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Single-Molecule Motility: Statistical Analysis and the Effects of Track
Length on Quantification of Processive Motion
Andrew R. Thompson,* Gregory J. Hoeprich, and Christopher L. Berger
Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont
ABSTRACT In vitro, single-molecule motility assays allow for the direct characterization of molecular motor properties
including stepping velocity and characteristic run length. Although application of these techniques in vivo is feasible, the chal-
lenges involved in sample preparation, as well as the added complexity of the cell and its systems, result in a reduced ability
to collect large datasets, as well as difficulty in simultaneous observation of the components of the motility system, namely motor
and track. To address these challenges, we have developed simulations to characterize motility datasets as a function of sample
size, processive run length of the motor, and distribution of track lengths. We introduce the use of a simple bootstrapping tech-
nique that allows for the quantification of measurement uncertainty and a Monte Carlo permutation resampling scheme for the
measurement of statistical significance and the estimation of required sample size. In addition, we have found that, despite con-
ventional wisdom, the measured characteristic run length is directly coupled to the characteristic track length that describes the
microtubule length distribution. To be able to make comparisons between motility experiments performed on different track pop-
ulations as well as make measurements of motility when motors and tracks cannot be simultaneously resolved, we have devel-
oped a theoretical framework for the determination of the effect that track length has on observed characteristic run lengths. This
shows good agreement with in vitro motility experiments on two kinesin constructs walking on microtubule populations of
different characteristic track lengths.
INTRODUCTION
In vitro characterization of motility from single-molecule
processive motors such as kinesin-1, dynein, and myosin-
V has led to a greater understanding of motor properties
including stepping behavior (1), structure-function relation-
ships (2,3), and regulation of motility by track-associated
proteins (4–6) with an unprecedented level of precision.
Furthermore, in vitro studies, whose components are
comprised of isolated and expressed proteins, allow for ideal
experimental conditions, as only the motor and track are
variables in the system. This simplicity, though, comes
with a significant departure from the physiological condi-
tions that a motor protein experiences in the cell including
a lack of molecular crowding and low ionic strength.
Also, the lack of additional regulatory factors may mask
how motors interact with their tracks within a cell. For
example, early evidence in axons suggests that molecular
trafficking may occur on dedicated microtubule tracks (7).
Although the mechanisms behind this specification have
yet to be elucidated, some potential avenues may be through
the GTP hydrolysis state of tubulin (8), as well as the
marking of tracks via posttranslational modifications, as
acetylation and detyrosination have been implicated in pro-
moting kinesin-1 binding and motility (9–12). Microtubule-
associated proteins such as Tau may also play a role, as they
have been shown to inhibit kinesin motility in vitro (4,6).
Interestingly, similar levels of Tau inhibition have not
been observed in the isolated axons of squid, which provides
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a more robust example of in vivo axonal conditions (13).
Recent observations may yield a resolution to this paradox:
inhibition of kinesin motility by Tau may be sensitive to the
microtubule’s nucleotide hydrolysis state, being inhibitory
on GDP-like microtubules but not on GTP-like microtu-
bules (5), which have been shown to be enriched in the
axon (8). Such drastic discrepancies between in vitro and
in vivo observations reveal a need for direct, single-mole-
cule motor characterization in complete cell systems.

To accomplish this goal, in vivo single-molecule
motility experiments can be performed through a variety
of techniques to introduce fluorescently tagged motors in
cells including pinocytosis (14,15), use of transfection
reagents (16), and direct expression (9,17). Although these
approaches directly address the physiological deficiencies
of in vitro approaches, several new experimental challenges
are evident including limited ability to introduce multiple
fluorescent species and difficulty in the simultaneous obser-
vation of the motor and track due to cellular complexity,
expression levels of the proteins of interest, and tradeoffs
between signal/noise and rate of photobleaching (9,17).
Whereas in vitro motility experiments are typically per-
formed using total internal reflection fluorescence (TIRF)
microscopy due to its superior signal/noise in single-mole-
cule applications, its applicability to live-cell observation
is limited to cell systems with flat morphologies whose
motility components fall within the evanescent TIRF exci-
tation field. As a consequence, epifluorescence is often
employed, resulting in reduced signal/noise due to increased
excitation of fluorophores in the bulk cytoplasm of the cell.
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Perhaps the best illustration of the challenges faced by
experimentation in vivo is found in the axon, whose small
diameter (~1 mm for cultured mammalian axons (18)) and
dense packing of microtubules limits the resolution of indi-
vidualmicrotubules to techniqueswith high spatial resolution
at the sacrifice of temporal resolution, such as superresolution
fluorescence (8,19) or electron microscopy (20). As a result,
characterization of motor behavior in an in vitro equivalent
fashion is problematic, as the conventional motility protocol
for the characterization ofmotility requires observation of the
initial motor binding event, processive motion, and termina-
tion due to the motor unbinding from a continuous section of
track. In the absence of simultaneous track observation, data
may be contaminated with motility events that are artificially
terminated by the track terminus which, intuitively, would
result in the measurement of shorter characteristic run
lengths. Moreover, the challenges present in sample prepara-
tion and observation may result in undersampling, leaving
comparisons between experimental conditions in question.

In this article, we explore motility data in the context of
processive kinesin movement on microtubule tracks, though
the results and analysis techniques presented are applicable
to other types of motility experiments both in vitro and
in vivo.We examine common practices in motility data anal-
ysis and comparison and utilize simulations to demonstrate
data behavior and sensitivity to sampling conditions. We
demonstrate numerically derived criteria for the determina-
tion of adequate sampling andwe propose a simple yet robust
data-mining technique for the assessment of significance
between data sets. Finally, to understand the effect on
measured characteristic run length by datasets contaminated
bymicrotubule-truncatedmotility, we havemodeledmotility
collected with and without filtration of events experiencing
artificial termination and have developed a theoretical frame-
work for this effect. We demonstrate that measurements of
characteristic run length are coupled directly to the underly-
ing microtubule track distribution and are independent of
whether or not motility reaching the end of the track is dis-
counted. Thus, meaningful comparisons of motility data
between experiments, whether performed in vitro or in vivo,
can only be made when quantitatively accounting for the
underlyingmicrotubule distribution. These theoretical obser-
vations are supported with in vitro measurement of motility
for two kinesin family members with different characteristic
run lengths (kinesin-1 and kinesin-2) on microtubules with
different length distributions, stabilized with guanosine-5-
((a,b)-methyleno)triphosphate (GMPCPP), a slowly hydro-
lyzed GTP analog, or paclitaxel (Taxol).
MATERIALS AND METHODS

Simulations

All simulations were carried out using Mathematica Ver. 8 (Wolfram

Research, Champaign, IL). Curve fitting was also performed in the
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software Mathematica using the FindFit function and default settings.

Mathematica code for the various analysis techniques can be found in the

Supporting Material.
In vitro motility

Microtubules stabilized with GMPCPP or Taxol were formed by mixing

lyophilized rhodamine-labeled and unlabeled tubulin (Cytoskeleton,

Denver, CO) at a 1:10 labeled/unlabeled ratio following previously

reported methods (5). An eGFP-tagged kinesin-2 homodimer construct

comprised of a C-terminal eGFP tag fused to a constitutively active

(truncated at amino-acid 559) Drosophila kinesin-1 coiled-coil region

with two KIF3A heads and their respective neck linkers as well as a simi-

larly truncated eGFP Drosophila kinesin-1 construct were both generous

gifts from Dr. William Hancock (Penn State University, State College,

PA) (2).

The motility experiment was performed in motility buffer (10 mM

PIPES, 50 mM potassium acetate, 4 mM magnesium acetate, 1 mM

EGTA, pH 7.4 at 20�C) supplemented with 5.8 mg/mL glucose,

0.045 mg/mL catalase, and 0.067 mg/mL glucose oxidase to prevent photo-

bleaching. Microtubule tracks were polymerized either in the presence of

GTP followed by Taxol stabilization or GMPCPP and introduced into glass

flow-chambers coated with anti-bIII-tubulin monoclonal antibodies

(diluted to ~33 mg/mL in motility buffer from manufacturer’s stock;

Sigma-Aldrich, St. Louis, MO) and blocked with 1 mg/mL BSA in motility

buffer. Experiments using sheared Taxol microtubules included 20 passages

of the microtubules through a 25G needle immediately before introduction

to the flow-chambers. The appropriate kinesin construct was then added at a

concentration of 1nM in motility buffer with 1mM ATP. TIRF microscopy

was performed at 20�C on an Eclipse Ti-U microscope (Nikon, Melville,

NY) equipped with a PlanApo objective (100�, 1.49 N.A.). Movies were

collected on an XR/Turbo-Z charge-coupled device camera (Stanford Pho-

tonics, Palo Alto, CA) at five frames/s with the exception of kinesin-2

GMPCPP data, which was collected at 3.33 frames/s. Motility was analyzed

using the MTrackJ (21) plug-in for the software ImageJ (National Institutes

of Health, Bethesda, MD) and track lengths were measured using the

segmented line tool in ImageJ.
RESULTS AND DISCUSSION

Data behavior and convergence

Kinesin-1 walks on microtubules in a stochastic fashion,
taking 8 nm hand-over-hand steps along a single microtu-
bule protofilament (22,23). Observations of single mole-
cules of kinesin have found the distribution of run lengths
to be exponentially distributed (24,25). As such, the normal-
ized probability density function P(x) used to describe
observed run lengths x of a population of motors is

PðxÞ ¼ 1

x0
e�

x
x0 ; (1)

where x0 describes the characteristic processive run length
of the motor population and, in the case of complete sam-
pling along x, is equivalent to the expectation value hxi.
Conceptually, the representation of data as a histogram is
clearest, as it directly sketches the probability distribution
of motility outcomes. Another method of representation
and analysis of run length data, though less common in
the literature, is the plot of cumulative frequency C(x),
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CðxÞ ¼ 1� e�
x�A
x0 ; (2)
where A is an adjustment factor that accounts for undersam-
pling of short runs. For example, we typically observe
FIGURE 2 The standard deviation about the mean for repeat experiments

(50 experiments, each with datasets of N ¼ 150 points) increases as the

characteristic run length of the population increases. The method of anal-

ysis also affects the standard deviation, with cumulative frequency analysis

(error bars) having lower spread than the histogram analysis (shaded

envelope). A line is drawn for the case of infinite sampling, where the

measured run length equals the population run length. Both the mean

determined via histogram analysis (not shown) and by cumulative fre-

quency analysis (points) follow the expected behavior for infinite sampling.
values of A in the range of 0.1–0.3 mm under our experi-
mental conditions.

Utilizing this knowledge, we have simulated hypothetical
motility datasets based on randomly sampling the probabil-
ity distribution for a series of given characteristic run
lengths within the range of values and sampling sizes
reported in the literature. This is functionally equivalent to
performing a motility experiment: we are sampling the pop-
ulation distribution of a sample, but here we know, a priori,
the theoretical outcome given infinite sampling. The first
observation is that measurements follow the central limit
theorem: repeated sampling (i.e., repeat experiments) of
the same population yield normally distributed character-
istic run lengths with a standard deviation about the mean
characteristic run length for repeated measurements
decreasing proportional to the inverse of the square-root
of the number of measurements (Fig. 1). This behavior
also illustrates another important consideration: whereas
standard experimental practice dictates repeat experiments,
separate analysis, and a determination of mean value and
spread, such a practice may be misleading in a measurement
that is inherently a statistical sampling of a population dis-
tribution. In the presence of undersampling, uncertainty
between measurements is not due necessarily to experi-
mental variability, but can be due exclusively to fluctuations
in sampling. The only solution, therefore, is to include all
accumulated experimentally equivalent data in the analysis;
systematic errors remain represented in the measured value
whereas the uncertainty due to undersampling is minimized.

The next observation is that the standard deviation for
repeated experiments with the same number of observations
(N) increases as the characteristic run length increases
(Fig. 2). On inspection, this behavior makes sense: given a
histogram of run lengths and chosen bin width, the larger
FIGURE 1 The effect of the number of samples per dataset (N) on a pop-

ulation of motors with a characteristic run length of 1 mm. The mean

measured run length at a given N (thin line) was determined by performing

50 unique sampling experiments. The standard deviation about the mean

(shaded envelope) fits well to a N�1/2 relationship (thick line).
the range of data, the more sensitive the fit to the distribution
is to small fluctuations as it is not dominated by a few highly
populated bins. Additionally, it also illustrates deficiencies
in the analysis of data using the histogram representation
as opposed to a cumulative frequency plot. Although both
are technically equivalent representations, bin-width selec-
tion, whether assigned using experimentally determined
criteria or using other binning criteria, tends to introduce
higher deviation in measurement due to coarse-graining
errors. As such, we favor cumulative frequency analysis in
our fitting routines and use histograms merely for visualiza-
tion purposes.

The behavior illustrated by Figs. 1 and 2 reveal the need
to understand the adequacy of sampling present in the anal-
ysis. This is especially apropos when considering in vivo
measurement, where accumulation of a large number of
data points may be limited due to the experimental chal-
lenges not found in the equivalent in vitro experiment.
Moreover, whereas increasing the sample size (N) always
reduces the sampling error, the asymptotic N�1/2 behavior
of the uncertainty yields diminishing returns: the standard
deviation in measurement of a characteristic run length of
1 mm with 150 data points is already within 5% of that of
a dataset composed of 1000 data points (Fig. 1). Naturally,
when performing a real experiment, such knowledge is hid-
den from us, requiring other means for deducing adequate
sampling.

Additionally, the reporting of uncertainty in measurement
and significance of measurement between observations has
not been standardized in the motility field. As the probabil-
ity distribution of runs is not normally distributed, values of
standard deviation about the mean are not informative for
characterizing data uncertainty. Although the sampling dis-
tribution of repeat measurements of the characteristic run
Biophysical Journal 104(12) 2651–2661



FIGURE 3 Bootstrap distribution for a measurement with 600 samples of

a population of motors with a 1 mm characteristic run length. The distribu-
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length is indeed normal (due to the central limit theorem),
obtaining a representative distribution such that standard
deviation about the mean becomes meaningful is experi-
mentally impractical, especially when performing in vivo
measurements. A common method for reporting uncertainty
in measurement is a representation of the standard error of
fit, but this value may give misleading confidence in the dif-
ferences between populations.

These concerns, the quantification of uncertainty in mea-
surement, the assessment of statistical significance between
samples, and the amount of data needed to demonstrate sig-
nificance, can be addressed by using simple bootstrap anal-
ysis techniques (26).
tion is well fit by a Gaussian, which is used to compute the 99% confidence

intervals (vertical dashed lines).
Bootstrap analysis of data uncertainty

To assess sampling uncertainty, we employed a simple boot-
strap analysis of the dataset with the following procedure:

Bootstrap algorithm

Step 1. Resample the data, with replacement, N times,
where N is equal to the length of the dataset.

Step 2. Perform a determination of characteristic run
length of the resampled dataset.

Step 3. Repeat this resampling with sufficient repetition
(~1000–10,000 times).

Step 4. Examine the resampling results with a histogram
of measured characteristic run lengths.

The fundamental assumption when making a measure-
ment—and repeat measurements to form a sampling distri-
bution—is that our collected dataset is an accurate
representation of the population. The bootstrapping proce-
dure, therefore, assumes our data is a reasonable facsimile
of the population and uses it to form a sampling distribution,
thereby simulating the inherent propensity for fluctuation in
the observed characteristic run length due to sampling statis-
tics (26). The bootstrapped distribution cannot tell us any new
information about the characteristic run length: the distribu-
tion will be centered near the dataset’s measured value and
its bias with respect to the population’s actual characteristic
run length will be maintained. The width of the distribution,
though, is indicative of the error of measurement. Whereas
the standard deviation of the bootstrap yields a parameter
for measurement uncertainty (27,28), we prefer to measure
99% confidence intervals (~3 times the bootstrap standard
deviation) as it offers a more coherent and generous represen-
tation of the uncertainty of measurement (Fig. 3). It should be
noted that although common practice is to report standard
error about the mean (mean5 SE), such a calculation should
not be performed on the bootstrap distribution as it is propor-
tional to the square-root of the number of bootstrap resamples.

Although the comparison between two datasets can be
made by observing the overlap of their respective confi-
dence intervals, this should be used in a qualitative sense
Biophysical Journal 104(12) 2651–2661
and a more precise significance test is required. To assess
statistical significance, as well as predict the amount of
data required to determine statistical significance between
two samples, we utilize a permutation resampling method
that allows for a bootstrap-like approach for testing the
null hypothesis.
Significance testing with permutation resampling

To assess statistical significance in the difference between
two data sets of motility, we utilize a Monte Carlo permu-
tation resampling scheme (26,29). This method has the
direct advantage that the likelihood distribution of the
null hypothesis—that the measured characteristic run
lengths of each sample are identical—is directly generated
from the data on hand rather than requiring a comparison
with an idealized distribution. This method is robust as it is
distribution-independent (i.e., nonparametric, unlike the
Student’s t-test), not affected by shape differences in
each sample (e.g., skewness), and is not subject to the lim-
itations and assumptions made by other nonparametric
tests such as the Mann-Whitney test and is therefore less
likely to report erroneous levels of significance (26).
Despite its power, its use has been limited in the literature
due to its computationally intense nature by the computing
standards of the mid-late 20th century. With contemporary
consumer-grade multicore processors and parallel process-
ing, such computations can be performed in a matter of
seconds.

Generation of the testing distribution begins with the
selection of the test statistic of interest, in this case the dif-
ference between the measured characteristic run lengths of
an experiment and control sample:

tobs ¼ x0experiment � x0control: (3)

The null hypothesis follows, therefore, as

tnull ¼ 0: (4)
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If the null hypothesis is applicable to our collected data, the
labels of experiment and control on our respective datasets
are meaningless; the data we have collected in each sample
effectively comes from a sampling of the same population.
By removing the labels on our data we can test such a sce-
nario and generate a distribution of values of tnull (which
should include zero) and observe the likelihood that tobs is
a member of tnull. If our data in each population are substan-
tially different, the value of tobs will fall well outside of the
generated null datasets and can be ascribed a level of signif-
icance with the commonly used p-value notation (Fig. 4 A).
To generate the null distribution:

Permutation resampling algorithm

Step 1. Note the size of each respective data pools
(Nexperiment, Ncontrol).

Step 2. Mix data from experiment and control into a com-
mon pool.

Step 3. Generate two new datasets of size Nexperiment and
Ncontrol by randomly sampling the common pool
without replacement.

Step 4. Refit the newly formed datasets to acquire the
characteristic run lengths.

Step 5. Measure and record the test statistic (tnull).
FIGURE 4 (A) A null hypothesis distribution generated by a permutation

resampling of two samples of 600 points each measured from populations

of motors with 1.0 mm and 0.8 mm characteristic run lengths. The observed

difference (0.2 mm, vertical line) falls outside of the 99% confidence inter-

vals, indicating a significant difference between the samples by our defined

tolerance. (B) The 99% confidence intervals (shaded envelope) of the null

hypothesis distribution for the populations in panel A as a function of

data set size, which fits well to a N�1/2 relationship (thick line). The

observed difference between samples (tobs, points) trends toward significant

for Nexperiment,control T 400 as determined by Eq. 5.
Step 6. Repeat Steps 1–5 with sufficient repetition
(~1000–10,000 times).

Step 7. Plot the accumulated test statistics and compute
appropriate confidence intervals (e.g., 99% intervals).

Step 8. Determine significance by comparison of tobs
with the tnull distribution confidence intervals.

In addition to the measurement of significance between
experimental datasets, the permutation resampling scheme
also allows for prediction of the necessary number of data
points needed in each sampling to determine statistical sig-
nificance given predicted values of x0experiment, x0control, and
tobs. Similar to the bootstrap distribution of a single run
length measurement, the computed confidence intervals of
the permutation resampling distribution decrease in a
manner proportional to N

�1=2
experiment; control. Given hypothetical

run lengths, x0experiment and x0control, we have simulated
datasets of equal size and computed the 99% confidence
intervals of the resultant permutation distributions. By fitting
these to a N

�1=2
experiment; control distribution, we can determine the

required number of data points Nexperiment,control to obtain a
tobs outside of the defined region of the null hypothesis
rejection (Fig. 4 B). In the realm of reported kinesin proces-
sivity, the following approximation yields a reasonable
estimate of required sampling to yield tobs outside of the
99% confidence intervals of the null hypothesis distribution:

Nexperiment;controlT

�
4x>
jtobsj

�2

: (5)

Here x> is the larger of x0experiment, x0control.
The effect of track length on observed motility

As discussed in the Introduction, accurate characterization
of motor behavior leads one to examine motility within
the cell to maintain physiological integrity. Although repli-
cation of the in vitro experimental system—where both
motors and tracks are fluorescently tagged—is technically
feasible, including expression of fluorescent proteins or
post-motility antibody staining of tracks (9,17), these are
challenging experiments that are not amenable to all cell
types. Indeed, nowhere is this more evident than in the study
of axonal transport, where axonal geometry and molecular
crowding make simultaneous observation and colocaliza-
tion of the motor and track, with both high spatial and tem-
poral resolution, out of reach of contemporary methods.

Recall: Characterization of motility is accomplished by
the repeat observation and tabulation of processive motility
events where the motor can be seen to both bind and unbind
from the microtubule track. Without simultaneous knowl-
edge of the motor’s position on the track, though, termina-
tions of motility may be due to motors reaching the ends
of tracks rather than due to their stochastic nature. The
resulting data, therefore, will be artificially truncated and
yield lower characteristic run lengths. A common
Biophysical Journal 104(12) 2651–2661
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misconception is that by removing events that experience
artificial truncation from the dataset, one measures the char-
acteristic run length of the motors as if they were walking on
tracks of infinite length.

We begin to test this assumption and quantify the effect of
artificial termination with a theoretical framework, similar
in approach to previous work examining the effect of track
length on NTP turnover rates by nucleic acid motors (30).
As demonstrated in Eq. 1, the quantity we are interested
in measuring, the characteristic run length x0, is merely
the expectation value hxiN of the run length probability dis-
tribution for the motors of interest on an infinite track. Given
a track of finite length, we expect that a fraction of these
motors—each expected to walk hxiN—would find them-
selves walking off of the end of the track and report a trun-
cated run length. Thus, the observed behavior (hxiobs) to the
experimenter who has no knowledge of the motor’s position
on the track will be

hxiobs ¼ hxiN � qhxiN; (6)

where q is the average fraction of motors that have their
motility truncated by the end of the track. On a given track
of length L, each motor will land in a random position
evenly distributed along its length, with a distance l of track
remaining. Thus, for that specific track, the fraction of
motors walking on it that have their motility truncated (q)
is the ratio of the total probability of motors walking dis-
tances greater than the available track, divided by the total
probability of all possible run lengths (i.e., the integral
over all distances x of Eq. 1):

q ¼
RN

l
e�

x
x0dxRN

0
e�

x
x0dx

¼ e�
l
x0 : (7)

The average fraction of motors with truncated motility, q,
will be the average value of q over all possible landing sites
on a single track (0 to L), weighted by the landing probabil-
ity distribution for all possible track lengths LT(L)/a,

q ¼
ZN
0

0
@1

L

ZL
0

e�
l
x0dl

1
A LTðLÞ

a
dL; (8)

where T(L) is the measured track-length probability distri-
bution function and a is the appropriate normalization factor
for LT(L)/a as defined in Table S1 in the Supporting Mate-
rial. Given stabilized microtubules grown in vitro tend to
follow a Schulz distribution (31),

TðLÞ ¼ e�
L
L0
L

L2
0

; (9)

we arrive at an analytical solution for q, and thus, after
substitution of Eq. 8 into Eq. 6, hxiobs as a function of the
Biophysical Journal 104(12) 2651–2661
characteristic run length x0 (i.e., hxiN) and the characteristic
track-length L0:

hxiobs ¼ x0

 
1� x0ðL0 þ 2x0Þ

2ðL0 þ x0Þ2
!
: (10)

To validate our theoretical framework, we simulated

motility collected in a statistically distributed system of
track lengths to compare the effect of artificial termination
on the observed motility as compared to the motility
observed on tracks of infinite length. The algorithm for
this simulation is as follows:

Motility simulation algorithm

Step 1. Select a motility event from the motility probabil-
ity distribution.

Step 2. Select a track from an appropriate microtubule
landing probability distribution LT(L)/a.

Step 3. Randomly choose a landing site along the
selected microtubule.

Step 4. Compare the remaining track length available to
the motor and adjust the length that the motor would
be observed to walk if the motor’s predestined run is
longer than the available track.

Step 5. Repeat Steps 1–4 to generate a dataset of the
desired size.

Step 6. Measure the resultant characteristic run length.

To fully observe the magnitude of motility truncation due
to track distribution, we simulated motility events over
a range of potential kinesin characteristic run lengths and
microtubule populations obeying Schulz distributions.
Under all values tested, we observed excellent agreement
between theory and simulation (Fig. 5). As expected, motors
selected from populations of low processivity (e.g., 0.4 mm
characteristic run length) are little affected by artificial run
length termination as compared to their expected behavior
on infinite tracks. Substantial truncation occurs, though,
for more processive motors such that motility of a single-
motor type on different track-length distributions will report
different levels of processivity when, in fact, the actual
properties of the motor are unchanged.

Surprisingly, simulations where track-mediated termina-
tions are eliminated from the final measurement of run
length reveal behavior that is indistinguishable from that
of motility where artificial terminations are left in the anal-
ysis. Reconsideration of the theoretical derivation reveals
this should be expected behavior, though, as removal of
data that is biased toward longer events as opposed to count-
ing more short runs has the same functional effect, namely a
reduction in the observed processivity. This observation has
significant implications toward the analysis and comparison
of motility data both in vitro and in vivo, as it reveals that the
microtubule track distribution itself biases the observable
motility events, in essence acting as a low-pass filter whose



FIGURE 5 The effect of track length on measured run length (hxiobs),
sampling populations of characteristic run lengths (x0) from 0.4 mm to

2.0 mm in 0.2 mm steps with 1000 samples per dataset. Each population

was subjected to tracks obeying Schulz distributions of various character-

istic track lengths (L0, Eq. 9). The theoretical derivation (Eq. 10, lines)

shows excellent agreement with the simulation.

TABLE 1 In vitro motility of kinesin-1 and kinesin-2 on Taxol-

and GMPCPP-stabilized microtubules

Sample hxiobs Npoints L0
a Npoints x0

b

Kin-1 Taxol 1.31 5 0.20 253 4.44 5 0.83 178 1.57 5 0.42

Kin-1 Taxol

sheared

0.93 5 0.11 348 2.03 5 0.29 291 1.28 5 0.30

Kin-1 GMPCPP 0.91 5 0.11 301 2.48 5 0.56 117 1.15 5 0.28

Kin-2 Taxol 0.93 5 0.14 275 4.48 5 0.63 265 1.04 5 0.26

Kin-2 GMPCPP 0.66 5 0.08 567 2.13 5 0.25 355 0.81 5 0.16

All measurements are determined by Gaussian fits to their respective

bootstrapped distributions and the values presented are the bootstrap

center 5 the 99% confidence intervals. The units of length are expressed

in micrometers.
aMicrotubule characteristic length (L0) was determined by a fit to a Schulz

distribution (Eq. 9) using cumulative frequency analysis (see Fig. S1).
bDetermined via a Gaussian fit to the results of the x0 computation

algorithm.
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cutoff is set by the characteristic track length. More specif-
ically, the characteristic run length measured in an experi-
ment (hxiobs) is not, as often assumed, a direct
measurement of the properties of the motor population alone
(i.e., the characteristic run length of motors on infinite
tracks). Instead, it depends on the underlying distribution
of track lengths as well, as shorter tracks in the distribution
can only support shorter motility events, thus biasing the
overall motility distribution. Comparisons between experi-
ments, therefore, can only be undertaken when the observa-
tions have been adjusted for microtubule filtration effects by
measurement of the microtubule-length distribution and
determination of x0 ¼ hxiN via the theory presented above.

Whereas theory and experiment demonstrate that in vitro
polymerized microtubules follow a Schulz distribution upon
stabilization, other, more complicated distributions may
apply in the face of shearing and annealing (31) or through
variations in the microtubule polymerization protocol.
In vivo, one can expect microtubule lengths to be substan-
tially more complicated. Unlike in vitro microtubules, those
found in vivo may only grow from one end of a nucleating
seed, resulting in exponentially distributed lengths (31,32).
Further confounding the situation are the cell’s intrinsic reg-
ulatory factors for controlling microtubule length, such as
the microtubule severing enzymes katanin, spastin, and fidg-
etin (33), which would further alter the microtubule length
distribution.

Regardless of the physical and experimental mechanisms
defining the microtubule distribution, to adjust our motility
for track filtration we need only characterize the observed
track distribution with a reasonable fit to a probability distri-
bution. Upon determination of an acceptable distribution,
filtered motility may be corrected by applying the ascer-
tained microtubule distribution function to Eq. 8, which
provides, in our testing, easily integrable solutions for expo-
nential, Schulz, and mixed Schulz distributions, followed by
substitution into Eq. 6 (see Table S1). Simulations utilizing
populations composed of single Schulz distributions (as in
Fig. 5), exponential distributions, or a linear combination
of two Schulz distributions, all resulted in excellent agree-
ment with the theoretical behavior.

As further proof of principle, we performed in vitro
motility experiments on eGFP-tagged kinesin-1 (Kin-1)
and kinesin-2 (Kin-2) constructs on microtubules grown in
the presence of either GMPCPP, a slowly hydrolyzed GTP
analog, or GTP followed by Taxol stabilization. In our
experience, GMPCPP microtubule populations produce
microtubule distributions with characteristic track lengths
approximately twofold shorter than Taxol-stabilized micro-
tubules, providing a good test bed for differences in track
sizes. Motility was collected and analyzed for characteristic
run length, including events that appeared to reach the end
of the microtubule track (hxiobs, Table 1). Exclusion of
events that appeared truncated by the track terminus from
the analysis resulted in measured characteristic run
lengths that showed no statistically significant difference
(p-value R 0.01, via permutation resampling) from the
same dataset that included truncated events, as expected
from our simulations. The motility data were then bootstrap-
ped and fit to a Gaussian distribution to define an hxiobs
probability distribution as well as compute mean value
and the 99% confidence intervals. Our measurements of
hxiobs for kinesin-1 and kinesin-2 on Taxol-stabilized micro-
tubules are qualitatively consistent with previously pub-
lished results using these constructs, with kinesin-1 being
more processive than kinesin-2 (p-value ¼ 1 � 10�4,
Fig. 6 B, Table 1) (2). hxiobs for kinesin-1 on GMPCPP
microtubules was also consistent with previous results,
being less processive than on Taxol-stabilized microtubules
(p-value ¼ 2 � 10�6) (5).

Track lengths were then measured and fit to a Schulz dis-
tribution (Figs. 6 A, and Eq. 9; and see Fig. S1 in the
Supporting Material) to determine the characteristic track
length (L0). Whereas the measurements of track length in
these experiments define an absolute measurement—the
sampling distribution is the population distribution because
Biophysical Journal 104(12) 2651–2661



FIGURE 6 (A) A representative population of Taxol-stabilized microtu-

bules fit to a Schulz length distribution (L0 ¼ 4.59 mm). (B) Correction of

the experimentally derived motility (hxiobs, y axis) for track filtration effects
to determine the actual characteristic run length (x0, x axis) via utilization of

Eq. 10 (lines) for Kin-1 on microtubules stabilized by Taxol and GMPCPP

(green and black) and Kin-2 on similarly prepared tracks (blue and red).

Data is represented by the mean value (points) and the 99% confidence

intervals (error bars) of the computed run length bootstrap distributions.

Values creating the x0 distribution were determined by sampling all possible

values of the hxiobs bootstrap distribution as well as the microtubule-length

(L0) bootstrap distribution. Although only the mean value of the microtu-

bule-length distribution is shown, the range of response curves for each

condition is visualized in Fig. S2.
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all microtubules are observed—we also bootstrapped the
microtubule measurements to account for inadequacies of
the fit to describe the actual microtubule distribution sup-
porting motility (see Fig. S2). The probability distribution
for the characteristic run length in the absence of track filtra-
tion, x0, was determined via the following algorithm:

x0 Computation algorithm

Step 1. Randomly select a value of hxiobs from the
motility bootstrap distribution.

Step 2. Randomly select a value of L0 from the track
bootstrap distribution.

Step 3. Compute x0 via Eq. 10.
Step 4. Generate a dataset of equal size to the experi-

mental dataset using x0 as the population charac-
teristic run length and analyze the dataset for
characteristic run length.

Step 5. Bin the measured value and repeat Steps 1–4 with
sufficient repetition (1000–10,000 times) to generate
the x0 probability distribution (see Fig. S3).
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Calculations of the x0 distribution for each respective
dataset were well fit by a Gaussian distribution, which
allowed for computation of the median x0 as well as the
99% confidence intervals. Whereas the distributions exhibit
signs of right skewness (whose population median was well
aligned with the Gaussian center), we chose the Gaussian-
derived parameters of center and confidence (as opposed
to the direct computation of quantiles) purely to maintain
symmetry for ease of presentation. Again, whereas the con-
fidence intervals for x0 are useful for visualization of the
overlap between measurements, quantification of statistical
significance must be achieved using a combination of the x0
Computation Algorithm and the Permutation Resampling
Algorithm, wherein Steps 1–4 of the x0 Computation Algo-
rithm are performed for each dataset, followed by computa-
tion of tobs and p-value via the Permutation Resampling
Algorithm. Iterated sufficiently (~1000 times), a maximum
likelihood plot for tobs and p-value may be generated (see
Fig. S4 and Fig. S5).

Comparison of the simulated values of x0 for kinesin-1 on
Taxol and GMPCPP reveals a statistically significant differ-
ence between experiments (median p-value ¼ 0.001, see
Fig. S4), indicating a change in the fundamental processiv-
ity of the motor on GMPCPP microtubules and not merely
an effect of the shorter tracks producing the observed differ-
ences in hxiobs between samples. Kinesin-2 also showed a
similar sensitivity to GMPCPP microtubules (median
p-value ¼ 0.001, see Fig. S5). To further verify kinesin-
1’s change in processivity on GMPCPP tracks, we per-
formed measurements on Taxol microtubules that had
been sheared to produce shorter tracks, which we hypothe-
sized would not alter the fundamental processivity (x0) of
the motor. Shearing of microtubules by 20 passages through
a 25G needle resulted in a population of tracks that was
again well fit by a Schulz distribution (L0 ¼ 2.03 mm).
Observed motility was shorter, consistent with the effect
of track filtration, yielding an hxiobs that is substantially
different from that measured on the longer Taxol microtu-
bules (p-value ¼ 3 � 10�6). Computation of x0, though,
reveals a characteristic run length that is statistically indis-
tinguishable (median p-value ¼ 0.03) from the measure-
ment made on longer microtubules, despite the motility
occurring on a microtubule population as short as that sup-
porting the GMPCPP dataset (Fig. 7 A, and see Fig. S3 and
Fig. S4). This observation is consistent with the hypothesis
that kinesin-1 on Taxol-stabilized microtubules has the same
fundamental characteristic run length regardless of the
length distribution of the underlying microtubules. It also
reveals that, without correcting motility for track filtration
effects, erroneous significance would be ascribed to the
following types of measurements: hxiobs for kinesin-1 on
GMPCPP and hxiobs on sheared Taxol-stabilized microtu-
bules show a statistically significant difference with respect
to motility on the longer Taxol microtubules via their per-
mutation resampling; however, only the GMPCPP data



FIGURE 7 (A) Correction of the experimentally derived motility (hxiobs,
y axis) for track filtration effects to determine the actual characteristic run

length (x0, x axis) via utilization of Eq. 10 (lines) for Kin-1 on microtubules

stabilized by Taxol (green), GMPCPP (black), and sheared Taxol microtu-

bules (orange). (B) Quantification of the statistical significance of Kin-1

motility on GMPCPP and sheared Taxol microtubules with respect to the

Kin-1 motility measured on Taxol microtubules for the experimental

(hxiobs, light gray) and corrected (x0, dark gray) values for characteristic

run length. Error bars signify the 99% confidence intervals. The presence

of an asterisk signifies a statistically significant difference with *, **, and

*** corresponding to p-values of 2 � 10�6, 3 � 10�6, and 0.001 (median),

respectively, as computed by permutation resampling for hxiobs compari-

sons and the generation of maximum likelihood plots for x0 comparisons

(see Fig. S4). The comparison of the corrected sheared Taxol motility

with the corrected motility on long Taxol microtubules results in a median

p-value ¼ 0.03, which we consider to be a nonsignificant difference.
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has distinguishable processivity from that on Taxol-stabi-
lized microtubules upon quantification of x0, when taking
the underlying distribution of microtubule lengths into ac-
count (Fig. 7 B).

It is instructive to note that in the absence of our control of
kinesin-1 motility on long, Taxol-stabilized microtubules,
we would have made the incorrect conclusion that kine-
sin-1 has equivalent corrected processivity (x0) on both
GMPCPP and short Taxol-stabilized microtubules (median
p-value ¼ 0.18, Fig. 7 B, and see Fig. S4). Although the
theory is nondegenerate—a given measurement of hxiobs
on a particular track distribution will yield a unique com-
putation of x0 for a noninfinite x0—there are practical
limitations to the applicability of the method (and the sin-
gle-molecule motility assay) as dictated by not only our
experimental resolving power but also our statistical resolu-
tion. This problem highlights the need for quantitative
methods for the assessment of required data to make mean-
ingful comparisons between motility datasets that, as dis-
cussed below, can be particularly limiting in the regime of
short characteristic track lengths and long characteristic
run lengths. The methods developed in this work, particu-
larly Eq. 5, provide a framework to do so objectively.

As can be seen in Fig. 5, once values of x0 are approxi-
mately half the characteristic track length, values of hxiobs
begin to converge, amplifying errors due to undersampling
in the computation of x0. In addition, as demonstrated in
Fig. 2, for the same amount of data, uncertainty in run length
measurement increases with increasing run length, thus
increasing our uncertainty upon correcting for track
effects. Together, these two behaviors result in a dramatic
increase of the required data to demonstrate a statistically
significant difference. Indeed, utilization of our rule-of-
thumb estimate for the determination of required data
(Eq. 5) reveals that we would need, at minimum, five times
the data we are presenting to resolve a difference between
the value for corrected kinesin-1 motility on sheared Taxol
microtubules from the corrected motility for kinesin-1 on
GMPCPP microtubules. As generating datasets of such
size is not always experimentally practical, one should
endeavor to make comparisons between motility datasets
with the underlying track distributions as long as possible
to make comparisons with reasonably sized datasets within
reach. Also, where available, previous measurements of
processivity should be used to guide experimental design
choices when looking for functional effects based on
changes in processivity. Though this behavior may limit
the ability to make new conclusions based on corrected
data, motility collected on distributions of tracks will always
result in a foreshortening of the measured characteristic run
length. To quantify differences between experiments in a
meaningful and objective way, the techniques developed
here must be applied to offset the effects of track-mediated
biased sampling.

In in vitro experiments, where simultaneous observation
of motor and track is typically trivial, care must be made
to analyze the data in a statistically nonbiased fashion
such that the data for motility and track length are collected
independently. For example, correction of motility analyzed
on only a single, long track should not be modified by the
entire measured track distribution. In this extreme case,
the effect can be easily determined by solving only the inner
integral of Eq. 8—as T(L) can be represented by the Dirac
delta function centered on L—with the appropriate input
of microtubule length. Measurement of motility on a single
microtubule of 20 mm, for example, will result in hxiobs be-
ing within 95% accurate when x0 is 1 mm.

In the development of this methodology, our system of
interest was the axon, whose microtubule lengths are quan-
tifiable and exist in predominantly linear arrays (20). A
quantitative application of this framework to other cell types
is more limited in necessity and scope due to additional
levels of cellular complexity. COS7 cells, for example,
Biophysical Journal 104(12) 2651–2661



2660 Thompson et al.
show a complex meshwork of long microtubules—origi-
nating at the nucleus and extending to the cell periphery—
with many points of potential intersection (9,34,35).
Whereas our model implies motility on microtubules of
such length would result in insignificant filtration of
motility, examination of in vitro microtubule intersections
has found that single molecules of kinesin may either ignore
these junctions or be forced to dissociate (36). Motor type
also plays a role in the importance of motility truncation.
Kinesin-1 isoforms, for example, have been reported to pref-
erentially bind and walk on stable, and thus predominantly
longer microtubules (9,35). Kinesin-2 (KIF17), on the other
hand, walks on both stable and dynamic microtubules and is
therefore subject to more events reaching a microtubule ter-
minus (9). Provided that the dynamic microtubules are not
subject to external factors guiding their overall distribution,
the methods we have demonstrated here are applicable.

One final consideration toward the applicability of this
analysis technique in the collection and comparison of
in vitro and in vivo motility is the presence and rate of pho-
tobleaching. Whereas the exact effects of photobleaching on
observed motility are beyond the scope of this article, its
presence will result in an apparent shortening of motility
at higher rates of bleaching. To mitigate these effects, exper-
iments in both in vitro and in vivo experimental regimes
should be performed with equivalent rates of photobleach-
ing and use constructs that are less susceptible to complete
photobleaching (17).
SUMMARY

The characterization of motor protein properties in cells
using the single-molecule motility assay faces several prac-
tical hurdles including limited ability to simultaneously
resolve tracks and motors, increased complexity due to the
protein dense cytoplasm, and reduced signal/noise due to
observation limitations such as cell morphology, protein
expression levels, and balancing fluorescence intensity
with photobleaching (17). These limitations are particularly
accentuated in the case of axonal transport, where observa-
tion of individual microtubule tracks is limited to the use of
fixatives, electron microscopy, superresolution fluorescence
techniques, or the use of model systems for axonal transport
such as the extruded axoplasm of the squid loligo pealei
(18). As a result, a careful understanding of the statistical
limits of the measurement, as well as techniques for under-
standing the strength of the data when statistics are low or
are affected by the lack of ability to simultaneously observe
tracks and motors, is needed.

Utilizing simulation afforded by the existence of a theo-
retical and experimental basis of single-molecule motility
behavior and readily available computing power, we have
modeled motility in conditions likely to be experienced
while performing motility experiments in the cell. By under-
standing the inherent fluctuations of a statistical sampling,
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we have developed criteria for representing measurement
uncertainty by bootstrapping the acquired datasets to
compute confidence intervals. Even in the cases of under-
sampling, we have demonstrated a Monte Carlo permutation
resampling technique to measure the significance between
datasets that avoids the need for assumptions inherent in
other statistical tests and is therefore highly robust. Addi-
tionally, the permutation resampling technique allows for
prediction of the amount of data required to demonstrate
significance between the predicted observations. Finally,
we observe that motility measured on populations of tracks
is directly coupled to the track-length distribution, leaving
uncorrected comparisons between datasets collected under
different conditions in question. To adjust for this fact, we
have simulated and developed a theoretical framework
that, within the limits of statistical resolution, allows for
the determination and correction of the effect of track-length
distribution on observed motor processivity. With these
tools we can make quantitative comparisons between
different motility experiments performed in vitro, as well
as comparisons between the motility observed in vitro
with that collected in systems of increased complexity and
in vivo.
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