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ABSTRACT Gene expression is a process central to any form of life. It involves multiple temporal and functional scales that
extend from specific protein-DNA interactions to the coordinated regulation of multiple genes in response to intracellular
and extracellular changes. This diversity in scales poses fundamental challenges to the use of traditional approaches to fully
understand even the simplest gene expression systems. Recent advances in computational systems biophysics have
provided promising avenues to reliably integrate the molecular detail of biophysical process into the system behavior. Here,
we review recent advances in the description of gene regulation as a system of biophysical processes that extend from
specific protein-DNA interactions to the combinatorial assembly of nucleoprotein complexes. There is now basic mechanistic
understanding on how promoters controlled by multiple, local and distal, DNA binding sites for transcription factors can actively
control transcriptional noise, cell-to-cell variability, and other properties of gene regulation, including precision and flexibility of
the transcriptional responses.
INTRODUCTION
The process that leads to functional RNA and protein mol-
ecules from the information encoded in genes is known
as gene expression. It starts with the binding of the RNA
polymerase (RNAP) to the promoter, continues with tran-
scription of the gene into RNA, and often concludes with
translation into protein (1). This simple description is just
the backbone of a much more complex set of events involv-
ing many processes that actively regulate, complement,
affect, and critically refine these three steps (2).

The complexity of gene expression is already evident at
the very early stages of the process. The RNAP rarely just
binds to DNA and starts transcription. There are molecules,
such as transcription factors (TFs), that enhance, stabilize,
hinder, and prevent the binding of the RNAP to the promoter
(3). This local layer of control is embedded in the underly-
ing dynamic organization of the genome, which determines
to a large extent the accessibility of the RNAP to the pro-
moter and to the information content of sets of genes that
are spatially in the same region (4–8). In addition, the
RNAP is not a simple molecule but a multisubunit complex
that, especially in eukaryotes, does not necessarily need to
come preassembled to the promoter region or to be ready
to start transcription upon binding (9,10). Along the way,
there are molecular mechanisms that affect RNA stability
and its information content, such as alternative splicing
and RNA editing (1). To close up the loop, proteins and
functional RNA are in charge of orchestrating all these pro-
cesses, thus regulating their own synthesis.

This short review focuses on key, well-characterized guid-
ing principles that allow the description of gene expression
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in terms of systems of biophysical processes and the applica-
tion of these principles to actual systems, exemplified by
the lac operon in prokaryotes and the retinoid X receptor
in eukaryotes, which are both amenable to concise informa-
tive mechanistic descriptions. The goal is to accurately cap-
ture the effects of molecular interactions across scales up to
the system behavior. To do so effectively, we will emphasize
approaches that are scalable—namely, approaches that can
be used with small and large systems, incorporate complex
phenomena such as DNA looping, employ as few free
parameters as possible, and the molecular parameters of
which can be inferred from the experimental data and
reused in modeling subsequent experiments.

There are two types of important situations that we will
not consider explicitly because of space limitations. One
type includes elementary mechanisms, such a cooperative
interactions, which are described in virtually any biochem-
istry and molecular biology textbook (1), and which are
applied to gene regulation exactly as described in the text-
books (11–14). The other type includes complex situations
with missing key mechanistic information, such as eukary-
otic enhancers (15,16), which would extend the discussion
to cover many potential mechanisms that are compatible
with the observed experimental data. The most effective
avenue to modeling such complex problems so far has
been to supplement known biophysical mechanisms with
phenomenological rules and assumptions (17,18).

There are also many important aspects of gene expression
that we will not be able to reach, including the effects
of focused and dispersed transcription initiation (19),
transcription elongation regulation (20,21), transcriptional
traffic (22), and translation regulation by microRNAs (23),
to mention just a few. The general principles reviewed
here to a large extent also apply to those situations.
http://dx.doi.org/10.1016/j.bpj.2013.04.032
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MODELING GENE EXPRESSION

A common starting point for most quantitative approaches to
gene expression is a description based on reactions among
molecular species (24–30). This description considers that
there is a set of i different transcriptional states di and that
for each of these states there is a given transcription rate Gi

that leads to mRNA, m. The simplest case with a single
state would be a constitutive promoter with a constant
transcription rate. The next step in complexity, a promoter
with two states, already includes the potential for regulation,
as for instance when a repressor turns off transcription
upon binding the promoter. In general, the transitions
between transcriptional states di and dj with rates kij depend
on the numbers of the different molecular species of the
system. For each mRNA molecule, proteins p are produced
at a rate U. Typically, mRNA and proteins are degraded
at rates gm and gp, respectively. These reactions can be
summarized as

di !
kij

dj;

di ���!Gi
di þ m;

m ���!gm
B;

m/U mþ p;

p ���!gp
B:

(1)

The advantage of using such an approach is that it allows
a direct connection of the description parameters with
biophysical properties such as free energies of binding and
DNA elastic properties.
THE DETERMINISTIC APPROACH

When fluctuations are not relevant, either because they are
small or because they can be averaged out (31), the set
of expressions in Eq. 1 is usually written in terms of concen-
trations using traditional deterministic rate equations:

dPi

dt
¼

X
j

�
kjiPj � kijPi

�
;

d½m�
dt

¼
X
i

ðGi=VcÞPi � gm½m�;

d½p�
dt

¼ U½m� � gp½p�:

(2)

Here, Vc is the reaction volume; Pi ¼ hdii is the probability
of having the system in the transcriptional state i; [m]¼ hmi/
Vc is the mRNA concentration; and [p] ¼ hpi/Vc is the
average protein concentration, with angular brackets h.i
representing averages.

The previous set of equations can be solved to obtain the
steady-state protein content concentration [p]ss as
½p�ss ¼ pmax

X
i

ciPi; (3)

where pmax ¼ GmaxU/gmgpVc is the maximum concentra-

tion, Gmax is the maximum transcriptional activity, and
ci ¼ Gi/Gmax is the normalized transcriptional activity.
This result is extremely important because, besides
collapsing the effects of many processes into a single param-
eter pmax, it directly connects microscopic probabilities of
the transcriptional states with experimentally measurable
quantities.

The deterministic approach, also known as mean-field
approach, has been very useful to study systems with large
numbers of molecules and negligible fluctuations. In the
presence of fluctuations of small numbers of molecules,
the average behavior of the system is still correctly
described by the set of expressions in Eq. 2. The applica-
bility of the deterministic approach, however, could break
down with the additional presence of nonlinear terms. The
reason is that the average of nonlinear terms cannot gener-
ally be expressed in terms of concentrations. For instance,
the kinetics of dimerization of a protein p would involve
the term hp2i, which is not equivalent to hpi2 ¼ (Vc[p])

2.
In general, the validity of the deterministic approach should
be carefully assessed on a case-by-case basis, taking into
account that neither small numbers of molecules nor
nonlinear terms by themselves always prevent its applica-
bility, as illustrated by genetic nonlinear oscillators that
can function in the deterministic regime even with just a
few mRNA molecules per cell (32).
CONTROL OF GENE EXPRESSION

Control of gene expression is achieved through the depen-
dence of the probability of the transcriptional states on the
specific pattern of TFs that are assembled on DNA, as for
instance, binding of an activator and absence of a repressor
(2). In most instances, these interactions take place under
quasi-equilibrium conditions and statistical thermodynamics
can be used to express the probabilities of the states in terms
of standard free energies and concentrations of the different
regulatory molecules involved (33–35). The validity of the
quasi-equilibrium assumption requires the binding kinetics,
which by itself would be a completely reversible reaction,
to be much faster than other cellular processes, such as cell
growth, that could affect the binding process.

The key quantity in the thermodynamic approach is the
statistical weight, or Boltzmann factor, which is defined
in terms of the free energy DGi of the state i as
Zi ¼ e�DGi=RT . Its main feature is its proportionality to the
probability of the state i,

Pi ¼ e�DGi=RT

Z
: (4)
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The normalization factor Z ¼ P
iZi is known as the partition

function and the term RT is, as usual, the gas constant, R,
times the absolute temperature, T. This expression is partic-
ularly important because it encapsulates the dependence of
the probabilities on the different molecular concentrations
of regulatory molecules [pj] through

DGi ¼ DGo
i �

X
j

dði; jÞRT ln
�
pj
�
; (5)

where the terms d(i,j) correspond to the number of mole-
cules of the species j in the state i and DGo

i is the corre-
sponding standard free energy at 1 M concentration.
Therefore, if the free energies, or alternatively the probabil-
ities, of the different states are known for given values of the
concentrations of regulatory molecules, it is possible to
obtain the probabilities for any concentration using the pre-
vious two equations. These two equations can be combined
into

Pi ¼
�Y

j

�
pj
�dði;jÞ� e�DGo

i
=RT

Z
; (6)

which has been a cornerstone in quantitative modeling of
gene expression since the beginning of the field (30,34).
Its main advantage is that it only requires the values DGo

i

for each transcriptional state, which has traditionally been
written in tabular form along with a description of the mo-
lecular configuration (34).
COMBINATORIAL COMPLEXITY

The main advantage of using a free energy value for each
transcriptional state may turn increasingly fast into a disad-
vantage when the number of components of the system
increases. The reason is that there are potentially as many
states as the number of possible ways of arranging the reg-
ulatory molecules on DNA, which grows exponentially with
the number of components. The resulting combinatorial ex-
plosion in the number of states makes the straightforward
application of Eq. 6 impracticable for systems with more
than just a handful of components.

Several general approaches have been developed to tackle
this exponentially large multiplicity in the number of states.
They involve a diversity of methodologies that range from
stochastic configuration sampling (36) to automatic genera-
tion of all the underlying equations (37). The complexity of
the general problem makes each of these approaches work
efficiently only on a particular type of problem, be it confor-
mational changes, multi-site phosphorylation, or oligomeri-
zation (38–42).

In the case of gene regulation, it has been possible to capi-
talize on the unambiguous modular structure that macromo-
lecular complexes typically have on DNA to capture this
complexity in simple terms (43). The key idea is to describe
Biophysical Journal 104(12) 2574–2585
the specific configuration, or state of the protein-DNA com-
plex, through a set of M state variables, denoted by s ¼
(s1,.sk,.sM), which indicate whether a particular molecu-
lar component or conformation is present (sk ¼ 1) or absent
(sk ¼ 0) at a specific position within the complex (43). The
main advantage is that the free energy DGi ¼ DG(s) and
transcription rates Gi ¼ G(s) for each state can be specified
as function of the state variables without explicitly enumer-
ating all the states.
THE LAC OPERON

The Escherichia coli lac operon is the genetic system that
regulates and produces the enzymes needed to metabolize
lactose (44,45). Besides opening the doors to the field of
gene regulation, the lac operon has provided an example
of a sophisticated regulation mechanism where all the com-
ponents are known in great detail (46–52).

The main player in the control of transcription is the tetra-
meric lac repressor. In the absence of allolactose, a deriva-
tive of lactose, the lac repressor can bind to the main
operator to prevent the RNAP from binding to the promoter
and transcribing the genes. Binding of allolactose to the
repressor substantially reduces its specific binding for the
operator and transcription is de-repressed. The effects of
the lac repressor on transcription are characterized as nega-
tive control. There is also positive control through the catab-
olite activator protein (CAP), which acts as an activator of
transcription when glucose is not present by stabilizing
the binding of the RNAP to the promoter.

This account of positive and negative control does not
offer the whole picture of the underlying complexity. There
are also two additional auxiliary operators that bind the
repressor without preventing transcription (Fig. 1 A). Early
on, they were considered just remnants of evolution because
they bind the repressor very weakly and because elimination
of either one of them has only minor effects in transcription.
It was later observed that the simultaneous elimination of
both auxiliary operators reduces the repression level by
~100 times (46–48). The reason for this astonishing effect
is that the lac repressor can bind simultaneously two opera-
tors and loop the intervening DNA (Fig. 1 B). Thus, the main
operator and at least one auxiliary operator are needed to
form DNA loops that substantially increase the repressor’s
ability to bind the main operator. Without quantitative
approaches, however, it is difficult to fully grasp how such
weak auxiliary sites, as much as 300-times weaker in terms
of binding affinity than the main operator, can help the bind-
ing so much.

To illustrate the important effects of the presence of the
auxiliary operators, we examine in detail the case with
two operators, the main operator, Om, and an auxiliary oper-
ator, Oa. The main operator is located at the position of O1

and the auxiliary operator is located at the position of either
O2 or O3 (Fig. 1 A).
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FIGURE 1 Gene expression in the lac operon for different operator configurations. (A) The relative positions of the main operator O1 and the auxiliary

operators O2 and O3 are shown (solid rectangles) on the solid line representing DNA. The binding site for CAP is also shown (shaded rectangle). (B) A

representation of the lac repressor is shown looping DNA (solid line) bound to the main and auxiliary operators (open rectangles). The contributions to

the standard free energy of the looped DNA-repressor state from binding the main and auxiliary operators and from looping DNA are indicated by gm,

ga, and gL, respectively. (C–E) The repression level computed from Eq. 9 (lines) and experimentally measured by Oehler et al. (46) (symbols) are shown

for different combinations of operator replacements and deletions, including configurations with just the main operator, the O1-O2 loop, and the O3-O1

loop. The notation on each curve indicates the operator sequence at the positions of the operators O3-O1-O2. X corresponds to a complete deletion of

O1, O2, or O3; O1X corresponds to a partial deletion of O1. The values of g1, g2, g3, and g1X show the standard free energy of binding (in kcal/mol) to

the sequences of O1, O2, O3, and O1X, respectively. The value of gL used is shown (in kcal/mol) for each type of loop.
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The key piece of information that allowed capturing the
effects of DNA looping in quantitative detail was shown
to be the decomposition of the free energy of the looped pro-
tein–DNA complex, DGo

l�c, into different modular contri-
butions that take into account the binding to each operator
and the looping contribution (49). Explicitly, DGo

l�c ¼
gm þ ga þ gL, where gm and ga are the standard free energy
of binding to Om and Oa, respectively, and gL is the free en-
ergy of looping (Fig. 1 B).

This segmentation of the free energy allows for an
efficient representation of all the transcriptional states in
terms of state variables. These variables comprise sm and
sa, which indicate whether (¼ 1) or not (¼ 0) a repressor
is bound to the main and auxiliary operator, respectively,
and sL, which indicates whether (¼ 1) or not (¼ 0) DNA
forms the loop Om-Oa.

The free energy of the system in terms of these three state
variables is given by

DGðsÞ ¼ ðgm � RT ln½n�Þsm þ ðga � RT ln½n�Þsa
þ ðgL þ RT ln½n�ÞsmsasL þNð1� smsaÞsL;

(7)

where [n] is the concentration of the lac repressor. The first
two terms in the expression take into account the repressor
binding to Om or Oa. The fourth term indicates that the pres-
ence of looping needs both operators occupied by a
repressor; otherwise, the free energy would be infinite.
Finally, the first three terms all together represent the bind-
ing of the repressor when the three state variables are equal
to 1, which indicates that a single repressor is bound simul-
taneously to Oa and Om and that there is a looping contribu-
tion to the free energy.

The normalized transcriptional activity is expressed in
terms of state variables as
cðsÞ ¼ ð1� smÞðcasa þ 1� saÞ: (8)

This expression specifies that there is no transcription when
the repressor is bound to Om. When Om is free, transcription
occurs at a maximum rate if Oa is free, and at rate ca if the
repressor occupies Oa.

The advantage of using state variables is that Eqs. 7 and
8 completely specify the transcriptional properties of the
lac operon. The steady-state protein production is computed
directly from [p]ss ¼ pmaxSsc(s)P(s), where the sum can be
performed by hand or automatically using software like
CplexA (53,54). The resulting repression level is given suc-
cinctly by

pmax

½p�ss ¼
�
egm=RT þ ½n���ega=RT þ ½n��þ ½n�e�gL=RT

egm=RTðega=RT þ ½n�caÞ
: (9)

This expression is important because it connects macroscop-
ically measurable quantities, such as protein content in a
cell population, with microscopic binding parameters. The
value of pmax can be obtained from measurements for strains
without repressor, which transcribe the lac genes at a
maximum rate, and it is customary to report just the ratio
pmax/[p]

ss, which is known as repression level. In the case
of the lac operon, all the parameters needed for modeling
can be inferred from the experimentally available data.

For instance, when the auxiliary operator is deleted, or
more precisely when it is mutated so that the binding is
very low (ga / N), the repression level reduces to

pmax

½p�ss ¼ 1þ ½n�e�gm=RT: (10)

From this expression and the data of experimental setups
that used the sequence of O1, O2, and O3 as a main operator,
Biophysical Journal 104(12) 2574–2585
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FIGURE 2 RXR-mediated transcriptional responses to 9cRA and atRA
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it is possible to obtain the free energy of binding for each
operator (Fig. 1 C), which can be reused in subsequent
modeling.

In the case of the O1-O2 loop for different sequences of
the main operator, the only additional parameter needed to
accurately reproduce the experimental data is the free en-
ergy of looping gL (Fig. 1 D). In this case, binding of the
repressor to the auxiliary operator O2 does not affect tran-
scription and ca ¼ 1.

In the case of the O3-O1 loop, binding of the repressor to
the auxiliary operator prevents CAP from activating tran-
scription and the transcription rate is reduced to ca ¼ 0.03.
In this case as well, just a single additional parameter for
the free energy of looping gL is needed to reproduce most
of the experimental data (Fig. 1 E). It turns out, however,
that the deletion of O1 in the strain labeled O3-O1X-X is not
complete and the site is still able to form the O3-O1X loop
even though its binding is reduced by 5.5 kcal/mol, a factor
10,000 in terms of binding affinity. This moderate decrease
in binding can be inferred from the position-weight matrix
score of the specific sequence of the incomplete deletion
(55). The computed repression level for the complete dele-
tion of O1, strain O3-X-X, is shown in Fig. 1 E as a discontin-
uous line that is clearly below the incomplete deletion.
ligands. (A) A prototypical arrangement of binding sites for RXR and an

enhancer element are shown (solid and shaded rectangles, respectively)

on a solid line representing DNA. (B) In response R1, an RXR tetramer

loops DNA (represented as a continuous line) to bring an enhancer close

to the promoter region. In response R2, an RXR dimer recruits a coactivator

to the promoter region. (C and D) The normalized fold induction for re-

sponses R1 and R2 (lines) was computed from Eqs. 15 with the experi-

mental values Klig ¼ 8 nM for 9cRA (97) or Klig ¼ 350 nM for atRA

(98), and Ktd ¼ 4.4 nM (99). The value of the free energy of looping gL
(shown in kcal/mol) depends on the specific promoter and cell line. (C)

Response to 9cRA for a promoter incorporating two RXR binding sites

with (left) and without (right) a distal enhancer, which considers responses

R1 and R2, respectively. Experimental gene expression data (symbols) was

obtained from Yasmin et al. (62). (D) Responses to 9cRA and atRA for pro-

moters without a distal enhancer (response R2). Experimental gene expres-

sion data (symbols) correspond to reporter plasmids ADH-CRBPII-LUC

(left) and TK-CRBPII-LUC (right) from Heyman et al. (70).
THE RETINOID X RECEPTOR

Gene expression in eukaryotes is substantially more
involved than in prokaryotes (2,3,56). Just the core of the
eukaryotic transcriptional machinery itself involves a wide
variety of components with oscillatory patterns of macro-
molecular assembly and phosphorylation (9,57). In addition,
there are many additional layers of control that extend from
the accessibility and assembly of the transcriptional machin-
ery at the promoter to the intracellular transport and regula-
tion of mRNA and proteins. Despite all these differences, it
has been argued that there are many general principles that
apply to both prokaryotes and eukaryotes (2). We use the
retinoid X receptor (RXR) to illustrate how the main ideas
and methodology used in the lac operon can also be applied
to this complex eukaryotic system.

RXR is a nuclear receptor that is responsible for regu-
lating a large number of genes. It exerts its function by bind-
ing to DNA as homodimer, homotetramer, or obligatory
heterodimerization partner for other nuclear receptors (58).

Similarly to the lac operon, RXR can bind multiple sites
simultaneously as a tetramer by looping the intervening
DNA (Fig. 2 A). A distinct feature, however, is that in the
case of RXR, tetramers and dimers coexist in the cell and
their relative populations are regulated by the RXR cognate
ligands, which prevent the formation of tetramers besides
imparting RXR the ability to recruit coactivators of
transcription.

The first step in the signaling cascade for sensing the
ligand concentration is regulation of the relative abundance
Biophysical Journal 104(12) 2574–2585
of the oligomerization states of the RXR, which include tet-
ramers, n4, dimers, n2, and nontetramerizing dimers, n2*.
The effects of the ligand are quantitated in general through
the modulator function f([l]) ¼ [n2*]/[n2], which describes
the partitioning into the tetramerizing and nontetramerizing
dimers by the ligand l. In this system, the canonical ligand is
the hormone 9cRA (9-cis-retinoic acid), a derivative of
Vitamin A, which binds each RXR monomeric subunit
independently of its oligomerization state (59) and prevents
dimers with their two subunits occupied from tetramerizing
(60). Therefore, considering [n2*] as the concentration of
dimers with two ligands bound and [n2] as the concen-
tration of dimers with one or zero ligand leads to
f ð½l�Þ ¼ ½l�2=ðK2

lig þ 2Klig½l�Þ, where Klig is the ligand-RXR
dissociation constant and [l] is the concentration of the
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ligand (61). This process determines dimer and tetramer
concentrations, which are related to each other through
[n2]

2/[n4] ¼ Ktd, where Ktd is the tetramer-dimer dissocia-
tion constant.

Control of gene expression results from the dependence
of the transcriptional response on the type of oligomeric
species that are assembled on DNA (62). There are two
differentiated types of responses (Fig. 2 B): The first type,
referred to as response R1, involves a tetramer that simulta-
neously binds two nonadjacent DNA sites. Upon binding,
the tetramer can bring a distal enhancer close to the pro-
moter region by looping DNA and control transcription. In
this case, dimers do not elicit transcriptional responses. In
general, promoting and preventing DNA looping has been
found to be a fundamental mechanism for controlling the
effects of distal enhancers (63,64). The second type, denoted
response R2, relies on differentiated recruitment abilities by
different oligomerization states. Specifically, dimers can re-
cruit a coactivator by binding of a region that is secluded in
the tetramer (61).

The different configurations for binding of RXR to two
DNA sites are described by the state variables s1t and s2t
that indicate whether (¼ 1) or not (¼ 0) a tetramer is bound
to site 1 and 2, respectively; sL that indicates whether (¼ 1)
or not (¼ 0) DNA forms the loop between these two sites;
and two additional state variables s1d and s2d that indicate
whether (¼ 1) or not (¼ 0) a dimer is bound to site 1 and
2, respectively.

The free energy of the system in terms of these state vari-
ables is given by

DGðsÞ ¼ ðg1 � RT ln½n4�Þs1t þ ðg2 � RT ln½n4�Þs2t
þ ðgL þ RT ln½n4�Þs1ts2tsL þNð1� s1ts2tÞsL
þ �

g1 � RT ln
�½n2� þ �

n�2
���

s1d

þ �
g2 � RT ln

�½n2� þ �
n�2
���

s2d

þNðs1ts1d þ s2ts2dÞ:

(11)

Here, g1 and g2 are the standard free energies of binding
to sites 1 and 2, respectively, which are assumed to be the
same for all three oligomeric species, and gL is the free
energy of looping. The first four terms of this expression
are equivalent to those for the lac operon in Eq. 7 because
it is the same type of tetrameric binding to two sites.
The fifth and sixth terms represent the binding of a dimeric
species to sites 1 and 2, respectively. The last term indicates
that dimers and tetramers cannot be bound simultaneously
to the same site by assigning an infinite free energy to those
states.

The normalized transcriptional activities for responses
R1 and R2 are expressed in terms of state variables as

cR1ðsÞ ¼ cref þ
�
1� cref

�
sL;

cR2ðsÞ ¼ cref þ cdðs1d þ s2dÞ þ ðcdd � cdÞs1ds2d;
(12)
where cref does not depend on the ligand concentration and
is the normalized basal activity of the promoter in absence
of any activation. The explicit forms of cd ¼ (1 – (1 þ
[l]/Klig)

�2)(1 – cref) and cdd ¼ (1 – (1 þ [l]/Klig)
�4)(1 –

cref) indicate that at least one of the ligand-binding sites
of one dimer and of a pair of dimers, respectively, needs
to be occupied by the ligand for the coactivator to be
recruited.

It is straightforward to obtain analytic expressions of the
transcriptional activity from Eqs. 11 and 12 using software
packages like CplexA (53), but it is more illustrative for
the purposes of this review to focus on the functional
regime, which guarantees that there is response to changes
in the ligand concentration.

The functional regime considers two properties. The first
one is that the total RXR concentration is sufficiently high
for it to significantly bind DNA. The second one is that
the concentration of tetramers is low enough for them not
to completely saturate the binding. The reason is that for
typical values of gL, tetramers bind more strongly to two
DNA sites simultaneously than dimers do to a single DNA
site, as in the case of the lac operon (43,49,65). Under these
conditions the representative states, described by s ¼ (s1t,
s2t, sL, s1d, s2d), are those with a tetramer bound to the two
sites simultaneously, s ¼ (1,1,1,0,0), and with one dimer
bound to each of the two sites, s ¼ (0,0,0,1,1). The corre-
sponding statistical weights for these states, the only ones
needed in this case, are

Zð1;1;1;0;0Þ ¼ ½n4�e�ðg1þg2þgLÞ=RT

and � � ���2 �ðg1þg2Þ=RT
Zð0;0;0;1;1Þ ¼ ½n2� þ n2 e ;

respectively.
The key implication of this regime is that the steady-state
protein production, computed from

½p�ss ¼ pmax

X
s

cðsÞPðsÞ;

simplifies in such a way that the transcriptional responses

are governed by the reduced expressions

½p�ssR1
pmax;R1

¼ cref þ
�
1� cref

�
Pt;

½p�ssR2
pmax;R2

¼ cref þ
	
1�

	
1þ ½l�

Klig


�4
�
1� cref

�ð1� PtÞ;
(13)

where
Pt ¼ 1

1þ ð1þ f ð½l�ÞÞ2egL=RTKtd

(14)

is the probability of the state s ¼ (1,1,1,0,0).
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The particular form of Pt is exceptionally remarkable
because it imparts precision and flexibility to the transcrip-
tional responses—two properties that are the cornerstone of
natural gene expression systems but that have proved to
be highly elusive because of their seemingly antagonistic
character (66). Precision ensures that the transcriptional
response is consistently triggered at a given ligand concen-
tration irrespective of the particular total RXR concentra-
tion, which cancels out in the reduced equations that
govern the system behavior. Flexibility, on the other hand,
allows the precise triggering point to be altered both at the
individual promoter level through gL (67,68) and at a ge-
nomewide scale through f([l]) and Ktd.

To compare with the experimental data, the most conve-
nient approach is to use the normalized fold induction
(NFI), which is defined as NFI¼ (FI – 1)/(FImax – 1), where
FI is the fold induction and FImax is its maximum value. The
value of FI is obtained experimentally as the actual ex-
pression of a gene over its baseline expression and in math-
ematical terms as FI ¼ [p]ss/(pmaxcref). In terms of the NFI,
the results do not depend on parameters related to the
baseline and maximum expression levels and it becomes
possible to effectively compare experiments on different
promoters and cell lines. The explicit form of the NFI for
responses R1 and R2 is

NFIR1 ¼ Pt;

NFIR2 ¼
	
1�

	
1þ ½l�

Klig


�4

ð1� PtÞ;

(15)

respectively. Importantly, the only parameters needed to
characterize the shape of the response in the functional
regime are Klig and Ktd, which have been measured experi-
mentally, and gL, which can be inferred by adjusting its
value to reproduce the experimental data.

A fully predictive framework without free parameters has
been obtained with this approach because it collapses most
of the intracellular complexity into just one unknown
parameter gL. Therefore, once this parameter is known for
a particular experimental setup (specific cell type, cellular
conditions, and promoter), it can be used to predict other
responses just from thermodynamic principles.

One possibility is to use the value of gL inferred for one
type of response to predict the other one. There is experi-
mental data that tested in the same cell type and promoter
both types of transcriptional responses, one mediated by
an enhancer (response R1) and the other, by a coactivator
(response R2). The results of the model indicate that just a
single value of gL is needed to reproduce with high accuracy
the experimental data in both cases (Fig. 2 C).

Another possibility is to use the value of gL inferred for
one ligand to predict the response to other ligands. The
all-trans-retinoic acid (atRA) was tested early on as a poten-
tial candidate for the RXR cognate ligand, and it was
Biophysical Journal 104(12) 2574–2585
observed that binding was present but very weak (69,70).
The values of gL inferred for 9cRA responses can be used
to closely match the experimental transcription data in
response to atRA without any free parameter by simply
changing the value of the ligand-binding constant, Klig, to
the corresponding one for atRA (Fig. 2 D).
COMBINATORIAL ASSEMBLY OF
NUCLEOPROTEIN COMPLEXES

There are many situations in which the DNA loop is formed
not by a single protein, as in the lac operon and RXR, but by
a protein complex that is assembled on DNA as the loop
forms. The term ‘‘combinatorial assembly’’ is used because
there are many potential complexes that can arise from the
combinations of binding to multiple sites, even when just
a single TF is involved. An illustrative example is present
in the regulation of phage l. It has two operators located
2.4 kb away from one another and each operator contains
a tandem of three sites where phage l cI repressors can
bind as dimers. In this case, two dimers bound to an operator
can form an octamer with two dimers bound to another oper-
ator by looping the intervening DNA (43,71,72). Another
example is the interaction of TFs bound at distal enhancers
with the transcriptional complexes bound at the promoter
(63). To study this type of problem, it is crucial to properly
take into account that proteins bound to distal DNA regions
can interact with each other only if DNA looping is present.

Interactions mediated by DNA looping would lead to
terms with products of three or more state variables in the
free energy (43). An illustrative example is�

gL þ
X
i;j

ei;jsU;isD;j

�
sL;

where the state variables sU,i, sD,j, and sL indicate whether
(¼ 1) or not (¼ 0) a protein is bound to site i at the upstream

DNA region, a protein is bound to site j at the downstream
DNA region, and DNA looping is present, respectively. The
quantities ei,j account for the interactions between proteins
bound at different DNA regions and gL is the free energy
of looping. The formation of the DNA loop would be ener-
getically favorable only when a sufficient number of interac-
tions can be achieved between the two DNA regions. In the
case of phage l, only octamers and dodecamers are able to
form the looped complex among the many possible combi-
nations of binding (43,71,72). In turn, the presence of DNA
looping can enhance DNA binding through the interactions
that can be established between the two DNA regions, which
can lead to highly cooperative phenomena in the formation
of the nucleoprotein complex (42).
STOCHASTIC KINETICS

The lac operon and RXR have been used so far in this re-
view to demonstrate how biophysical principles can be
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used to efficiently capture the system behavior when noise
in the form of random fluctuations is not relevant. The
very same principles can be extended to take into account
the inherent stochastic nature of the underlying processes
in a wide range of situations. An efficient avenue to do so
is to consider the dynamics of the macromolecular com-
plexes that control gene expression through the stochastic
dynamics of the state variables (43,73).

The dynamics of the macromolecular complex can be
described in terms of components that can change in a tran-
sition. For the widespread case in which only one compo-
nent can change at a given time (either the component i
gets into or out of the complex), one can define on (kion)
and off (kioff) rates for the association-like and dissocia-
tion-like rates, respectively, which in general depend on
the pretransition and posttransition states of the complex.

The explicit dynamics can be obtained by considering the
change in state variables as reactions given by

si!ri ð1� siÞ; with ri ¼ ð1� siÞkionðsÞ þ sik
i
offðsÞ: (16)

These reactions change the variable si to 1 when it is 0 and to
0 when it is 1, representing that the element gets into or out
of the complex. Typically, the on-rate does not depend as
strongly on the state of the complex as the off-rate. The
on-rate is essentially the rate of transferring the component
from solution to the complex. The off-rate, in contrast,
depends exponentially on the free energy change.

The principle of detailed balance (33) can be used to
obtain the off-rates from the on-rates:

kioffðsÞ ¼ kionðs0Þe�ðDGðs0Þ�DGðsÞÞ=RT : (17)

The remarkable property of this expression is that reactions
with known rates can be used to infer the rates of more com-
plex reactions from the equilibrium properties (for instance,
to infer dissociation rates for different binding sites from a
single association rate (43)). In general, the association
rate could also depend on the state of the complex and its
free energy, as for instance if the presence of a TF facilitates
the association of another TF. If this dependence is included
in the on-rate, Eq. 17 can also be applied straightforwardly
to obtain the off-rate.

The stochastic dynamics of the resulting networks of
reactions and transitions can then be obtained with kinetic
Monte Carlo simulations using well-established algorithms
(26,74,75).
NOISE AND FLUCTUATIONS IN THE LAC OPERON

Stochastic effects in the lac operon have been known to be
important since the late 1950s (76), predating the discovery
of gene regulation (45). The most salient example is the all-
or-none induction process (76), which was measured at the
single-cell level with a resolution of a few molecules of the
gene products per cell (77). This effect has its roots in
the amplification of the inherent stochastic fluctuations of
transcription and translation processes (78–81) close to the
boundary that separates the induced from noninduced
states of the lac operon (24,82).

The underlying molecular mechanisms and parameters
have been shown to shape transcriptional noise to a large
extent (43,49,83–86). To illustrate these effects in the lac
operon, we discuss, first, regulation through just the main
operator. The use of state variables leads to a single reaction
that describes both the binding and unbinding of the
repressor to the main operator:

sm!rm ð1� smÞ; with rm ¼ ½n�ka
	
ð1� smÞ þ sm

egm=RT

½n�


:

(18)

Here, the on-rate is given by [n]ka, where ka is the associa-
tion rate constant, and the off-rate, kae

gm=RT , is obtained
from the detailed balance principle. The transcription rate
is described by

m���!GS
mþ 1; with GS ¼ Gmaxð1� smÞ; (19)

and mRNA degradation, protein production, and protein
degradation are described by the stochastic counterpart of
the expressions in Eq. 1. The time courses of the number
of proteins produced from this promoter show relatively
small fluctuations for the experimental values of the param-
eters (Fig. 3 A). The downside of having just a binding site
for regulation is that repression is relatively weak and
a substantial number of proteins are produced.

To increase repression, two simple alternatives exist. The
first one is to consider a stronger site. For a site 50-times
stronger than the wild-type main operator, protein produc-
tion would be close to the value expected for the lac operon
with the three operators. In this case, the average protein
production is reduced ~50 times, as expected from the
deterministic theory, but fluctuations increase dramatically
(Fig. 3 B). There are infrequent mRNA bursts that lead to
large protein amounts that decay in a few hours and long
periods of time without any protein at all. The second alter-
native is to include more repressors. For a repressor concen-
tration 50-times higher than in wild-type, the average
protein production is reduced ~50 times and the fluctuations
remain relatively small (Fig. 3 C). In this case, mRNA pro-
duction happens in smaller quantities but more frequently.
The physiological downside is that the repressor production
would have to be 50-times higher than in wild-type and if
that happens for all the proteins of the cell, E. coli would
have to be 50-times more crowded.

A more efficient alternative to increase repression is to
use DNA looping, which has been chosen by evolution
Biophysical Journal 104(12) 2574–2585
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FIGURE 3 Transcriptional noise in the lac operon. (A–C) Time courses

of the number of protein and mRNA (shown as negative values) produced

from a promoter with just the main operator described by Eqs. 18 and

19 and the stochastic implementation of the expressions in Eq. 1. The

values of the common parameters for all three panels are Gmax ¼ 0.5 s�1,

U ¼ 0.01 s�1, gm ¼ 3.3 � 10�3 s�1, gp ¼ 9.2 � 10�5 s�1, and ka ¼
2.2 � 10�6 M�1 s�1. The values of the remaining parameters are: (A)

gm ¼ �13.1 kcal/mol and [n] ¼ 15 nM for wild-type Om and wild-type

repressor concentration; (B) gm ¼ �13.1 – RT ln 50 kcal/mol and [n] ¼
15 nM for 50-times stronger Om and wild-type repressor concentration;

and (C) gm ¼ �13.1 kcal/mol and [n] ¼ 750 nM for wild-type Om and

50-times more repressor. (D) Time courses of the number of protein and

mRNA (shown as negative values) produced from a promoter with the

operators O1 and O2 described by Eqs. 19–21 and the stochastic implemen-

tation of the expressions in Eq. 1. The values of the parameters are the

same as in panel A with the addition of ga ¼ �11.6 kcal/mol and gL ¼
8.30 kcal/mol. The illustrations to the right of panels A and D represent

respectively a lac repressor bound to the main operator and a lac repressor

bound simultaneously to the main and auxiliary operators looping the

intervening DNA.
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not only in the lac operon but also in a large variety of sys-
tems. The computational approach in this case is slightly
more involved because it has to take into account that an
operator can be bound by a repressor in solution or by a
repressor bound to the other operator thus forming a DNA
loop (Fig. 1 B). For binding to the main operator, these
two processes are represented by
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sm!rm ð1� smÞ; with rm ¼ ½n�ka
	
ð1� smÞ

þ smð1� sasLÞ egm=RT

½n�


; (20)

rL;m
fsL; smg�!f1� sL; 1� smg; with rL;m

¼ e�gL=RTkasa
�ð1� sLÞð1� smÞ þ sLsme

ðgmþgLÞ=RT�: (21)

For the binding to the auxiliary operator, the reactions have
the same representation except that the terms sm, sa, and gm
are replaced by sa, sm, and ga, respectively.

The stochastic kinetics of the regulation through the O1-
O2 loop shows a small average number of proteins with
low fluctuations, thus behaving in a manner very similar
to a single operator with 50-times more repressor (Fig. 3
D). Therefore, DNA looping in this case allows the system
to achieve the same behavior as it would with 50-times more
repressors.

Intuitively, both looping and high repressor concentration
lead to lower noise than a single strong site because of the
characteristic timescales involved. In the strong site case,
there are long periods of time with maximum transcriptional
activity and long periods without any activity, which results
in the number of proteins fluctuating strongly between high
and low values. In the cases of looping and high repressor
concentration, the off-rate of the repressor from the main
operator is 50-times larger than for the strong site and the
average on-rate increases accordingly to keep the same
repression level. Therefore, the switching between tran-
scriptional states is very fast and mRNA production is in
the form of short and frequent bursts. This lack of long
periods of time with either full or null production gives a
narrower distribution of the number of proteins. Explicitly,
the coefficient of variation of protein (mRNA) content
shown in Fig. 3 for the strong site, the high repressor con-
centration, and the DNA looping cases is 2.3 (12.9), 0.81
(4.8), and 0.95 (5.4), respectively.
DISCUSSION

Gene expression relies on intricate molecular mechanisms
to function in extraordinarily diverse intra- and extracellular
environments. Biophysical approaches have provided new
avenues to unravel how these different levels of molecular
complexity contribute to the observed behavior. The results
reviewed here show that the underlying complexity of bio-
logical systems is not just an accident of evolution but has
a functional role.

Explicitly, the lac operon exemplifies how escalating
complexity from one to two operators introduces stronger
repression while preserving low transcriptional noise, which
is not possible with a stronger single binding site.



Systems Biophysics of Gene Expression 2583
In the case of the RXR, the additional complexity
embedded in the control of its oligomeric state by the
cognate ligand and its ability to bind simultaneously single
and multiple DNA sites has been shown to impart precision
and flexibility, two seemingly antagonistic properties, to the
sensing of cellular signals.

This type of regulated oligomerization has also been
observed explicitly in other transcription factors that can
bind multiple DNA sites simultaneously, such as the tumor
suppressor p53 (87), the nuclear factor kB (NF-kB) (88,89),
the signal transducers and activators of transcription
(STATs) (90), and the octamer-binding proteins (Oct)
(91,92). In these systems, the properties of self-assembly,
and the partitioning into low- and high-order oligomeric
species, are strongly regulated and modulated by several
types of signals, such as ligand binding (60), protein binding
(93,94), acetylation (95), and phosphorylation (92,96).

The combined presence of flexibility and precision in the
control of gene expression, as explicitly shown for RXR,
allows a single TF to simultaneously regulate multiple genes
with promoter-tailored dose-response curves that consis-
tently maintain their diverse shapes for a broad range of
the TF concentration changes.

Thus, the complexity of multiple repeated distal DNA
binding sites both in prokaryotes and eukaryotes, far from
being just a remnant of evolution or a backup system as
often assumed, can confer fundamental properties that are
not present in simpler setups.
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