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Abstract
Objectives—The purpose of this manuscript was to provide a substantive-methodological
synergy of potential importance to future research in the psychology of sport and exercise.

Design—The substantive focus was the emerging role for, and particularly the measurement of,
athletes’ evaluations of their coach's competency within conceptual models of effective coaching.
The methodological focus was exploratory structural equation modeling (ESEM), a methodology
that integrates the advantages of exploratory factor analysis and confirmatory factor analysis
(CFA) within the general structural equation model.

Method—The synergy was a demonstration of when a new and flexible methodological
framework, ESEM, may be preferred as compared to a more familiar and restrictive
methodological framework, CFA, by reanalyzing existing data.

Results—ESEM analysis on extant datasets suggested that for responses to the Athletes’
Perceptions of Coaching Competency Scale II – High School Teams (APCCS II-HST), a CFA
model based on the relevant literature plus one post hoc modification, offered a viable alternative
to a more complex ESEM model. For responses to the Coaching Competency Scale (CCS), a CFA
model based on the relevant literature did not offer a viable alternative to a more complex ESEM
model.

Conclusions—The ESEM framework should be strongly considered in subsequent studies
validity studies - for new and/or existing instruments in the psychology of sport and exercise. A
key consideration for deciding between ESEM and the accompanying rotation criterion and CFA
in future validity studies should be level of a priori measurement theory.
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Factor analysis has been closely linked with investigations of construct validity in
psychology for several decades (Nunnally, 1978). Investigations of construct validity (e.g.,
scale development) in exercise and sport have frequently occurred in studies where only
factor analytic measurement model(s), exploratory and/or confirmatory, were specified –
typically guided by important, yet incomplete, a priori substantive measurement theory
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(Myers, Ahn, & Jin, 2011a). Incomplete substantive measurement theory often manifests as
model error and offers a possible explanation as to why the majority of construct validity
studies in psychology fail the test of exact fit under a strictly confirmatory approach
(Jackson, Gillaspy, & Purc-Stephenson, 2009).1 Construct validity studies that incorporate
an exploratory methodological approach typically reduce model error, as compared to a
confirmatory approach, but may fail to adequately incorporate a priori substantive
measurement theory (Asparouhov & Muthén, 2009).

What constitutes a sufficient degree of a priori substantive measurement theory, and
therefore should lead to a preference for a more restrictive confirmatory approach versus a
more flexible exploratory approach, is an emerging area of methodological research of
potential importance to substantive research in the psychology of sport and exercise.
Simulation research suggests that a key consideration for deciding between exploratory
structural equation modeling (ESEM; Asparouhov & Muthén, 2009) and confirmatory factor
analysis (CFA; Jöreskog, 1969) in future validity studies should be level of a priori
substantive measurement theory (Myers, Ahn, & Jin, 2011b). In the Myers et al. simulation
study model-data fit was manipulated (as a proxy for level of a priori substantive
measurement theory) with small but non-zero values in both the pattern coefficient matrix
and in off-diagonals of the residual covariance matrix. Under exact (with ESEM having
errors of inclusion) and close (with both ESEM and CFA having errors of exclusion) model-
data fit, CFA generally performed at least as well as ESEM in terms of parameter bias, and
was cautiously recommended when a priori substantive measurement theory can be viewed
as at least close. Under only approximate model-data fit, on balance, ESEM performed at
least as well as CFA and was cautiously recommended when a priori substantive
measurement theory can be viewed as only approximate.

This invited manuscript demonstrates by way of an extant conceptual model (i.e., coaching
competency) when a new and flexible methodological framework, ESEM, may be preferred
as compared to a more familiar and restrictive methodological framework, CFA, within a
substantive-methodological synergy format (Marsh & Hau, 2007). For spatial reasons this
manuscript focuses primarily on the synergy by way of relevant empirical examples. Fuller
reviews of both the relevant substance (Myers & Jin, 2013) and technical aspects of the
broader methodology (e.g., Asparouhov & Muthén, 2009) are available elsewhere. From this
point forward the acronym, (E)SEM, is used when referring to both ESEM and CFA
simultaneously.

Coaching Competency: The Substance
The Coaching Competency Scale (CCS; Myers, Feltz, Maier, Wolfe, & Reckase, 2006) was
derived via minor changes to the Coaching Efficacy Scale (CES; Feltz, Chase, Moritz, &
Sullivan, 1999). The CES was developed to measure a coach's belief in his or her ability to
influence the learning and performance of his or her athletes. The specific factors measured
—instructional technique, motivation, character building, and game strategy—purposely
overlap with key expected competency domains articulated in the National Standards for
Athletic Coaches (National Association for Sport and Physical Education, 2006) and are
congruent with self-efficacy theory (Bandura, 1997). According to Horn's (2002) model of
coaching effectiveness, however, why a coach's beliefs (e.g., coaching efficacy) are related
to athletes’ self-perceptions and performance is due to the influence that these beliefs exert
on a coach's behavior. But, the influence that a coach's behavior exerts on athletes’ self-

1Other possible explanations exist for failing the likelihood ratio test of exact fit (e.g., Type I error). The degree to which failing the
exact fit test is regarded as a meaningful occurrence (e.g., an imperfect model may be useful) is an ongoing debate (e.g., Vernon &
Eysenck, 2007).
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perceptions, motivation, and performances is mediated, at least in part, by athletes’
evaluations of their coach's behavior. The purpose of the CCS, therefore, was to measure
athletes’ evaluations of their head coach's ability to affect the learning and performance of
athletes. There is evidence that measures derived from both the CCS relate to theoretically
relevant variables (e.g., Bosselut, Heuzé, Eys, Fontayne, & Sarrazin, 2012).

The measurement model for the CCS posited that four latent variables covary and influence
responses to 24 items. From this point forward the terms competency and efficacy were
generally not included alongside any particular dimension of coaching competency.
Motivation was defined as athletes’ evaluations of their head coach's ability to affect the
psychological mood and skills of athletes. Game strategy was defined as athletes’
evaluations of their head coach's ability to lead during competition. Technique was defined
as athletes’ evaluations of their head coach's instructional and diagnostic abilities. Character
building was defined as athletes’ evaluations of their head coach's ability to influence the
personal development and positive attitude toward sport in their athletes. Myers, Feltz et al.
(2006) referred to this multidimensional construct as coaching competency. High school and
lower division collegiate athletes of team sports comprise populations for which the CCS
was intended.

Model-data fit within the CFA framework for the CCS (as well as the CES - see Myers &
Jin, 2013) has generally not met heuristic values for close fit (e.g., Hu & Bentler, 1999).
Myers, Feltz, et al. (2006) reported the following model-data fit for non-division I collegiate
athletes (N = 585) clustered within men's (g = 8) and women's (g = 24) teams: χ2(246) =
1266, CFI = .91, Tucker-Lewis index (TLI) = .90, and RMSEA = .09. Post hoc
modifications by Myers, Feltz, et al. included allowing a motivation item to also indicate
game strategy and freeing the covariance between two pairs of residual variances (see Figure
1). Interfactor correlations in the Myers, Feltz et al. study ranged from
rtechnique, character building = .80 to rgame strategy, technique = .92. Given the high interfactor
correlations, Myers, Feltz, et al. explored models with fewer latent variables, all of which
yielded statistically significant worse fit.

Responses to the CCS have a history of dependence based on athletes nested within teams.
Myers, Feltz, et al. (2006) reported item-level intraclass correlation coefficients (ICC)
ranging from .22 to .44, M = .32, SD = .05. Multilevel CFA is an appropriate methodology
when data violate the assumption of independence (Muthén, 1994). Simulation research has
indicated, however, that a relatively large number of groups (~100) may be necessary for
optimal estimation, particularly at the between-groups level (Hox & Maas, 2001). When
group-level sample size is not large, imposing a single-level model on the within-groups
covariance matrix, SW, as opposed to the total covariance matrix, ST, controls for probable
biases in fitting single-level models to multilevel data (Julian, 2001). Myers, Feltz, et al.
modeled the SW.

The Coaching Efficacy Scale II-HST (CES II-HST) was derived via major changes to the
CES as detailed in Myers, Feltz, Chase, Reckase, and Hancock (2008) and Myers, Feltz, and
Wolfe (2008). The Athletes’ Perceptions of Coaching Competency Scale II – High School
Teams (APCCS II-HST) was derived via minor changes to the CES II-HST as detailed in
Myers, Chase, Beauchamp, and Jackson (2010). Thus, moving from either CES to the CES
II-HST, or the CCS to the APCCS II-HST, resulted in non-equivalent measurement models.
There is evidence that measures derived from the APCCS II-HST relate to theoretically
relevant variables (Myers, Beauchamp, & Chase, 2011) in a doubly latent multilevel model
(Marsh et al., 2012).
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The measurement model for the APCCS II-HST occurred at two-levels in Myers et al.
(2010) because there was strong evidence for dependence due to the clustering of athletes (N
= 748) within teams (G = 74). Specifically, ICCs ranged from .18 to .35, M = .29, SD = .05.

There was evidence for close fit for the multilevel measurement model:  ranged
from 375, p < .001, to 405, p < .001, RMSEA = .04, CFI = .99, TLI = .99, SRMRwithin = .
03, and SRMRbetween = .04.2 Evidence also was provided for both the stability of all latent
variables and for the reliability of composite scores. There is evidence, at least in regard to a
crude comparison of model-data fit, that the measurement model underlying responses to the
APCCS II-HST may be better understood (by researchers) than the measurement model
underlying responses to the CCS. While Myers et al. took a multilevel approach, the focus
of this manuscript was on the athlete-level (Level 1) model only.

The measurement model for the APCCS II-HST specified that five dimensions of coaching
competency covary and influence responses to 17 indicators. Motivation (M) was measured
by four items and was defined as athletes’ perceptions of their head coach's ability to affect
the psychological mood and psychological skills of her/his athletes. Game strategy (GS) was
measured by five items and was defined as athletes’ perceptions of their head coach's ability
to lead his/her athletes during competition. Technique (T) was measured by four items and
was defined as athletes’ perceptions of their head coach's ability to utilize her/his
instructional and diagnostic skills during practices. Character building (CB) was measured
by three items and was defined as athletes’ perceptions of their head coach's ability to
positively influence the character development of his/her athletes through sport. Physical
conditioning (PC) was measured with two items and was defined as athletes’ perceptions of
their head coach's ability to prepare her/his athletes physically for participation in her/his
sport. Figure 2 depicts the athlete-level measurement model put forth by Myers et al. (2010)
- less the bolded arrow.3

There is growing evidence for the importance of coaching competency in coaching
effectiveness models. An important foundational question for this emerging line of research
going forward is: how best to derive measures from responses to the CCS and APCCS II-
HST? In cases where the population of interest is high school team sports the APCCS II-
HST, and its proposed measurement model, seems appropriate. In cases where the
population of interest is not high school team sports the CCS, and its less well understood
measurement model, may be appropriate. While the measurement model for CCS appears to
be understood at a level below typical close-fitting CFA standards, it also seems to be
understood better than imposition of a mechanical EFA model would imply. Perhaps a
framework situated between traditional EFA and traditional CFA would be appropriate for
deriving measures from responses to the CCS.

(Exploratory) Structural Equation Modeling: The Methodologies
Asparouhov and Muthén (2009) introduced ESEM as a methodology that integrates the
relative advantages of both EFA and CFA within the general structural equation model
(SEM). A technical paper (Asparouhov & Muthén) and a substantive-methodological
synergy (Marsh et al., 2009) introduced ESEM to the methodological community. The
general ESEM allows for parameterizations beyond EFA, but given the measurement focus

2Many of the model-data fit indices reported in Myers et al. (2010) summarized model-data fit across levels. Future research in this

area should consider providing level-specific indices put forth by Ryu and West (2009): ,  RMSEAPS_W,
RMSEAPS_BCFIPS_W, and CFIPS_B.
3The non-bolded cross-loading, and a rationale for it, was provided in Myers et al. (2010). The bolded cross-loading was not specified
in Myers et al. A rationale for its inclusion in the current manuscript is provided shortly in the deriving measures from the APCCS II-
HST section.
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of this manuscript, only reduced versions of ESEM (i.e., EFA and Multiple-Group EFA in
ESEM) are reviewed.4 Prior to introducing the reduced equation below, however, a brief
history is provided because this history may inform how researchers have decided between
EFA and CFA over the last few decades.

Over a century ago Spearman (1904) articulated what has become to be known as EFA.
Several decades after this articulation, EFA became a widely used multivariate analytic
framework in many disciplines. Over the past few decades, however, some limitations in the
way EFA is typically implemented in software, in addition to rotational indeterminacy more
generally, has likely impeded the use of the technique in favor of CFA - even when the level
of a priori measurement theory was insufficient to warrant a confirmatory approach.5

Examples of limitations in the way that EFA has typically been implemented in software
include the absence of standard errors for parameter estimates, restrictions on the ability to
incorporate a priori content knowledge into the measurement model, an inability to fully test
factorial invariance, and an inability to simultaneously estimate the measurement model
within a fuller structural model.

The most commonly used measurement model within SEM likely is Jöreskog's (1969) CFA
(Asparouhov & Muthén, 2009). CFA provides standard errors for parameter estimates,
allows a priori content knowledge to guide model specification, provides a rigorous
framework to test factorial invariance, and allows the measurement model to be a part of a
fuller structural equation model. An often overlooked but necessary condition for
appropriate use of CFA, however, is a sufficient level of a priori measurement theory.
Absence of such theory often results in an extensive post hoc exploratory approach guided
by modification indexes. Such an approach is susceptible to producing an accepted model
that is inconsistent with the true model – despite possible consistency with a particular
dataset (MacCallum, Roznowski, & Necowitz, 1992). EFA, not CFA, may often be the
better framework for post hoc explorations in search of a well-fitting measurement model
(Browne, 2001).

A common misspecification in CFA is when nonzero paths from latent variables to
measurement indicators are fixed to zero. This type of misspecification often results in
upwardly biased covariances between the latent variables and biased estimates in the non-
measurement part of the structural equation (Asparouhov & Muthén, 2009). Both of these
problems can, and probably have, impeded research in sport and exercise psychology. An
example of upwardly biased covariances between latent variables may have occurred in
Myers, Feltz, et al. (2006). It is impossible, however, to know for certain that biased
(upwardly or downwardly) parameter estimates are observed in any case where the
population parameter values are unknown.

In Mplus (Muthén & Muthén, 1998-2010), the ESEM approach integrates the relative
advantages of EFA and CFA within SEM. Like EFA, ESEM imposes fewer restrictions on
the measurement model than common implementations of CFA and integrates advances in
possible direct rotations of the pattern matrix. Like CFA, ESEM can be part of a general
SEM which affords much greater modeling flexibility than observed in the traditional EFA
framework. In fact, within a single SEM specification, both CFA and ESEM can be imposed
simultaneously. This latter point is of special interest because when sufficient a priori
measurement theory exists, the more parsimonious CFA is preferred (Asparouhov &

4Readers are referred to Marsh et al. (2009) and Morin, Marsh, and Nagengast (2013) for ESEM examples that are not EFA or
Multiple-Group EFA in ESEM.
5Under some factor structures a rotation criterion may yield multiple local minima (see Browne, 2001). Encountering multiple
“optimal” rotated solutions may be regarded as an opportunity for to find the “best” factor structure from a conceptual perspective
(e.g., Rozeboom, 1992).
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Muthén, 2009). An important methodological question within the psychology of sport and
exercise research going forward is: What constitutes a sufficient degree of a priori
substantive measurement theory, and therefore should lead to a preference for a more
restrictive (i.e., parametrically parsimonious) CFA approach versus a more flexible (i.e.,
parametrically non-parsimonious) EFA approach?

EFA in ESEM
EFA in ESEM can be written with two general equations: one for the measurement model
and one for the latent variable model (Bollen, 1989). Given the focus of this manuscript
neither equation will be provided here but a review of each equation is available in
Appendix A of the supplemental electronic-only materials. It is important to note, however,
that as compared to ESEM, the form of the measurement equation is identical for CFA but
more restrictions typically are placed on it by the researcher (e.g., many elements within the
pattern matrix, Λ, are fixed to 0). Thus, a primary difference between EFA in ESEM and
CFA is the restrictions placed on Λ.

Rotation—Direct analytic rotation of the pattern matrix is based on several decades of
research within the EFA framework as detailed in Browne (2001) and summarized in
Appendix B_1 of the supplemental electronic-only materials. Geomin rotation (Yates, 1987)
is the default rotation criterion in Mplus and, therefore, may be used frequently in practice.
Geomin, however, “...fails for more complicated loading matrix structures involving three or
more factors and variables with complexity 3 and more;...For more complicated examples
the Target rotation criterion will lead to better results” (Asparouhov & Muthén, p. 407).
Target rotation has been developed over several decades and can be thought of as “a non-
mechanical exploratory process, guided by human judgment” (Browne, p.125). It is
important to note that a solution will be mathematically equivalent under either target or
geomin rotation. Simulation research suggests, however, that in some cases the factors may
be defined more consistent with a well-developed a priori theory under target rotation as
compared to geomin rotation (Myers, Jin, & Ahn, 2012).

Multiple-Group EFA in ESEM
Measurement invariance is necessary to establish that measures are comparable across
groups for which inferences are sought (Millsap, 2011). Providing evidence for
measurement invariance across groups for which an instrument is intended is an important
facet of validity evidence (AERA, APA, NCME, 1999). Until very recently, however, fully
testing for measurement invariance across groups forced researchers to use the CFA
framework (Asparouhov & Muthén, 2009). Multiple-group EFA in ESEM allows
researchers to fully test for measurement invariance across groups within an exploratory
framework.

Measurement of Coaching Competency within (E)SEM: The Synergy
EFA in ESEM

An important question for the emerging line of research involving coaching competency
within coaching effectiveness models going forward is: how best to derive measures from
responses to the CCS and APCCS II-HST? An important methodological question within
effective coaching research going forward is: how can researchers apply (E)SEM to evaluate
models of effective coaching? The purpose of this section was to attempt to address both
questions by demonstrating how (E)SEM may be used guided by content knowledge to
develop better, or confirm existing, measurement models for coaching competency.
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Two primary research questions drove subsequent analyses on extant datasets. Extant
datasets were used for both demonstration purposes and to see if the new ESEM approach
offered benefits not available when each dataset was originally analyzed. The first question
was: how many factors were warranted to explain responses to the APCC II-HST/CCS? The
first question was answered in two steps. Step 1, number of factors (m), considered the fit of
a particular ESEM model. Step 2, m, considered the relative fit of a ESEM model as
compared to a more complex alternative.6 Thus, m denoted number of factors and not
necessarily the number of factors consistent with substantive a priori measurement theory.

Nested models were compared with the change in the likelihood ratio χ2 (robust) test, ,
with the DIFFTEST command (Asparouhov & Muthén, 2010).7 The approach taken in Step
2 was susceptible to over-factoring and inflated Type I error (Hayashi, Bentler, & Yuan,
2007). Therefore α was set to .01 for these comparisons (.05 otherwise) and the
interpretability of the estimated rotated pattern matrix  also was considered (i.e.,
incorporating content knowledge) when deciding which model to accept. The second
question was: could a more parsimonious CFA model, based on the relevant literature, offer
a viable alternative to a more complex ESEM model? If the answer to Question 2 was no, a
follow-up question was: which rotation method was preferred? Consistent with weaknesses

of the  with real data and imperfect theories (Yuan & Bentler, 2004) and the utility of
strict adherence to the null hypothesis testing framework with regard to the assessment of
model-data fit (Marsh et al., 2004), a collection of fit indices were considered.

Methods—APCCS II-HST data from Myers et al. (2010) were re-analyzed. Athlete-level
sample size was 748 and team-level sample size was 74. Seven relevant sports were
represented. Girls’ (n = 321, g = 35) and boys’ (n = 427, g = 39) teams were included. Age
data ranged from 12 to 18 years (M =15.46, SD = 1.51).

CCS data from Myers, Feltz, et al. (2006) were reanalyzed. Athlete-level sample size was
585 and team-level sample size was 32. Data were collected from lower division
intercollegiate men's (g = 8) and women's (g = 13) soccer and women's ice hockey teams (g
= 11). Age data ranged from 19 to 23 years (M =19.53, SD = 1.34).

At the time of the writing of this manuscript ESEM could not be fitted within a multilevel
framework in Mplus (L. Muthén, personal communication, January 11, 2013). The
multilevel nature of the data was handled via the TYPE = COMPLEX command. This
resulted in modeling ST with non-independence accounted for in the computation of
standard errors and in relevant model-data fit indices and parallels an approach taken in
Asparouhov and Muthén (2009, p. 412). Models were not fit to SW because summary data
are not allowed in Mplus for ESEM (T. Nguyen, personal communication, February 22,
2013).

APCCS II-HST data were treated as ordinal due to the four-category rating scale structure
(Finney & Distefano, 2006). Weighted least squares mean- and variance-adjusted (WLSMV;
Muthén, 1984) estimation was used.8 CCS data were treated as continuous and normal, with
a correction for non-normality, due to the original ten-category rating scale structure.
Geomin rotation (ε value varied based on m: .0001 when m = 2, .001 when m = 3, .01 when
m ≥ 4) was used for Question 1. Target rotation was used for Question 2. Key input files for

6This approach, “comparison_ms”, to assisting in the determination of the number of factors to retain is consistent with an approach
taken in Asparouhov and Muthén (2009). Other reasonable approaches include parallel analysis (Horn, 1965; Garrido, Abad, &
Ponsoda, 2012; Morin et al., 2013) or extracting a fixed number of factors based on theory, “theory_m”, (Marsh et al., 2009).
7Details regarding the approximations of the test statistic to the central chi-square distribution are provided in Asparouhov and
Muthén (2010).
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subsequent examples are available in Appendix E of the supplemental electronic-only
materials.

Deriving Measures from the APCCS II-HST: Question 1—The null hypothesis for
exact fit was rejected until six factors were extracted. For fuller results see Table 1s in
Appendix C of the supplemental electronic-only materials. From this point forward a Table/
Figure number denoted with an “s” suggests that the Table/Figure is located in the
supplemental electronic-only materials. The sixth factor of , however, was judged as not
interpretable and likely the result of over-factoring as only three elements (m1, t4, c3) in this
column were statistically significant and the interfactor correlations for this factor ranged
from .07 to .17 – each of which was statistically non-significant. The five factor solution
(i.e., Model 5) was accepted despite exhibiting statistically significant worse fit than the

sixth factor solution, . There was evidence for close fit of Model 5:

, p = .013. RMSEA = .02, CFI = 1.00, and TLI = .99. Elements within  were
generally consistent with expectations (compare Table 1 to Figure 2). Interfactor
correlations ranged from rPC,CB = .54 to rGS,T = .76. Only 4 of the 66 cross-loadings that
were estimated in the ESEM approach, and inconsistent with Figure 2 (e.g., m1 on GS),
were statistically significant (standardized loadings ranged from .24 to .27). A reasonable
answer to Question 1 was: five factors explained responses to the APCC II-HST.

Deriving Measures from the APCCS II-HST: Question 2—Target rotation was then
applied to Model 5 (i.e., Model 7). Selection of targets for the APCCS II-HST will be briefly
and non-technically summarized here (but a fuller review of related issues, including
rotation identification more generally, is available in Appendix B_1 of the supplemental
electronic-only materials). Targets within B were selected based on both content knowledge
and previous empirical information. From a content perspective, gs2, make effective
strategic decisions in pressure situations during competition, was expected to have trivially
sized pattern coefficients on all factors except game strategy within the measurement model.
Each of the other items that were involved in the targets (pc3, accurately assess players’
physical conditioning; m4, motivate players for competition against a weak opponent; t1,
teach players the complex technical skills of your sport during practice; cb3, effectively
promote good sportsmanship in players) could be interpreted in a similar form. Note that
unlike in CFA, the pattern targets were not fixed to zero. Rather, B simply informed the
rotation criterion as to the structure that Λ should be rotated towards. It should be noted that
although a sufficient number and configuration of targets were specified, simulation
research suggests that the factors may be defined more consistent with a well-developed a
priori theory with an increasing number of targets (Myers, Ahn, & Jin, 2013).

The measurement model depicted in Figure 2 (i.e., Model 8) exhibited statistically

significant worse fit than Model 7, , p = .006. Model 8 estimated 47 fewer
parameters than Model 7. For this reason, in addition to the relatively similar fit of the two
models, limited and conceptually defensible post hoc alterations to Model 8 were
considered. One defensible post hoc alteration allowed g3, make effective player
substitutions during competition, to load on M in addition to GS (Model 9). Simply, making
a player substitution during competition can serve as a motivational intervention in addition
to a tactical strategy. Model 8 exhibited statistically significant worse fit than Model 9,

, p = .005. Model 9 exhibited only marginally statistically significant worse fit

than Model 7, , p = .024. None of the modification indices for Model 9
suggested statistical significance if freely estimated and the model exhibited close fit to the

data: , p = .008. RMSEA = .02, CFI = .99, and TLI = .99. For these reasons, in
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addition to estimating 46 fewer parameters than Model 7, Model 9 was accepted (see Table
2). Given the narrow scope of this approach to post hoc modification of the a priori
measurement model, a reasonable answer to Question 2 was: a more parsimonious CFA
model, based on the relevant literature plus one post hoc modification, offered a viable
alternative to a much more complex ESEM model. For didactic considerations, however, the
ESEM approach from Model 5 will be expanded upon in the subsequent multiple-group
EFA section. Table 2s in Appendix C provides interfactor correlation matrices for Model 5,
Model 7, and Model 9. Interfactor correlations were somewhat similar across the three
models.

Deriving Measures from the CCS: Question 1—The null hypothesis for exact fit was
rejected through seven factor extraction (for fuller results see Table 3s in Appendix C). A
model with eight factors produced inadmissible estimates. Model 5 (five factors) through
Model 7 (seven factors), however, were judged as not interpretable and likely the result of
over-factoring due to reasons similar to those in the previous section. The four factor
solution (i.e., Model 4) was accepted despite exhibiting statistically significant worse fit than

the five factor solution, , p < .001. There was evidence for approximate fit of

Model 4: , p < .001. RMSEA = .06, SRMR = .02, CFI = .99, and TLI = .99.
Elements within  were somewhat inconsistent with expectations (compare Table 3 to
Figure 1). Note that 15 of the 71 cross-loadings that were estimated in the ESEM approach,
and inconsistent with Figure 1 (e.g., m1 loads on GS), were statistically significant
(standardized loadings ranged from -.08 to .42). A reasonable answer to Question 1 was: at
least four factors explained responses to the CCS.

Deriving Measures from the CCS: Question 2—Target rotation was the applied to
Model 4 (i.e., Model 8). The measurement model depicted in Figure 1 (i.e., Model 9 – see

Table 5s) exhibited statistically significant worse fit than Model 8, , p < .001.
Neither model, however, exhibited especially close fit to the data. Many of the modification
indices for Model 9 suggested statistical significance if freely estimated, which was
consistent with the many statistically significant cross-loadings observed in Table 3. Given
the extent of this potential post hoc exploration for a well-fitting measurement model, a
reasonable answer to Question 2 was: a more parsimonious CFA model, based on the
relevant literature (see Figure 1), did not offer a viable alternative to a more complex ESEM
model (see Figure 4s in Appendix D).

Model 8 (target rotation) had nearly as many statistically significant cross-loadings (14 of
71) as did Model 4 (geomin rotation – compare Table 3 to Table 4s in Appendix C).
Interfactor correlations under Model 8 ranged from rGS,M = .62 to rGS,T = .90 and from
rGS,M = .57 to rGS,T = .80 under Model 4. Problems attributed to multicollinearity have
caused particular CCS measures to be dropped in substantive coaching research (e.g.,
Myers, Wolfe, Maier, Feltz, & Reckase, 2006). Given these two pieces of non-exhaustive
pieces of information, plus the mathematical equivalence of the solution under both rotation
techniques, a reasonable (though certainly not the only and perhaps not the best) answer to
the follow-up question to Question 2 was: geomin rotation was preferred. Table 6s in
Appendix C provides interfactor correlation matrices for Model 4, Model 8, and Model 9.
Interfactor correlations were somewhat higher in Model 9.

Multiple-Group EFA in ESEM
An important question for the emerging line of research involving coaching competency
within coaching effectiveness models going forward is: are measures comparable across
groups for which the CCS and APCCS II-HST are intended? Borrowing from the multiple-
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group CFA approach to measurement invariance, multiple-group EFA in ESEM allows
researchers to fully test for measurement invariance across groups of substantive interest
while generally imposing fewer restrictions than in the CFA framework. For textual
parsimony as well as sample size and model-data fit considerations (Yuan & Bentler, 2004),
an illustration will be provided based on data from the APCCS II-HST only. The study
design in Myers et al. (2010) assumed factorial invariance by country and this variable
served as the grouping variable (i.e., United States, U.S. = reference group, and the United
Kingdom, U.K. = focal group). Model 5 from Table 1s in Appendix C (i.e., 5 ESEM factors
with Geomin rotation) served as the starting point.

Under the theta parameterization, data were fit to four increasingly restrictive multiple-
group models for ordinal data (Millsap & Yun-Tien, 2004). Before testing for factorial
invariance, the model was imposed separately in each group: Model 1a (U.S. only) and
Model 1b (U.K. only). Model 2 through Model 5 tested for factorial invariance. Model 2
(baseline) imposed constraints (detailed in Appendix B_2 of the supplemental electronic-
only materials) for identification purposes. Model 3 added the constraint of invariant pattern
coefficients (invariant Λ) to Model 2. Model 4 added the constraint of invariant thresholds
(invariant Λ and τ) to Model 3. Model 5 added the constraint of an invariant residual
covariance matrix (invariant Λ, τ, and Θ) to Model 4. Nested models were compared as
described in the EFA in ESEM section.

Countries separately—There was evidence for close fit in the U.S. sample, Model 1a:

, p = .002, RMSEA = .03, CFI = .99, and TLI = .97. There was evidence for

exact fit in the U.K. sample, Model 1b: , p = .761, RMSEA = .00, CFI = 1.00,
and TLI = 1.01. At least part of the difference between the model-data fit by country was
likely due to the difference in sample size: nU.S. = 491 and nU.K. = 257.

Model 2 through Model 5—Model 2 (baseline) provided evidence for exact fit:

, p = .132, RMSEA = .02, CFI = 1.00, and TLI = .99. Model 3 (invariant Λ) fit

the data as well as Model 2, , p = .142, and provided evidence for exact fit:

, p = .139, RMSEA = .02, CFI = 1.00, and TLI = 1.00. Model 4 (invariant Λ

and τ) fit the data as well as Model 3 (invariant Λ), , p = .066, and provided

evidence for exact fit: , p = .105, RMSEA = .02, CFI = 1.00, and TLI = .99.
Model 5 (invariant Λ, τ, and Θ) fit the data as well as Model 4 (invariant Λ and τ),

, p = .166, and provided evidence for exact fit: , p = .117,
RMSEA = .02, CFI = 1.00, and TLI = 1.00. Thus, a reasonable conclusion was that there
was evidence for factorial invariance by country (i.e., U.S. and U.K.) with regard to
responses to the APCCS II-HST.

From a mathematical perspective, “measurement invariance does not require invariance in
the factor covariance matrices or factor means” (Millsap & Yun-Tien, 2004, p. 484). From a
conceptual perspective, however, (non-)invariance of these parameters (ψ and α,
respectively) can be informative with regard to substantive theory (Marsh et al., 2009), and
therefore, both of these input files are available in Appendix E of the supplemental
electronic-only materials. Briefly, Model 6 (invariant Λ, τ, Θ, and ψ) fit the data as well as

Model 5, , p = .128, while Model 7 (invariant Λ, τ, Θ, ψ, and α) fit the data

significantly worse than Model 6, , p < .001, with evidence for significantly
lower latent means in the UK sample as compared to the US sample with regard to game
strategy, technique, and character building.
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Summary and Conclusions
This substantive-methodological synergy attempted to merge an extant conceptual model,
coaching competency, and a new methodological framework, ESEM, as compared to a more
familiar methodological framework, CFA, for the next generation of research in the
psychology of sport and exercise to consider. The synergy was a demonstration of how
(E)SEM may be used guided by content knowledge to develop better, or confirm existing,
measurement models for coaching competency by re-analyzing existing data. A key
consideration for deciding between ESEM and the accompanying rotation criterion and CFA
in future validity studies within the psychology of sport and exercise should be level of a
priori measurement theory.

It should be reiterated that there is no right or wrong rotation criterion from a mathematical
perspective in regard to model-data fit. That said, it has been known for some time that
mathematically equivalent solutions do not necessarily do an equivalent job of recovering
particular parameter values of interest under complex structures (e.g., Thurstone, 1947).
Oblique versions of two rotation criterion, geomin and target, were used in this manuscript
and a brief case for their inclusion was put forth in the rotation section. Others may prefer
different rotation criteria or even one of the selected rotation criterion but with the f(Λ)
specified slightly differently (e.g., non-default values for ε under geomin rotation – see
Morin & Maïano, 2011, for an example) for the CCS and, perhaps, more generally.
Selecting a particular rotation criterion is a multi-faceted post estimation decision that
cannot be proven to be “correct” when population values are unknown. For example, in the
previous section geomin rotation was preferred for the CCS, in part, because interfactor
correlations were somewhat smaller than under target rotation. Clearly, lowering the
interfactor correlations was not a sufficient condition for selecting the “right” rotated
solution for the CCS. If it were a sufficient condition then the “right” rotation criterion
presumably would be one that forced an orthogonal solution, doing so however, would have
been inconsistent with a priori substantive theory depicted in both Figure 1 and Figure 2.

It is important to note that statistical models often can be used for exploratory or
confirmatory purposes regardless of the semantics used (e.g., exploratory/confirmatory
factor analysis). For example, if an a priori theory justified that each indicator was
influenced by each factor then confirmatory evidence may be provided for such a theory
(within theoretical identification limits) under either CFA or ESEM approach. A similar
issue arises in the determination of the number of factors, m, to specify/retain in ESEM. The
approach taken in this manuscript: a series of nested model comparisons manipulating the
number of factors, m, while considering the interpretability of the solution with regard to a
priori theory, and, possible empirical limitations of the nested model comparisons is
consistent with a less than strictly confirmatory approach taken in Myers, Chase, Pierce, and
Martin, 2011: “comparing_ms”. A fixed number of factors based on theory alone,
“theory_m”, can be specified in ESEM consistent with a more strictly confirmatory
approach. The author of this manuscript generally prefers some version of the
comparing_ms approach when ESEM is used because it empirically subsumes the theory_m
approach (i.e., the theory_m solution is fitted). That said, as in the current manuscript, even
under the comparing_ms approach the analyst may not strictly adhere to model-data fit
information alone – although a reasonable expectation in such cases may be to provide this
information in a manuscript. Clearly there may be instances (e.g., very strong a priori theory
and previous empirical information consistent with this theory) where theory_m may be
justifiable. A “golden rule” mandating one approach over the other in all instances seems
unreasonable.
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Coaching competency occupies a central role in models of coaching effectiveness, which
makes measurement of this construct an important area of research. The CCS and the
APCCS II-HST were designed to measure coaching competency. The initial athlete-level
measurement model for responses to the CCS and the APCCS II-HST both were put forth
prior to the emergence of ESEM (i.e., fitted to CFA). ESEM analysis on extant datasets
suggests that for responses to the APCCS II-HST, a CFA model based on the relevant
literature plus one post hoc modification (see Figure 2), offered a viable alternative to a
more complex ESEM model. For responses to the CCS, a CFA model based on the relevant
literature (see Figure 1) did not offer a viable alternative to a more complex ESEM model
(see Figure 3s). The author of this manuscript recommends that the measurement models
advocated (Figure 2 and Figure 3s) serve as a starting place for subsequent research. The
author of this manuscript also recommends that the ESEM framework should be considered
in subsequent studies validity studies - for new and/or existing instruments in the
psychology of sport and exercise. That said, there is preliminary evidence that ESEM, as
compared to CFA, may in some circumstances be more susceptible to non-convergence or
convergence to an improper solution when N ≤ 250 (Myers, Ahn, et al., 2011b). In cases
where ESEM encounters such problems (and when they are intractable), and when more
data are not possible, other practical solutions (e.g., summed scores) may be reasonable.

While the substantive part and the methodological part of this manuscript both were focused
primarily on measurement, the fuller ESEM provides a broader methodological framework
(that includes but is not limited to the EFA and Multiple-Group EFA examples within this
manuscript) within which the next generation of effective coaching research may evaluate
fuller models of effective coaching. Many latent variable models that could be imposed
within the SEM framework could also be imposed within ESEM framework (Asparouhov &
Muthén, 2009). An advantage of the ESEM framework, in instances of insufficient a priori
measurement model(s), is reduced likelihood of biased estimates wrought by my
misspecification of the measurement model(s). Simply, studies not focused on measurement
can still be adversely affected by misspecification of the measurement model(s) because
misspecification of the measurement model(s) can produce biased path coefficients (Kaplan,
1988).

There is much work yet to be done to investigate the utility of coaching competency within
broader models of coaching effectiveness. While a few studies have explored the ability of
coaching competency to predict satisfaction with the head coach (e.g., Myers, Wolfe, et al.,
2006) and role ambiguity (Bosselut et al., 2012), many other key relations implied within
Horn's (2002) model await investigation. For example, coaching competency is specified to
at least partially mediate the effect of coaching behavior on three sets of variables: (a)
athletes’ self-perceptions, beliefs, and attitudes, (b) athletes’ level and type of motivation,
and (c) athletes’ performance and behavior. Future research that explores these (or other)
important implied relations is encouraged. More broadly, the author of this manuscript
believes that it may be time for research on coaching competency to evolve beyond such a
strong focus on measurement alone because it has long been suspected that “the ultimate
effects that coaching behavior exerts are mediated by the meaning that players attribute to
them” (Smoll & Smith, 1989, p. 1527) – effects measurement models do not test. Finally, a
theory-based investigation for why, on average, UK high school athletes may rate their head
coach's game strategy, technique, and character building competency lower than US high
school athletes rate their head coach's game strategy, technique, and character building
competency could advance the literature.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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• ESEM should be strongly considered in subsequent validity studies.

• Level of a priori measurement theory is a key for deciding between ESEM and
CFA.

• Figure 2 and Figure 3s provide measurement models for use in future research.
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Figure 1.
Athlete-level a priori measurement model for the CCS
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Figure 2.
Athlete-level a priori measurement model for the APCCS II-HST. Thick (bolded) arrow
denotes a post hoc modification proposed in this manuscript.
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