient, and even achieves better
r in the subset of complexes with Zn-ligand binding. We believe that the improvement of
LISA+ compared with LISA is because the complexes in the training set are categorized
based on ligand properties (mass and hydrophobicity) and different models are trained for
each category. This proves that a multi-model scheme can improve the predictive ability of
empirical scoring functions.

Our validation studies indicate an improvement from LISA to KECSA. Introducing PMF
theory for non-bonding interaction modeling shows its advantages over simply fitting to
binding affinity data. However, metal-ligand binding prediction remains a challenge for
classical-mechanics based or statistical scoring methods. KECSA improves the binding
affinity predicting ability mostly in RMSE for this subgroup of complexes. However,
although KECSA shows improvement in both correlation coefficient r and RMSE,
predictions in the low and high binding regions are poor. Seen from the linear regression
functions in Figure 3 the slopes of LISA and LISA+ generated data vs. experimental data are
0.66 and 0.64, while that for KECSA is 0.41; the intercepts for LISA and LISA+ are 2.02
and 2.06, while that for KECSA result is 3.72. The reason is that 3314 complexes, which
comprised 65.3% of the whole training set, are in the mid-binding region (pKd or pKi
between 4 and 8). Hence the scoring function tends to overestimate binding affinity of the
low-binding region while underestimating that of the high-binding region if there is no
significant decrease or increase in contact number for the protein-ligand complexes from
these two regions. We used a scaling procedure to help improve the prediction of binding
affinity in the high and low binding regions. The KECSA generated results were fit to a
linear model to reproduce the PDBbind v2011 refined data set pKd values. So we get:

(22)

Next, four test sets containing 427 protein-ligand complexes from four protein families was
examined. The list of complexes, their families and binding constants are given in
Supplementary Table 2. Statistical and calculation results are shown in Table 7 and Figure 4.
KECSA improves the RMSE for all test sets, indicating that KECSA makes a more robust
prediction with respect to experimental binding affinity data than do LISA and LISA+.
However, LISA and LISA+ both give a better correlation coefficient and Kendall τ for the
serine protease, endothiapepsin and HIV-1 protease test sets, showing that they perform
better in binding affinity ranking in these small test sets. Results for each test set were
carefully examined. The serine protease test set contains many complexes with low-mass
ligands, while most ligands are relatively larger in the endothiapepsin test set. Statistical
results of the three scoring methods' predictions are similar in these two test sets: KECSA
generates a better RMSE, while LISA and LISA+ yielded both a better correlation
coefficient and Kendall τ. In the serine protease test set, 11 out of 96 protein-ligand
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complexes had small ligands with molecular mass lower than 200 Daltons. KECSA
prediction overestimates most of their pKd or pKi values (Supplementary Table 2), while
LISA and LISA+ to some degree underestimates these values. Hence, KECSA decreases the
binding affinity differences between these low-binding complexes and other high-binding
complexes and LISA/LISA+ increases these differences. The implication is that LISA and
especially LISA+ differentiate the binding affinity values of the complexes better in this test
set and give higher r and τ values, but they have worse RMSEs. In the endothiapepsin test
set, on the other hand, all complexes have ligands with molecular mass higher than 500
Daltons. LISA and LISA+ overestimated binding affinities with larger errors compared with
KECSA, while distinguishing the complexes better, generating a better linear correlation
towards the experimental data. These test results suggest that LISA and LISA+ are more
sensitive to ligand mass changes, while KECSA makes more precise prediction with smaller
error, but has difficulty in ranking complexes with similar pKds or pKis. The HIV-1 protease
test set is a significant challenge for all three scoring methods. Most of the complexes have
high-mass ligands and high binding affinity. Because the ligands in this test set have similar
structures binding affinity predictions from all three scoring methods are not able to rank
these complexes. LISA+ does better in correlation coefficient and ranking than others,
which indicates that training scoring functions for different complex categories based on
ligand or binding pocket properties may help scoring methods improve their ability to
identify subtle changes in ligand structure. The carbonic anhydrase II test set includes 100
out of 110 complexes with Zn chelation, and contains more polar and charged interactions.
KECSA demonstrates better performance in the correlation coefficient, RMSE and Kendall
τ, pointing to its advantage over LISA and LISA+ on reproducing binding affinity data of
complexes with more hydrophilic interactions and metal chelation. For the reproduction of
the binding affinity for the four combined test sets all three scoring methods give a similar
correlation coefficient r, while LISA+ has a small advantage. KECSA does better in both
RMSE and Kendall τ. For all four test sets, scaling of the KECSA score does help to
improve the slope of calculated data vs. experimental data, but does not improve the
statistical tests. Overall, KECSA give better RMSE values and better binding affinity
ranking of the complexes belonging to different protein families.

For the last test set, we introduced Wang’s test set25 with 100 diverse protein-ligand
complexes. The purpose was to compare binding affinity prediction ability of KECSA not
only with LISA and LISA+, but also with other well-known scoring functions. We obtain
Pearson's r = 0.69, RMSE = 2.25 kcal/mol using KECSA, compared with Pearson's r = 0.72,
RMSE = 2.32 kcal/mol using LISA, Pearson's r = 0.67, RMSE = 2.80 kcal/mol using LISA
+. This result coincides with the conclusion gained from the second validation benchmark,
that among these three scoring functions, KECSA prediction has the smallest RMSE.
Pearson correlation coefficients of KECSA together with other score functions are presented
in Figure 5, showing its performance on this test set.

Conclusion and Outlook
Based on atom pairwise interactions, interaction enthalpy terms in KECSA were
parameterized by combining PMF theory with the Lennard-Jones potential, without fitting to
any binding affinity data. This procedure parameterizes the LJ potential with neither QM
calculations nor binding affinity data, hence lowering the computational expense while
improving the prediction accuracy relative to empirical scoring functions. Generally,
KECSA improves the binding affinity RMSE, when compared to LISA and LISA+,
especially for complexes dominated by polar and charged interactions. With respect to
ranking predictions, KECSA better distinguishes complexes in the large-scale test sets.
KECSA yields the lowest RMSE values illustrated by its superior performance in all test
sets for this measure of quality. It is less responsive, however, to minor structural changes of
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the ligand or binding pocket, reducing its ability to rank complexes from the same or similar
protein families. In the KECSA model, the solvent accessible surface area is introduced to
describe the desolvation effect and entropy terms were empirically modeled. Since we have
formulated and parameterized the enthalpy component of non-covalent interactions with this
alternative method, an interesting possibility is to use similar procedures to build a force
field model solely based on experimental structural data. In this way, the desolvation and
entropy terms can also be included instead of using empirical models. We believe that more
accurate and effective scoring methods can be developed using this concept.

Our group has constructed an in-house docking program where KECSA (as well as LISA
and LISA+) is employed as the scoring module in this program. KECSA's ability to score
docking poses and distinguish native poses from decoys will be further evaluated and
refined in future work using this docking module.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
A protein-ligand structural illustration (using PDBID 1xbc) of how the KECSA statistical
potential is modeled. The protein binding site is shown as a grey surface with the ligand
located within the binding site surrounded by protein residues which it makes contacts with.
The pink dashed lines indicate interactions between certain atom pair types i and j, (i.e.
carbonyl oxygen with amine nitrogens in this example) which are defined as "selected
interactions" in this manuscript. Green dashed lines indicate all other non-covalent
interactions between the protein and ligand atoms in the binding pocket, defined as
"background interactions". (a) In the mean force state, the system is filled with all types of
interactions. (b) The reference state II contains all the background interactions. (c)
Removing all the background interactions from total interactions results in a state with only
the selected interactions for each i and j combination.
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Figure 2.

Ratio of the observed atom pairs to the total interacting atom pairs  vs. the new reference
state II potential.
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Figure 3.
Plot of KECSA, LISA+ and LISA calculated pKd or pKi vs. Experimental pKd or pKi in
obtained in validation studies.
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Figure 4.
Plot of KECSA, scaled KECSA, LISA+ and LISA calculated pKd or pKi vs. Experimental
pKd or pKi in four small test sets.
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Figure 5.
With the test set built by Wang,25 binding affinity comparison was done for KECSA, LISA,
LISA+ and several other well-known scoring functions, ITScore/SE,18 ITScore,17 X-
Score,26 DFIRE,27 DrugScoreCSD,12 DrugScorePDB,11 Cerius2/PLP,28,29 SYBYL/G-
Score,30 SYBYL/D-Score,31 SYBYL/ChemScore,32 Cerius2/PMF,8 DOCK/FF,31 Cerius2/
LUDI,33,34 Cerius2/LigScore,35 SYBYL/F-Score,36 AutoDock.37
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Table 1

List of selected atom types.

Atom Type Description

C3 sp3 hybridized carbon

C2 sp2 hybridized carbon

Car aromatic carbon

C1 sp hybridized carbon

N4 positively charged nitrogen

Nam amide nitrogen

N3 sp3 hybridized nitrogen

Nar nitrogen aromatic

N2 sp2 hybridized nitrogen

Npl3 trigonal planar nitrogen

O3 sp3 hybridized oxygen

O2 sp2 hybridized oxygen

S sulfur

P phosphorus

F fluorine

Cl chlorine

Br bromine

I iodine

J Chem Inf Model. Author manuscript; available in PMC 2014 May 24.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zheng and Merz Page 20

Ta
bl

e 
2

Pa
ra

m
et

er
s 

fo
r 

al
l 4

9 
pa

ir
w

is
e 

po
te

nt
ia

ls
.

in
te

ra
ct

io
n

ty
pe

C
2C

2
C

2C
ar

C
2N

2
C

2N
3

C
2N

4
C

2N
am

C
2N

ar
C

2N
pl

3
C

2O
2

C
2O

3

σ
4.

14
5

3.
63

0
3.

45
0

3.
28

5
3.

21
5

3.
50

5
3.

57
5

3.
50

5
3.

37
0

3.
13

5

a
3.

37
5

2.
22

4
3.

08
5

2.
81

0
3.

08
9

4.
29

6
2.

66
2

2.
27

3
3.

29
8

2.
99

2

R
5.

90
0

6.
53

5
4.

75
5

4.
22

0
4.

23
5

4.
26

5
5.

39
0

6.
48

5
4.

43
0

5.
34

5

ε
0.

09
1

0.
04

1
0.

38
8

0.
03

5
0.

13
3

1.
00

3
0.

29
6

0.
76

9
1.

73
5

0.
07

1

L
J 

m
od

el
12

-5
11

-1
10

-9
12

-8
14

-1
2

15
-6

12
-1

1
15

-1
4

12
-1

1
13

-4

in
te

ra
ct

io
n

ty
pe

C
2S

C
3C

2
C

3C
3

C
3C

ar
C

3N
2

C
3N

3
C

3N
4

C
3N

am
C

3N
ar

C
3N

pl
3

σ
4.

35
0

3.
94

0
4.

29
0

3.
85

0
3.

58
0

3.
65

0
4.

57
0

4.
47

0
3.

45
5

3.
81

5

a
2.

50
5

3.
04

9
2.

75
9

2.
23

7
2.

40
4

1.
75

9
2.

98
8

3.
58

1
2.

99
0

2.
34

7

R
6.

42
5

6.
21

0
6.

84
0

6.
77

5
6.

13
0

6.
94

5
6.

85
0

6.
16

5
5.

43
5

6.
16

0

ε
0.

38
7

0.
08

5
0.

36
4

0.
45

4
0.

05
3

0.
12

3
0.

02
2

0.
07

1
0.

06
7

0.
12

9

L
J 

m
od

el
12

-1
1

14
-3

5-
4

5-
3

15
-9

13
-1

2
12

-7
12

-7
12

-9
4-

3

in
te

ra
ct

io
n

ty
pe

C
3O

2
C

3O
3

C
3S

C
ar

C
ar

C
ar

N
2

C
ar

N
3

C
ar

N
4

C
ar

N
am

C
ar

N
ar

C
ar

N
pl

3

σ
3.

20
0

3.
32

5
3.

94
0

3.
70

0
3.

60
0

3.
70

0
4.

36
0

3.
72

0
3.

56
5

3.
66

5

a
2.

74
2

3.
16

4
1.

96
5

1.
89

8
2.

07
9

2.
03

2
1.

08
9

3.
65

5
1.

38
9

1.
73

6

R
4.

51
5

5.
65

0
6.

63
0

6.
85

5
6.

44
0

6.
84

5
6.

98
0

6.
03

0
6.

86
5

6.
67

5

ε
0.

34
3

0.
03

8
0.

01
6

0.
24

9
0.

01
3

0.
00

5
0.

05
6

0.
27

9
0.

20
6

0.
01

6

L
J 

m
od

el
9-

6
13

-7
14

-1
4-

3
11

-1
8-

1
9-

5
14

-1
3

15
-1

4
15

-6

in
te

ra
ct

io
n

ty
pe

C
ar

O
2

C
ar

O
3

C
ar

S
N

2O
2H

B
N

2O
3H

B
N

3O
2H

B
N

3O
3H

B
N

am
O

2H
B

N
am

O
3H

B
N

pl
3O

2H
B

σ
3.

43
0

3.
69

0
3.

92
0

2.
64

0
2.

67
0

2.
55

0
2.

60
5

2.
61

0
2.

62
5

2.
58

5

a
2.

84
0

2.
20

4
1.

62
7

2.
05

6
2.

36
5

0.
98

9
1.

78
8

2.
05

7
3.

47
5

1.
37

7

R
6.

60
0

6.
50

5
6.

97
5

6.
42

0
6.

46
5

6.
74

5
4.

58
5

4.
76

5
4.

16
0

4.
99

5

ε
0.

12
0

0.
03

0
0.

05
0

0.
06

2
0.

03
6

0.
19

6
0.

21
7

1.
70

0
0.

17
2

0.
21

9

L
J 

m
od

el
12

-1
0

6-
2

9-
5

15
-8

15
-5

14
-1

0
13

-9
12

-1
0

11
-8

13
-8

J Chem Inf Model. Author manuscript; available in PMC 2014 May 24.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zheng and Merz Page 21

in
te

ra
ct

io
n

ty
pe

C
2C

2
C

2C
ar

C
2N

2
C

2N
3

C
2N

4
C

2N
am

C
2N

ar
C

2N
pl

3
C

2O
2

C
2O

3

in
te

ra
ct

io
n

ty
pe

N
pl

3O
3H

B
O

2N
2

O
2N

am
O

2N
ar

O
2O

2
O

3N
2H

B
O

3O
2H

B
O

3O
2

O
3O

3H
B

σ
2.

63
5

2.
57

0
4.

12
5

3.
38

0
3.

06
5

2.
51

0
2.

44
5

3.
36

5
2.

08
0

a
1.

89
9

2.
39

7
2.

78
4

2.
29

2
2.

76
7

1.
34

5
1.

99
8

3.
25

0
2.

40
8

R
6.

75
5

6.
84

5
6.

06
5

6.
07

0
6.

05
5

4.
39

5
6.

06
5

6.
48

0
6.

99
0

ε
0.

27
2

0.
01

0
0.

00
8

0.
07

3
0.

03
4

0.
11

6
2.

00
2

0.
02

4
0.

03
8

L
J 

m
od

el
15

-1
2

7-
1

13
-3

11
-7

4-
1

15
-8

14
-1

3
3-

2
11

-3

J Chem Inf Model. Author manuscript; available in PMC 2014 May 24.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zheng and Merz Page 22

Table 3

Entropy parameters and their 95% confidence intervals

parameter 95% confidence interval

enthalpy 0.0928 0.0650 0.1206

number of rotatable bonds 0.0900 0.0601 0.1200

molecular mass −0.0170 −0.0191 −0.0149

N_number 0.2455 0.1838 0.3072

O_number 0.3131 0.2528 0.3733

Number of aromatic bonds 0.0359 0.0130 0.0588

nonpolar buried surface area 0.0152 0.0047 0.0257

total buried surface area −0.0089 −0.0167 −0.0012

nonpolar buried surface

area/total surface area −4.1454 −6.9496 −1.3412

total buried surface area/total

surface area −6.2438 −8.1509 −4.3368
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Table 4

Leave-one-out cross validation of KECSA.

Pearson's r RMSE(kcal/mol) Kendall τ

Training 0.601 2.20 0.442

Leave-One-Out

Calculation 0.594 2.22 0.437
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Table 5

Statistical results for KECSA, KECSA LJ, KECSA entropy and Ligand MW correlated with experimental
binding affinity.

Pearson's r Kendall τ

KECSA Scoring

Function 0.590 0.404

LJ Potentials in KECSA 0.509 0.352

Entropy in KECSA 0.521 0.349

Ligand Molecular Weight 0.381 0.272
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