
The Impact of Model Uncertainty on Benchmark Dose Estimation

R. Webster West1,*, Walter W. Piegorsch2,3, Edsel A. Peña4, Lingling An2,3,5, Wensong
Wu6, Alissa A. Wickens3, Hui Xiong7, and Wenhai Chen3

1Department of Statistics, Texas A&M University, College Station, TX, USA.
2BIO5 Institute, University of Arizona, Tucson, AZ, USA.
3Interdisciplinary Program in Statistics, University of Arizona, Tucson, AZ, USA.
4Department of Statistics, University of South Carolina, Columbia, SC, USA.
5Department of Agricultural and Biosystems Engineering, University of Arizona, Tucson, AZ,
USA.
6Department of Mathematics and Statistics, Florida International University, Miami, FL, USA.
7Program in Applied Mathematics, University of Arizona, Tucson, AZ, USA.

Abstract
We study the popular benchmark dose (BMD) approach for estimation of low exposure levels in
toxicological risk assessment, focusing on dose-response experiments with quantal data. In such
settings, representations of the risk are traditionally based on a specified, parametric, dose-
response model. It is a well-known concern, however, that uncertainty can exist in specification
and selection of the model. If the chosen parametric form is in fact misspecified, this can lead to
inaccurate, and possibly unsafe, lowdose inferences. We study the effects of model selection and
possible misspecification on the BMD, on its corresponding lower confidence limit (BMDL), and
on the associated extra risks achieved at these values, via large-scale Monte Carlo simulation. It is
seen that an uncomfortably high percentage of instances can occur where the true extra risk at the
BMDL under a misspecified or incorrectly selected model can surpass the target BMR, exposing
potential dangers of traditional strategies for model selection when calculating BMDs and
BMDLs.
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1. INTRODUCTION
An important issue in modern quantitative risk assessment is estimation of the occurrence of
adverse outcomes in a target population (1). This is typically accomplished by estimating the
risk function, R(x), associated with the adverse effect over a broad range of exposure values,
x. Often, R(x) is defined as the probability of an adverse response at exposure level x.
Below, we focus on settings where the argument x in the risk function represents the dose of
a toxic agent. Unknown parameters that characterize R(x) are then estimated using the
observed proportions of adverse responses at a small number of exposure levels covering the
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range of interest. This is commonly referred to as the quantal response setting in
toxicological risk analysis.

Once R(x) has been estimated, a subsequent goal is quantification of the exposure level that
produces a low rate of adverse responses in the target population. This involves inversion of
the estimated risk function to determine the benchmark dose (BMD) that corresponds to a
given, low-level benchmark response (BMR) (2, 3). Rather than focusing on R(x), it is
common in the quantal response setting to define the BMR in terms of a benchmark level of
extra risk, RE(x) = {R(x) − R(0)}/{1 − R(0)}, which adjusts the risk for background or
spontaneous effects not associated with exposure to the toxic agent (4, §4.2). The BMD is
then determined by setting RE(x) equal to the BMR∈(0,1) and solving for x. To emphasize
dependence on BMR, it is common to add a clarifying subscript via the notation
BMD100BMR. For example, we denote the benchmark exposure level with an extra risk of
0.01 (or 1%) as BMD01.

Risk assessors increasingly employ the benchmark dose approach as the basis for setting
exposure limits or other ‘points of departure’ (PODs) when assessing hazardous
environmental stimuli (5). The United States Environmental Protection Agency (EPA) and
the Organisation for Economic Co-operation and Development (OECD) provide guidance
on BMD calculation for carcinogen risk analysis (6, 7), and use of the BMD is growing for
risk assessments over a number of toxicological endpoints (8-10).

Despite the dramatic rise in the BMD’s adoption over the past few decades, a number of
issues related to the approach remain open and unsolved. Perhaps the most important of
these is how selection of the parametric model for R(x) impacts the statistical characteristics
of BMD estimators. Few graphical diagnostics exist that allow a risk assessor to
unambiguously select a particular R(x) function for a given quantal data set. In many cases,
a number of candidate models will provide a good visual fit to the observed proportions,
especially at higher exposures; however, these models produce very different BMDs in the
lower exposure range (11, 12). The intertwined issues of model uncertainty, model selection,
and model adequacy are therefore of great importance in benchmark analysis.

Herein, we consider selection of R(x) when BMD calculation is the goal of the risk analyst.
As part of our evaluation, we study the consequences of using statistical model selection
techniques to determine the ‘best’ model among a suite of candidates for a given data set.
The potential impact of the approach will be studied by calculating the true extra risk at the
estimated BMD100BMR and exploring its characteristics both when the selected model is
correct and when it is not. Section 2 describes the formal aspects of the model-fitting
process and the statistical model selection technique. Section 3 details a Monte Carlo
simulation study to examine the small-sample operating characteristics of these various
selection strategies. Section 4 discusses the potential implications of our simulation results
on the basic practice of risk assessment and on future research in this area.

2. BENCHMARK ANALYSIS
2.1. Statistical model for quantal-response data

For quantal data in the form of proportions, Yi/Ni, the numerators are assumed to be
independent binomial variates Yi ~ Bin(Ni, R(xi)) at each exposure or dose index i, where
the proportion denominator Ni is the number of subjects tested, i = 1, …, I. As introduced
above, R(xi) models the unknown probability that an individual subject will respond at dose
xi ≥ 0, via some assigned parametric specification. For instance, the ubiquitous logistic dose-
response model is R(x) = 1/(1 + exp{−β0 − β1x}), while the similarly popular probit model
is R(x) = Φ(β0 + β1x), where Φ(·) is the standard normal cumulative distribution function
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(c.d.f.). The unknown β-parameters are estimated from the data; maximum likelihood is a
favored approach (4, §A.4.3). The maximum likelihood estimator (MLE) of the BMD,

, is found by setting the estimated extra risk function, , equal to the chosen
BMR and solving for x.

To account for uncertainty in the estimation process, a 95% lower confidence limit on the
true BMD, denoted by BMDL100BMR, is also calculated (13). If the model for R(x) is correct,
the associated BMDL should be at or below the true benchmark dose 95% of the time in
repeated sampling. A 100(1 − α)% BMDL is built from the statistical features of the ;
e.g., the one-sided ‘Wald’ lower limit employs the asymptotic properties of the MLE to
yield

(2.1)

where zα = Φ−1(1 − α) and  is the large-sample standard error of the
MLE (4, §A.5.1).

2.2. Dose-response modeling and estimation
In addition to the logistic and probit forms, a wide variety of possible dose-response
functions exists for modeling R(x). In toxicology and carcinogenicity testing, the models
generally correspond to functions available from the US EPA’s BMDS software program for
performing BMD calculations (14). Table I provides a selection of eight such dose-response
models that we most often see in practice, along with their BMDs for a given BMR. The
models are taken from a collection employed by Wheeler and Bailer (15, 16). (Wheeler and
Bailer also presented a possible data generating model based on the gamma distribution
c.d.f., but did not use it in their calculations. In a similar vein, we do not consider the gamma
model here.) Notice that certain models impose restrictions on selected parameters; these are
listed in Table I to correspond with the most common constraints seen in the risk assessment
literature.

We denote the unknown parameters of each model in Table I via the generic parameter
vector b; e.g., with the log-probit model 7, β = [γ0 β0 β1]T. To find the corresponding MLEs

we maximize the log-likelihood , up to
a constant not dependent upon β. In all cases the usual regularity conditions hold for the
large-sample distribution of the MLEs to approach Gaussian (17, §10.6), although where
constraints exist on the elements of β we require that the true values of those constrained
parameters lie in the interior of the parameter space. Consequent large-sample standard
errors are built from the inverse of the Fisher information matrix, using standard likelihood

theory. With these, we find  for use in (2.1) via a multivariate Delta-method
approximation (4, §A.6.2).

2.3. Model selection under uncertainty
The models in Table I are some of the most popular forms chosen by risk analysts for
describing toxicological dose-response patterns; the number of instances where they are
employed is larger than can be reasonably reviewed here. Whether the chosen form is
actually correct for any given data set is of course uncertain, and as we note above, there is a
concern that this level of model uncertainty can be extensive in practice, at least as regards
BMD estimation.
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To explore this issue more closely, we consider two basic, often-seen approaches for the
model selection strategy. The first simply assumes one and only one model in Table I is
valid for a given data set, and operates with that model for all benchmarking and other
inferences. (We have heard this called the “pet model” strategy—perhaps derisively—since
the analyst unilaterally favors a single model and essentially ignores any model uncertainty.)
The second is to allow for uncertainty in the modeling process and select the model from a
larger suite of Q >1 models, such as the list in Table I. Selection is based on some statistical
information quantity such as Akaike’s (18) Information Criterion:

where  is the maximized log-likelihood and νq is the number of free parameters to be
estimated under model Mq (q = 1, …, Q). Notice that this is the “lower-is-better” form of the
AIC. As a comparative selection statistic, the AIC has become popular in benchmark
analysis (19-23), hence our focus on it here. Once selected, the model with the best (lowest)
AIC is employed to perform the fit and calculate the  and BMDL. Note that in practice
no additional statistical adjustment is made for this data-based selection when calculating
the confidence limit, despite the fact that without such an adjustment the true confidence
level of the BMDL often differs from the nominal 95% level (24, §7.4).

3. SIMULATION STUDY
3.1. Simulation design

To compare the two basic strategies for model determination described in §2.3, we
conducted a large-scale, Monte Carlo, simulation study. Due to their wide acceptance and
popularity for benchmark analysis with quantal data, we centered our attention on the Q = 8
models in Table I. For the study design we chose I = 4 exposure levels: x1 = 0.0, x2 = 0.25,
x3 = 0.5, x4 = 1.0, corresponding to a standard design in carcinogenicity assessment (25).
Equal numbers of subjects, Ni = N, were taken per dose group. We considered three
different possibilities for the per-dose sample sizes: N = 25, 50, or 1000; the latter
approximates a ‘large-sample’ setting and provides a glimpse at how the methods perform
asymptotically, while the former two fall in the range of values that are more commonly
used in practice.

For the true dose-response patterns we set background risks at x = 0 between 1% and 30%.
The other risk levels were increased to produce a variety of (strictly) increasing forms,
ending with high-dose risks at x = 1 between 10% and 90%. To set the parameters for each
model, we fixed R(x) at x = 0 and x = 1 and solved for two unknown parameters. For the 3-
parameter models (5–8), we additionally fixed R(x) at x = ½, and then solved for the third
unknown parameter. The resulting parameter configurations for the various models are
given in Table II. Each model/configuration pairing was simulated 2,000 times using the
standard four-dose design.

Every simulated data set was fit using all Q = 8 models shown in Table I. MLEs of the
BMD01 and the BMD10 along with their corresponding 95% Wald lower confidence limits,
BMDL01 and BMDL10, were computed. The AIC from each qth model’s fit to every data set
was also computed. While we could have considered other model selection strategies based
on other criterion such as the BIC (Bayesian Information Criterion), we chose to focus on
the AIC herein since it is the approach used most often by most risk assessors in practice.
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All our calculations were performed in the R programming environment (26) 64-bit version
2.13.1 on a Windows® workstation. The simulated data were generated using standard R
routines for quantal data. The models were fit to the data to produce MLEs using either the
standard R function glm for Models 1 and 2, box-constrained optimization via the R
function optim for Models 3–5 (27), or the R package drc (28) for Models 6–8. A large subset
of the resulting model fits were compared with the corresponding results from the EPA’s
publicly available BMDS 2 software (14). No significant differences were found between the
two packages for any of the quantities we evaluated. We employed the R package because
of its more advanced capabilities for generating and managing the large data structures
needed.

3.2. Monte Carlo results: single-model coverage evaluations
The first aspect studied in our simulations was the capacity of the BMDL to provide a valid
lower confidence bound on the BMD if the model fit to the data is in fact correct. (No data-
based selection is considered: we assume the analyst has a single model in mind and
operates with it exclusively. This is the “pet model” scenario.) When the true model is
correctly specified and used to build the BMDL via (2.1), statistical likelihood theory tells
us that the coverage rates should approximate and approach the nominal 95% level as N
increases (17, §10.4). Happily, our simulated BMDLs exhibited stable, if slightly conservative
coverage. Median coverage across all models and parameter configurations at N = 25
subjects/dose was 0.978 (interquartile range (IQR) = 0.013) at BMR = 0.01 and 0.977 (IQR=
0.016) at BMR = 0.10, while at N = 50 subjects/dose they were 0.986 (IQR = 0.011) at
BMR = 0.01 and 0.980 (IQR = 0.020) at BMR = 0.10. At the larger sample size of N =
1000, the asymptotic effects began to take hold, as the average coverage rates dropped to
0.966 (IQR = 0.009) at BMR = 0.01 and 0.963 (IQR = 0.004) at BMR = 0.10.

These results require correct model specification, however. To study the effects of model
misspecification, we extended our single-model coverage evaluations by fitting every
possible incorrect model and calculating the resulting BMDLs. That is, we took simulated
data from each of the eight models in Table I and in turn fit the other seven, incorrect
models to each data set. (Again, no model selection was applied: each model was fit
singularly, if purposefully incorrect.) Our results for this misspecification scenario were
alarming: we found that coverage rates could literally take on any value between 0% and
100% across the constellation of models and parameter configurations we studied. Every
model exhibited at least one instance of 0% coverage under some form of misspecification,
and for some models BMDL coverage in the 0–25% range was about as common as
coverage in the 95–100% range. Indeed, the variation in coverage rates actually increased as
N grew large, with many model/configuration combinations showing lower coverage rates at
N = 1000 than at N = 25. (This was not wholly unexpected: the large-sample consistency of
MLEs is violated under model misspecification, and as a result the true coverage is not
guaranteed to be at, or even near, the 95% level.) Worse still, we found no discernible
pattern in the unstable coverage across models or configurations. Any model from Table I
could produce a misspecification coverage rate of 0%, 25%, 50%, 95%, or 100%, as could
any parameter configuration in Table II. (To save space, detailed results are not shown here
but are available from the authors.)

In the presence of model misspecification, we conclude that the associated BMDL can
perform in a completely unpredictable and possibly unstable manner, and that the analyst
has no guidance on when this might occur. Construction and use of singly specified, “pet”
model BMDLs must be performed with essentially unambiguous assurance that the chosen
model is correct. If not, the BMDL will cover the true benchmark dose at an unpredictable
level of confidence. A consequence of this effect will resurface in §3.4, below, when we

West et al. Page 5

Environmetrics. Author manuscript; available in PMC 2013 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



discuss the capacity of the true extra risk function to attain the desired BMR when evaluated
at a misspecified BMDL.

3.3. Monte Carlo results: model selection evaluations
Given the unpredictable nature of the single-model BMDLs seen in §3.2, we next evaluated
the effects of employing a formal model-selection strategy when model uncertainty is a
concern. In particular, can we identify the correct dose-response model for a given data set
by selecting the fitted model with the smallest AIC? To assess this, we calculated the
percentage of times the correct model was chosen among all simulated data sets across all
configurations for a given model in Table I. The somewhat surprising results are reported in
Tables III, IV, and V, representing per-dose sample sizes of N = 25, 50, and 1000,
respectively. The true, correct model (1–8) is listed across the rows of each table and the
AIC-selected model (also 1–8) is shown across the columns. The cells within a row indicate
the percentage of times each of the eight candidate models was selected when the data were
generated using the model indicated for that row. (Some rounding can occur.) Thus the table
diagonals give the percentage of times the correct model was chosen. Disturbingly, for the
smaller per-dose sample sizes of N = 25 and N = 50 the diagonal rates are noticeably low for
every model configuration; only Model 3 was properly selected as the correct model over
50% of the time. (This is an intriguing observation: Model 3 is the only strictly concave
dose-response function in Table I.) In general, Models 1–4, which are two-parameter
models, exhibited much higher correct-selection percentages than the three-parameter forms
given by Models 5–8. Indeed, at the smaller sample sizes, the three-parameter models all
had less than a 6% chance of being properly selected as the correct model.

In the off-diagonal cells of each table—indicating an incorrect selection—there is an
obvious preference for selecting lower-order models. The chances of selecting the correct
model improve only at the larger sample size of N = 1000, but even at this very large sample
size the highest percentage of proper selection is only 77.4% (at Model 3). The preference
for lower-order models remains, with the three-parameter models correctly selected well less
than 50% of the time. [These results appear somewhat paradoxical, since the AIC criterion is
generally thought to prefer higher-order models. The effect is less substantial than often
expected, however; see Claeskens and Hjort (24, §8.3).] Even when accounting for potential
model uncertainty by applying an established selection technique, we find that the process of
dose-response modeling can be fraught with pitfalls, at least when employing the traditional
four-dose design.

In addition to considering the rate at which the individual models were either correctly or
incorrectly selected, we also considered the coverage characteristics of the associated
BMDLs for the selected model based on AIC. We computed the percentage of times that the
BMDL from the AIC selected model was below the corresponding benchmark dose from the
true underlying model. Overall, the observed percentages were quite disconcerting and often
times quite far from the target value of 95%. The coverage percentages associated with a
BMR of 0.1 were generally only marginally higher than those percentages associated with a
BMR of 0.01. These percentages ranged from roughly 50% to 100% across all combinations
of model, configuration and dose group size. Based on the model misspecification rates
discussed above, one might guess that the models with more parameters would lead to lower
coverage percentages. However, we found these percentages to be much more consistent
across model than configuration. For the smaller dose group sizes (N=25 and N=50), the
coverage percentages tended to be on the conservative side (above 95%) in most cases, but
for the more steep configurations (D-F) the percentages were often times much lower in
60% to 80% range. While these results did not vary a great deal across the models, the
lowest coverage percentages were actually observed for Models 1-4. The impact of sample
size on these values was interesting in that there was no observed convergence to the
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nominal 95% level at the larger dose group size of N=1000. Indeed many of the model/
configuration pairings that were conservative for the smaller dose group sizes drifted into
the 80% range at the larger dose group size while those pairings that were originally on the
low side only increased marginally at the higher dose group value.

3.4. Monte Carlo results: extra risk evaluations
Given the large number of times that an incorrect dose-response model was selected in §3.3,
we next attempted to quantify the impact of model misspecification. We already saw in §3.2
that the BMDL’s coverage characteristics under an incorrectly specified model can vary
wildly and unpredictably. We next assessed how this translated to the core quantity of
interest: the achieved extra risk at the estimated benchmark points. For each simulated data
set the true extra risk was computed at the  and the BMDL using the correct model’s

extra risk; i.e., we calculated  and RE(BMDL100BMR). We reasoned that if a
model selection method is performing well, even in the face of model misspecification, the

true RE(x) values at the resulting  would hopefully cluster about the reference
BMR—either 0.1 or 0.01, as the case may be in our study. Similarly, since all our models
are monotone increasing functions we expect roughly 95% of the true RE(BMDL100BMR)
values should rest below the corresponding reference BMR (preferably not too far below).
By contrast, if the model selection/model specification process has gone awry, these various
extra risks will differ greatly from the target BMR. Since we focus on the BMDL, we report
results below for only the RE(BMDL100BMR) calculations.

The magnitude of the true RE values also allows us to detect and quantify the actual extra
risk in settings where estimates deviate significantly from the target BMR. Such detection is
most important in situations where the true RE exceeds the BMR, indicating potentially
greater extra risk than desired by the risk manager.

The true, achieved RE values calculated from our simulations were separated into three sets
for comparison. The first comparison set contains the true extra risks when the correct model
(‘CM’) was fit to the simulated data. This represents an ideal standard where we expect
about 95% of the consequent RE(BMDL100BMR) values to be (slightly) below the BMR. The
second comparison set contains the true RE values that result from incorrectly fitting all of
the other models (‘OM’) to the simulated data; e.g., if the data were generated under the
logistic, Model 1, we calculated BMDL100BMRs when all the other models (2–8) were fit to
the data, and then determined the (true) logistic RE at each of these seven BMDLs. This OM
set provides an overall look at the range of true extra risks that can occur if an incorrect
model is specified for a given data set. The third set contains the true RE values if active,
AIC-based selection was conducted prior to computation of the BMDL. The acronym ‘SM’
will denote this in what follows. Note that this last set is not mutually exclusive from the
previous two, as the selected model is obviously either the correct model or one of the other,
incorrect models. The SM set describes the impact of AIC-based model selection on the
resulting extra risks.

Figs. 1 and 2 encapsulate the extensive information available in these extra risk evaluations.
They display modified boxplots of the true values for RE(BMDL10) (Fig. 1) and
RE(BMDL01) (Fig. 2) stratified by parameter configuration and by comparison set (CM,
OM, or SM) at each per-dose sample size. Thus each modified boxplot pools true extra risks
across all models in the pertinent comparison set. The boxplots have been modified from the
traditional format so that their upper hinges represent the 95th percentile of the true extra
risk values for that configuration/comparison group combination (but, also see below). This
avoids display of extremely large extra risks that extend the vertical range and limit the
amount of visible information across the comparison boxplots. This was especially a

West et al. Page 7

Environmetrics. Author manuscript; available in PMC 2013 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



problem for smaller sample sizes with configurations A and B, which have a very shallow
risk function. Shallow risk functions can produce very flat response patterns; the consequent
BMDLs are then driven far from zero and the associated, true values of RE(BMDL100BMR)
reach close to one.

In addition to providing a more comparative graphic, the modified boxplots also allow one
to visually estimate the coverage probability of the associated BMDLs: when the modified
upper hinge is above the reference BMR (the horizontal line in each figure) this suggests
that fewer than 95% of the simulated BMDLs lie below the true BMD, hence coverage for
that BMDL falls short of the nominal 95% level. On the other hand, if the upper hinge is
below the BMR, then the BMDL values are conservative in nature.

We made one additional modification to the boxplots in Figs. 1 and 2: as noted above, the
shallow dose response for configuration A led to very large BMDLs and consequent extra
risks near 1.0. Even when limited to the 95th percentile, the upper hinges for configuration
A were so high that visually clarity was obscured in the graphic. To compensate, we set the
upper hinge for configuration A boxplots to only the 90th percentile. This is indicated by the
“90%” symbol above the hinges in each figure.

The comparisons in Figs. 1 and 2 indicate that the CM BMDLs are generally conservative at
smaller sample sizes, as their displayed upper hinges are often below the BMR. This
corresponds with our coverage evaluations in §3.2, above. As the sample size increases to N
= 1000, the CM upper hinges converge appropriately to the BMR reference value, which
again validates the large-sample coverage characteristics of the underlying Wald confidence
limit.

The patterns of variation in Figs. 1 and 2 for the true extra risks under the incorrect model
fits (OM) and the AIC-selected model fits (SM) are far more problematic. Perhaps not
surprisingly, the interquartile ranges (IQRs) of the CM boxplots are typically much smaller
than those of the OM boxplots, while those for the SM boxplots fall somewhere in between.
For the combination of shallow dose-response curves (configurations A–C) and small
sample size (N = 25 or 50), the OM and SM extra risks occasionally appear conservative. As
the sample size increases to N = 1000, however, both the OM and SM upper hinges move
above the BMR, although this may only be for a small amount. The corresponding third
quartiles tend to match closely with the target BMR, suggesting corresponding substandard
coverage percentages in the 75% range for the underlying BMDLs.

For the configurations (D–F) with richer and steeper curvilinearity, the OM and SM extra
risks in Figs. 1 and 2 exhibit much greater variability: wider IQRs and upper hinges
extending alarmingly beyond the target BMR are more the rule. This is true across all
sample sizes. Perhaps the worst-case example occurs with OM configuration D at a per-dose
sample size of N = 1000. In this case, roughly 50% of the true RE values exceed the target
BMR (in both Fig. 1 and Fig. 2). In Fig. 1, the corresponding upper hinge extends up to 0.20
indicating true extra risks double that of the target value. In Fig. 2, the corresponding upper
hinge reaches an extra risk of 0.06; not as disturbing in absolute value, but now six-fold
larger than the BMR in a relative sense. The picture is not quite as bleak for SM values
across the steeper configurations (D–F), but we still find upper hinges well above the target
BMRs at all sample sizes.

4. DISCUSSION
The results of our simulation study in §3 should be reason for pause among practicing risk
analysts. As a regulatory tool, the goal of the BMDL approach is to help set low exposure
levels that limit the (extra) risk of an adverse effect to predetermined levels, quantified via
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the BMR. While much prior study on the BMDL has emphasized statistical characteristics
such as coverage probability—and for completeness we include similar evaluations here—
our results focus on the true extra risk achieved at the estimated BMDL. Our simulations
expose an uncomfortably high percentage of cases where the true extra risk at a misspecified
or incorrectly selected BMDL can surpass the target BMR; exceedances can surpass six
times the desired level in the most extreme cases. In many risk assessment scenarios, we
expect that such an exceedance in extra risk would be deemed unacceptable. It has been
known for some time (11, 12) that a variety of models can fit a dose-response pattern fairly
well in the observed data range, and yet provide disparate  and BMDLs at low doses.
Our evaluations further drive home this point, now in terms of a potential, undesirable
increase in extra risk when an incorrect model is used to calculate a  or BMDL.

While the results in §3 provide a broad description of the consequences when fitting an
incorrect model to dose-response data, quantifying the impact of any particular
misspecification is quite difficult to do. As we have seen, the impacts of model
misspecification fluctuate, and depend on the particular nature of the incorrectly fitted
model, the underlying/correct model, the sample size, etc. For example, return to the
simulation results in §3 and consider Model 3 from Table I, the popular quantal-linear model
R(x) = 1 − exp{−β0 − β1x}. Fix the underlying parameterization from Table II as
configuration D. In Fig. 3 we display modified boxplots, as per §3.4, of the true values of
RE(BMDL01), stratified horizontally by actual model fit, and vertically by per-dose sample
size, N. As expected, when Model 3 is correctly fit to the data, the boxplots are fairly tight
and rest slightly below the target BMR. When an incorrect model is fit to the data, however,
the results vary: at N = 25 and N = 50, fitting Models 1, 2, and 4 produces anticonservative
extra risks ranging from two to almost eight times that of the target BMR = 0.01, but the
three-parameter model fits exhibit conservative extra risks that lie well below the BMR. At
N = 1000, however, the true extra risks for Models 1, 2, and 4 tighten up, and they are now
joined by those from Model 7 in moving up and away from the BMR. The Model 7 extra
risks now exhibit larger IQRs, however, as do those from Models 5 and 6. The extra risks
from Model 4 are perhaps most disturbing: they consistently rest six-times as high, and often
higher, as the target BMR. (Model 4 is the quantal-quadratic function, which though more
flexible than the strictly concave quantal-linear Model 3, is very similar in mathematical
form. Apparently, this similarity is irrelevant: the increased flexibility is driving the BMDLs
too far above the true BMD and the corresponding extra risks too far above the BMR.)

The results in Fig. 3 illustrate that the impacts of model misspecification depend largely on
which model is fit to the data. In some cases, an incorrect model leads to conservative
BMDLs and extra risks, while in others an incorrect model has the more drastic impact of
inflating the BMDLs and pushing true extra risks to several times the desired BMR.

Our simulation results also suggest that a simple, AIC-based selection strategy does not
solve the problems of model misspecification. We found that the selection process more
often than not identifies an incorrect model. AIC-based selection does help reduce the
magnitude of exceedances above BMR seen in the values of RE(BMDL100BMR), compared
to no selection and incorrect specification. These reductions do not always drop excessive
extra risks down to the target BMR, however. In addition, the nominal 95% confidence level
for the BMDL can erode after model selection is implemented: we observed coverage rates
down to 75% for some SM model/configuration combinations.

In practice, the situation may be even more complex than presented here. Given our
warnings, risk analysts might be tempted to expand the suite of models being fit, in order to
increase their odds of selecting a correct form. There is just as much possibility, however,
that this will increase the chance of selecting an incorrect model and damage the risk
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estimation process even further. In such settings, the analyst may literally be “searching in
the dark” for the appropriate  and BMDL, and in the best case can only hope to find
values that produce extra risk values that are vaguely in the vicinity of the desired BMR for
the agent under study. Furthermore, the results of model selection appear to be even more
negatively impacted in situations where the risk function changes steeply over the observed
dose range.

Readers should be careful in how they generalize the results described above to all dose-
response studies. For example, based on Tables III–V one should not trust that lower-order
models would typically be best for quantal data sets simply because they appear to be
selected more often. Likewise, one should not consider model selection to be unimportant
for studies with small/shallow increases in the observed dose response. For any realized set
of quantal data, the true coverage probability or the true extra risk at the BMDL may be
distinctly better or worse than what we present here.

Perhaps our most important conclusion is that the quality of a parametrically calculated
BMDL appears unpredictable in the presence of model uncertainty. We do not feel this is a
testament against the BMD approach; in fact, we are strong supporters of its continued and
expanded use in quantitative risk assessment. Our message and call is for much more careful
use of the method in practice, and for further research to develop advanced statistical
techniques that better incorporate the effects of model uncertainty. We are exploring a
number of possibilities towards these ends, including model averaging approaches and
approaches based on focus-based inference. We hope to report on them in future
manuscripts.

Lastly, although we did not focus on it here, we recognize that dose selection and design
also impact the qualities of the BMDL (29-31). We concentrated on a four-dose design due to
its popular use in toxicology (32). Clearly, however, the limited amount of information
available in only four distinct doses makes powerful model selection and efficient parameter
estimation extremely difficult. Further research is also necessary to determine how designs
with more, well-placed doses can overcome the issue of model uncertainty and improve risk
estimation in benchmark analysis.

Acknowledgments
This research was supported by grant #RD-83241902 from the U.S. Environmental Protection Agency, grant #R21-
ES016791 from the U.S. National Institute of Environmental Health Sciences and grant DMS-1106435 from the
National Science Foundation. Its contents are solely the responsibility of the authors and do not necessarily reflect
the official views of these agencies.

REFERENCES
1. Stern, AH. Environmental health risk assessment. In: Melnick, EL.; Everitt, BS., editors.

Encyclopedia of quantitative risk analysis and assessment. Vol. 2. John Wiley & Sons; Chichester:
2008. p. 580-9.

2. Crump KS. A new method for determining allowable daily intake. Fundam. Appl. Toxicol. 1984;
4(5):854–71. [PubMed: 6510615]

3. Crump, KS. Benchmark analysis. In: El-Shaarawi, AH.; Piegorsch, WW., editors. Encyclopedia of
environmetrics. Vol. 1. John Wiley & Sons; Chichester: 2002. p. 163-70.

4. Piegorsch, WW.; Bailer, AJ. Analyzing environmental data. John Wiley & Sons; Chichester: 2005.

5. Kodell RL. Managing uncertainty in health risk assessment. Intl. J. Risk Assessment Manage. 2005;
5(2/3/4):193–205.

6. U.S. EPA. Guidelines for carcinogen risk assessment. U.S. Environmental Protection Agency;
Washington, DC: Report No.: EPA/630/P-03/001F

West et al. Page 10

Environmetrics. Author manuscript; available in PMC 2013 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



7. OECD. Draft guidance document on the performance of chronic toxicity and carcinogenicity
studies, supporting tg 451, 452 and 453. Organisation For Economic Co-Operation and
Development; Paris: 2008.

8. European Union. Technical guidance document (tgd) on risk assessment of chemical substances
following european regulations and directives, parts i-iv. European Chemicals Bureau (ECB); Ispra,
Italy: Report No.: EUR 20418 EN/1-4

9. U.S. General Accounting Office. Chemical risk assessment. Selected federal agencies’ procedures,
assumptions, and policies. U.S. General Accounting Office; Washington, DC: Aug. 2001 Report
No.: GAO-01-810

10. OECD. Current approaches in the statistical analysis of ecotoxicity data: A guidance to application.
Environment Directorate, Organisation For Economic Co-Operation and Development; Paris:
2006. Series on testing and assessment report #54

11. Faustman EM, Bartell SM. Review of noncancer risk assessment: Applications of benchmark dose
methods. Hum. Ecol. Risk Assess. 1997; 3(5):893–920.

12. Kang S-H, Kodell RL, Chen JJ. Incorporating model uncertainties along with data uncertainties in
microbial risk assessment. Regul. Toxicol. Pharmacol. 2000; 32(1):68–72. [PubMed: 11029270]

13. Crump KS. Calculation of benchmark doses from continuous data. Risk Anal. 1995; 15(1):79–89.

14. Davis JA, Gift JS, Zhao QJ. Introduction to benchmark dose methods and u.S. Epa’s benchmark
dose software (bmds) version 2.1.1. Toxicol. Appl. Pharmacol. 2011; 254(12):181–91. [PubMed:
21034758]

15. Wheeler MW, Bailer AJ. Model averaging software for dichotomous dose response risk
estimation. J. Statist. Software. 2008; 26(5) Art. No. 5.

16. Wheeler MW, Bailer AJ. Properties of model-averaged bmdls: A study of model averaging in
dichotomous response risk estimation. Risk Anal. 2007; 27(3):659–70. [PubMed: 17640214]

17. Casella, G.; Berger, RL. Statistical inference. 2nd ed. Duxbury; Pacific Grove, CA: 2002.

18. Akaike, H. Information theory and an extension of the maximum likelihood principle. In: Petrov,
BN.; Csaki, B., editors. Proceedings of the second international symposium on information theory;
Budapest. Akademiai Kiado; 1973. p. 267-81.

19. Sand S, Falk Filipsson A, Victorin K. Evaluation of the benchmark dose method for dichotomous
data: Model dependence and model selection. Regul. Toxicol. Pharmacol. 2002; 36(2):184–97.
[PubMed: 12460753]

20. Falk Filipsson A, Victorin K. Comparison of available benchmark dose softwares and models
using trichloroethylene as a model substance. Regul. Toxicol. Pharmacol. 2003; 37(3):343–55.
[PubMed: 12758215]

21. Faes C, Aerts M, Geys H, et al. Model averaging using fractional polynomials to estimate a safe
level of exposure. Risk Anal. 2007; 27(1):111–23. [PubMed: 17362404]

22. Foronda NM, Fowles J, Smith N, et al. A benchmark dose analysis for sodium monofluoroacetate
(1080) using dichotomous toxicity data. Regul. Toxicol. Pharmacol. 2007; 47(1):84–9. [PubMed:
16965845]

23. Hwang M, Yoon E, Kim J, et al. Toxicity value for 3-monochloropropane-1,2-diol using a
benchmark dose methodology. Regul. Toxicol. Pharmacol. 2009; 53(2):102–6. [PubMed:
19133308]

24. Claeskens, G.; Hjort, NL. Model selection and model averaging. Cambridge University Press; New
York: 2008.

25. Portier CJ. Biostatistical issues in the design and analysis of animal carcinogenicity experiments.
Environ. Hlth. Perspect. 1994; 102(Suppl. 1):5–8.

26. R Development Core Team. R: A language and environment for statistical computing. R
Foundation for Statistical Computing; Vienna, Austria: 2011.

27. Deutsch RC, Grego JM, Habing BT, et al. Maximum likelihood estimation with binary-data
regression models: Small-sample and large-sample features. Adv. Appl. Statist. 2010; 14(2):101–
16.

28. Ritz C, Streibig JC. Bioassay analysis using R. J. Statist. Software. 2005; 12(5) Art. No. 5.

West et al. Page 11

Environmetrics. Author manuscript; available in PMC 2013 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



29. Öberg M. Benchmark dose approaches in chemical health risk assessment in relation to number
and distress of laboratory animals. Regul. Toxicol. Pharmacol. 2010; 58(3):451–4. [PubMed:
20800084]

30. Sand S, Victorin K, Falk Filipsson A. The current state of knowledge on the use of the benchmark
dose concept in risk assessment. J. Appl. Toxicol. 2008; 28(4):405–21. [PubMed: 17879232]

31. Slob W, Moerbeek M, Rauniomaa E, et al. A statistical evaluation of toxicity study designs for the
estimation of the benchmark dose in continuous endpoints. Toxicologic. Sci. 2005; 84(1):167–85.

32. Muri SD, Schlatter JR, Brüschweiler BJ. The benchmark dose approach in food risk assessment: Is
it applicable and worthwhile? Food Chem. Toxicol. 2009; 47(12):2906–25. [PubMed: 19682530]

West et al. Page 12

Environmetrics. Author manuscript; available in PMC 2013 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
Modified boxplots of the true extra risk at calculated 95% BMDLs from the simulation
results in §3; BMR = 0.10. (See text for details of the modifications.) Results are pooled
across all eight models from Table I. Three boxplots are displayed for each parameter
configuration, A–F, from Table II. A ‘.CM’ suffix corresponds to BMDLs calculated under
the correct dose-response model in Table I. A ‘.OM’ suffix corresponds to BMDLs
incorrectly calculated under the other models in Table I. A ‘.SM’ suffix corresponds to
BMDLs calculated under the model actively selected from minimizing the AIC. The upper
comparison graphic presents results for a per-dose sample size of N = 25, the middle graphic
for a per-dose sample size of N = 50, and the lower graphic for a per-dose sample size of N
= 1000. Shadings separate different configurations.
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Fig. 2.
Modified boxplots of the true extra risk at calculated 95% BMDLs from the simulation
results in §3; BMR = 0.01. (See text for details of the modifications.) Results are pooled
across all eight models from Table I. Three boxplots are displayed for each parameter
configuration, A–F, from Table II. A ‘.CM’ suffix corresponds to BMDLs calculated under
the correct dose-response model in Table I. A ‘.OM’ suffix corresponds to BMDLs
incorrectly calculated under the other models in Table I. A ‘.SM’ suffix corresponds to
BMDLs calculated under the model actively selected from minimizing the AIC. The upper
comparison graphic presents results for a per-dose sample size of N = 25, the middle graphic
for a per-dose sample size of N = 50, and the lower graphic for a per-dose sample size of N
= 1000. Shadings separate different configurations.
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Fig. 3.
Modified boxplots of the true extra risk at calculated 95% BMDLs from the simulation
results in §3 for Model 3 under configuration D; BMR = 0.01. (See text for details of the
modifications.) The upper comparison graphic presents results for a per-dose sample size of
N = 25, the middle graphic for a per-dose sample size of N = 50, and the lower graphic for a
per-dose sample size of N = 1000.
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Table I

Selected quantal dose-response models common in toxicological and carcinogenic risk assessment

Model Code R(x) BMD Restrictions/Notes

Logistic 1
1

1 + exp{ − β0 − β1x}
1
β1

log{ 1 + e
−β0BMR

1 − BMR
} −

Probit 2 Φ(β0 + β1x)
QBMR − β0

β1
QBMR = Φ−1{BMR[1 −Φ(β0)] + Φ(β0)}

Quantal-linear 3 1 − exp{−β0 − β1x}
− ln(1 − BMR)

β1
β0 ≥ 0, β1 ≥ 0

Quantal-quadratic 4 γ0 + (1−γ0)(1−exp{−β1x2})
− ln(1 − BMR)

β1
0 ≤ γ0 ≤ 1, β1 ≥ 0

Two-stage 5 1 − exp{−β0 − β1x − β2x2}
− β1 + β

12 + 4β2TBMR

2β2

βj ≥ 0, j = 0,1,2
TBMR = −log(1 − BMR)

Log-logistic 6 γ0 +
1 − γ0

1 + exp{ − β0 − β1log x } exp{ LBMR − β0
β1

} 0 ≤ γ0 ≤ 1, β1 ≥ 0
LBMR = log{BMR/(1−BMR)}

Log-probit 7 γ0 + (1−γ0)Φ(β0 + β1log[x]) exp{ Φ −1(BMR) − β0
β1

} 0 ≤ γ0 ≤ 1, β1 ≥ 0

Weibull 8 γ0 + (1−γ0)[1–exp{−eβ0xβ1}] exp{ WBMR − β0
β1

} 0 ≤ γ0 ≤ 1, β1 ≥ 1
WBMR = log{−log(1−BMR)}

Notes: The quantal linear (Model 3) model is also referred to as the ‘one-stage’ model or as the ‘complementary-log’ model, and may equivalently
appear as γ0 + (1 − γ0)(1 − exp{−β1x}), where γ0 = 1 − exp{−β0}.

The two-stage model (Model 5) and the quantal-linear/one-stage model (Model 3) are special cases of the more general ‘Multi-stage’ model in

carcinogenesis testing (4, §4.2.1).
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Table II

Models and configurations for the Monte Carlo evaluations

Configuration

A B C D E F

Constraint: R(0) = 0.01 0.01 0.10 0.05 0.30 0.10

R(1) = 0.10 0.20 0.30 0.50 0.75 0.90

Model code Parameters

1 β 0 −4.5951 −4.5951 −2.1972 −2.9444 −0.8473 −2.1972

β 1 2.3979 3.2088 1.3499 2.9444 1.9459 4.3944

2 β 0 −2.3263 −2.3263 −1.2816 −1.6449 −0.5244 −1.2816

β 1 1.0448 1.4847 0.7572 1.6449 1.1989 2.5631

3 β 0 0.0101 0.0101 0.1054 0.0513 0.3567 0.1054

β 1 0.0953 0.2131 0.2513 0.6419 1.0296 2.1972

4 γ 0 0.0100 0.0100 0.1000 0.0500 0.3000 0.1000

β 1 0.0953 0.2131 0.2513 0.6419 1.0296 2.1972

Configuration

A B C D E F

Constraint: R(0) = 0.01 0.01 0.10 0.05 0.30 0.10

R(½) = 0.04 0.07 0.17 0.30 0.52 0.50

R(1) = 0.10 0.20 0.30 0.50 0.75 0.90

Model code Parameters

5 β 0 0.0101 0.0101 0.1054 0.0513 0.3567 0.1054

β 1 0.0278 0.0370 0.0726 0.5797 0.4796 0.1539

β 2 0.0675 0.1761 0.1788 0.0622 0.5501 2.0433

6 γ 0 0.0100 0.0100 0.1000 0.0500 0.3000 0.1000

β 0 −2.3026 −1.4376 −1.2528 −0.1054 0.5878 2.0794

β 1 1.6781 1.8802 1.7603 1.3333 1.9735 3.3219

7 γ 0 0.0100 0.0100 0.1000 0.0500 0.3000 0.1000

β 0 −1.3352 −0.8708 −0.7647 −0.0660 0.3661 1.2206

β 1 0.7808 0.9794 0.9456 0.8189 1.2261 1.9626

8 γ 0 0.0100 0.0100 0.1000 0.0500 0.3000 0.1000

β 0 −2.3506 −1.5460 −1.3811 −0.4434 0.0292 0.7872

β 1 1.6310 1.7691 1.6341 1.0716 1.4483 1.9023
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Table III

AIC-based model selection percentages over all configurations (A–F) in Table II for per-dose sample size of N
= 25

Selected

Model 1 2 3 4 5 6 7 8

Correct

1 16.9 14.5 26.4 35.9 0.1 3.9 1.5 0.9

2 15.3 14.7 29.1 35 0.1 3.5 1.3 0.8

3 8.4 9.1 56.5 19.6 0 4.5 1.9 0.1

4 15.4 13.6 20.8 42.7 0 4.3 2 1.1

5 12.2 13.5 34.6 33.5 0.1 3.5 1.6 0.9

6 12.6 11.5 32.1 35.7 0 3.9 3.4 0.8

7 12.9 11.5 31.8 36.2 0 3.5 3.3 0.7

8 12.3 13.3 33.8 34.5 0 3.5 1.7 0.9
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Table IV

AIC-based model selection percentages over all configurations (A–F) in Table II for per-dose sample size of N
= 50

Selected

Model 1 2 3 4 5 6 7 8

Correct

1 17.6 18.1 21.9 35 0.4 3.4 2.4 1.2

2 15.8 18.7 25.3 34 0.4 2.8 1.9 1

3 7.4 8.7 61.9 13.6 0.2 5.1 3 0.1

4 15.3 14.8 15.4 45.3 0.2 3.7 3.7 1.6

5 12.5 15.7 33.2 32.3 0.2 3 2.2 0.9

6 12.4 12 30.6 34.7 0.1 3.5 6 0.9

7 12.3 12 29.8 35.8 0 3.4 5.9 0.8

8 12.6 15.2 32.2 33.5 0.2 3 2.4 0.9
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Table V

AIC-based model selection percentages over all configurations (A–F) in Table II for per-dose sample size of N
= 1000

Selected

Model 1 2 3 4 5 6 7 8

Correct

1 41.5 29.9 2.6 15 1.6 1.1 5 3.3

2 27.5 44.1 4.1 13 3.7 1.4 4.3 1.9

3 1.1 3.8 77.4 0 2.4 4.3 9.9 1

4 14.3 10 0.1 58.1 1.3 2.3 9.8 4.2

5 20.2 24.4 12.8 18.3 7.9 3 9.1 4.4

6 11.2 13.4 6.9 17.8 5.3 14.2 27.5 3.7

7 7.7 8.8 3.3 21.4 2.8 11.8 41.1 3.1

8 18.4 18.8 11 22.9 7.1 4.1 12.5 5.2
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