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Abstract

Neurodegenerative diseases are characterized by the progressive loss of neurons and glial cells in
the central nervous system correlated to their symptoms. Among these neurodegenerative diseases
are Alzheimer’s disease (AD) and amyotrophic lateral sclerosis (ALS). Neurodegeneration is
mostly restricted to specific neuronal populations: cholinergic neurons in AD and motoneurons in
ALS. The demonstration that the onset and progression of neurodegenerative diseases in models
of transgenic mice, in particular, is delayed or improved by the application of neurotrophic factors
and derived peptides from neurotrophic factors has emphasized their importance in
neurorestoration. A range of neurotrophic factors and growth peptide factors derived from
activity-dependent neurotrophic factor/activity-dependent neuroprotective protein has been
suggested to restore neuronal function, improve behavioral deficits and prolong the survival in
animal models. In this review article, we focus on the role of trophic peptides in the improvement
of AD and ALS. An understanding of the molecular pathways involved with trophic peptides in
these neurodegenerative diseases may shed light on potential therapies.
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INTRODUCTION

Neurodegenerative diseases are difficult to treat and are frequently incurable due to the
complicated nature of the underlying mechanisms of neuronal cell death. Neurodegenerative
diseases including Alzheimer’s disease (AD) and Amyotrophic lateral sclerosis (ALS) result
in a debilitating loss of memory and motor function, respectively. Although the mechanisms
of action in neurodegenerative diseases are unclear, the potential underlying mechanisms
can be divided into two categories. The first, unique to each neurodegenerative disease, is a
trigger that initiates activation of cell death machinery. The second, which is thought to be
universal among neurodegenerative diseases, is a directorial process to complete death of
neurons [For review, see ref. [1]].
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ALS is suggested to be related to a loss of motor neurons, progressively impairing the
voluntary motor neuron system and resulting in motor paralysis. This is suggested to be
caused by mutation of the superoxide dismutase-1 (SOD1) gene, causing motoneuronal
death [2]. Alternatively, neuronal loss in AD results in memory deficit. A widely accepted
theory for the mechanism of AD is that A is the primary factor for its neurotoxic effect [3—
7].

Although there are currently no effective drugs for the treatment of neurodegenerative
diseases, potential therapeutic targets for symptomatic treatments of neurodegenerative
diseases may include neuroprotective factors, encompassing neurotrophins and
neuroprotective peptides [8-10]. A deficit in the presence of endogenous neurotrophic
factors may play a key role in the attenuation of the progression of neurodegenerative
diseases [For review, see ref. [11]]. The types of neuroprotection demonstrated by
neurotrophic factors include the prevention of oxidative stress that induces apoptosis,
promotion of cell survival, and possible cell growth. Neurotrophic factors may improve
cellular function and increase neuronal metabolism, which can even lead to restoration of
synaptic connections by growth of new axons. Neurotrophic factors are categorized by their
activity in preventing neuronal cell death [For review, see ref. [11]].

We focus in this review on NAP (NAPVSIPQ) peptide derived from activity
neuroprotective protein and ADNF-9 peptide derived from activity-dependent neurotrophic
factor (ADNF). Both NAP and ADNF-9 display activity in the femtomolar range, enhancing
cell survival and outgrowth of dendrites in the form of D-acid analogues such as D-NAP and
D-ADNF-9 [12, 13]. ADNF-9 and NAP peptides share functional and structural similarities,
originally intended for use against B-amyloid peptides for reduction of toxicity and
increased protection of neurons [14]. A novel hybrid peptide called colivelin was
synthesized by the addition of ADNF-9 to the N-terminus of a humanin derivative. Colivelin
has potential neuroprotecrive effect in some neurodegenerative diseases such as AD [15].
We discuss in this review article the two most prevalent neurodegenerative diseases: ALS
and AD, including the mechanisms, current treatments, and implications of trophic peptides
in treating neurodegenerative diseases.

OVERVIEW OF NEURODEGENERATIVE DISEASES: ALS AND AD

Alzheimer’s disease

The most common neurodegenerative disease is AD, regularly known for its characteristic
devastating memory and cognitive deficits. Neuronal cell death in the cortical area of the
brain is believed to be related to the irreversible progression of dementia and cognitive
disorders. The exact mechanism of action leading to AD is unknown, but there is a widely
accepted theory regarding amyloid-p’s (Aps) as the primary factor for its neurotoxic effect
in AD pathology. /n vivo experiments have shown that cell death may result from extreme
concentrations of toxic Aps [15-20]. Studies in both mice and human AD patients
demonstrated that aggregation of the p-amyloid peptide has been found to form oligomers
along the microtubules of neuroprocesses in the AD brain [14]. There also have been studies
indicating that toxic Ap concentrations of 1-25 LM or higher are the cause of neuronal cell
death /n vitro, supporting the A cascade theory [2]. An in vitro study suggested that Ap-
related cell death is mediated by Ap receptors as well as severe potential death-mediating
receptors for toxic Ap [2].

Alternatively, amyloid precursor protein (APP) has been suggested to play a major role in
activation of a neuronal cell-death signaling cascade when TGFbeta2 binds as a natural
ligand for APP [21, 22]. Hashimoto and colleagues found TGFbeta2 to also be down-
regulated by administration of toxic Ap. Ap binds to the extracellular domain of APP in
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glial and neuronal cells, TGFbeta2 paracrinally and autonomically signaling the APP
mediated cells. B-amyloid accumulation has been suggested to occur prior to Tau
hyperphosphorylation, suggesting a possible cause and effect between accumulation and
hyperphosphorylation [14]. At the present time, the FDA has approved acetylcholinesterase
inhibitors and NMDA-type glutamate receptor antagonists for the treatment of moderate to
severe AD [For review, see ref. [23]]. Currently there are no FDA approved treatments for
behavioral and psychotic symptoms exclusive to AD, but many medications are used “off-
label”. Semagacestat, a -y-secretase inhibitor, is currently being studied under two Phase 11l
clinical trials for the treatment of AD [24]. Semagacestat is thought to lower levels of AB in
the brain by blocking cleavage of membrane-bound B-amyloid precursor proteins via y-
secretase, as seen in studies using transgenic mice [25, 26]. In addition, studies have been
conducted to investigate the role of AB, tau proteins, and insulin on the onset and
progression of AD [27-29]

Amyotrophic lateral sclerosis

Amyotrophic lateral sclerosis (ALS) is another neurodegenerative disease affecting the
motor neurons, brainstem, and spinal cord. ALS is more commonly known as Lou Gehrig’s
disease. Degeneration of motor neurons leads to characterized progressive loss of motor
control, eventually leading to muscular dystrophy, motor paralysis, and death due to
respiratory failure. Most cases of ALS are sporadic in occurrence, but about 10% of cases
are familial [30]. Both forms share similar characteristics, and onset occurs typically in
adulthood [31], although juvenile onset ALS has been reported as an autosomal recessive
mutation in ALS2.

The initial trigger for onset of this multifactorial disorder is still unknown. However, several
factors may lead to motor neuron degeneration, including mitochondrial dysfunction,
oxidative stress, protein aggregation, protein misfolding, neuro-inflammation, cytoskeleton
abnormalities, defective axonal transport, dysfunctional growth factor signaling, and
excitotoxicity [30-32]. Mitochondrial abnormalities occur early in ALS pathogenesis;
mutant SOD1 was found to be associated with mitochondria in the intermembrane space,
possibly triggering apoptosis [33]. SOD inclusion formation may recruit proapoptotic BAX
to mitochondria. A possible non-cell autonomous process characterized in ALS is
inflammation, which appears in microglial and astroglial cells, resulting in mitochondrial
damage and apoptosis [34—36]. Protein misfolding and aggregation mechanisms are still
unclear, but protein inclusions have been found in human ALS, including ubiquitinated
skein-like inclusion, bunina bodies, and hyaline inclusions rich in neurofilament proteins
[37]. Alternatively, patients with mutant SOD1 have shown decreased levels of excitatory
amino acid transporters (EAATZ2), causing a decreased removal of glutamate from the
synapse as well as increased glutamate in the cerebrospinal fluid [38, 39].

Based on studies performed in transgenic mice, mutations on the SOD1 gene lead to the
familial form of ALS [2, 15]. In SOD1 transgenic mice, evidence of dynein defects related
to dynein-mediated axonal transport processes have been reported to be the earliest
pathologies in ALS. Neurons are very sensitive to dynein dysfunction, as dynein is highly
expressed in neurons; this may suggest the vulnerability of the motor neurons (For review,
see ref.[30]). Mutations in the SOD1 gene are thought to lead to a toxic gain of function, as
opposed to a loss of function found in other neurodegenerative diseases [40]. Other studies
suggest that angiogenic activity plays a critical role in the development of ALS. Mutations
in ALS patients may be associated with functional loss of angiogenic activity and null
mutations in progranulin, an angiogenic protein [31].

Currently, riluzole is the only prescribed treatment for ALS, but it only provides moderate
survival in patients. Riluzole was initially investigated as an antiseizure drug and was later
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found to have neuroprotective properties [41]. Among other drugs, ceftriaxone a p-lactam
antibiotic known to upregulate glutamate transporter 1 (GLT1), or EAAT2, and
dexpramipexole are currently in Phase 111 clinical trials in ALS patients [42, 43].

ROLE OF NEUROTROPHIC DERIVED PEPTIDES IN ALS AND AD

NAP peptide derived from activity-dependent neuroprotective protein in ALS and AD

The parent protein, ADNP, is essential for brain development; it is found in the nuclei,
cytoplasm, and occasionally along cytoplasmic microtubules [44, 45]. /n vitro studies
showed that recombinant ADNP was found to protect neurons against severe oxidative
stress [46]. NAP mimics the neuroprotective activity of ADNP in its ability to cross the
blood-brain barrier, interact with tubulin, enhance assembly of microtubules, and promote
neuronal outgrowth [44, 47, 48]. The specific association of NAP with tubulin was detected
by fluorescent NAD distribution at the cellular level in cells that express neuron-specific
Bl1-tubulin as well as astrocyte tubulin, which does not express pllI-tubulin [14, 44, 49]. It
is demonstrated that NAP colocalizes with microtubules, which regulate Ca%* signaling in
neurons (Figure 1) [44, 50, 51+. NAP’s association with Ca2* mobilization may contribute
to neuronal survival. Changes in mitochondrial Ca2* homoestasis were found to be
correlated with life-death pathways of cells in microtubule formation [49]. Other studies
suggest that NAP is regulated by polyADP-ribosylation (Figure 1) [50] or that NAP
stimulates the MAPK/ERK and PI3-K/Akt pathways [52]. Pascual and colleagues found that
stimulation of MAPK/ERK and PI13-K/Akt leads to the phosphorylation of the transcription
factor cAMP response element-binding protein (CREB), which produces neuronal
outgrowth and differentiation (Figure 1). NAP protection and adaptation to enhance
cognitive function can possibly be attributed to protection against apoptosis as a result of
microtubule loss.

Studies regarding a mouse model for AD have shown deregulation of ADNP expression in
the hippocampus [53]. Tau mutants have decreased affinity to microtubules, leading to less
protection and aggregation of tau. NAP’s neurotrophic effect lies in the activation of Fyn
Kinase activated tyrosine phosphorylation and Crk-associated substrate (Cas) scaffold
protein (Figure 1) [14]. NAP treatment is also associated with chromatin remodeling and
neurite outgrowth due to enhanced poly-ADP ribosylation, connected with ADNP signaling
(Figure 1) [44, 48-50]. While protecting against neurotoxins, NAP does not affect cell
division [54]. In addition, studies have found that treatment with NAP in ADNP knockdown
mice resulted in enhanced cognition and improved associated deficiencies [48]. Positive
study results and clean toxicity reports have landed NAP in phase Il clinical trials with a
primary focus on AD-related cognitive impairment [14]. Studies are also being conducted to
evaluate the effects of NAP in ALS models associated with cytoskeletal dysfunction. NAP
extended life span in ALS mouse models when administered prior to disease onset,
protecting against tauopathy [55].

ADNF-9 peptide derived from activity-dependent neurotrophic factor in AD and ALS

ADNF is a glial neurotrophic protein factor and, along with ADNP, it is released in response
to vasoactive intestinal peptide (VIP) that protects neurons from tetrodoxin-induced cell
death by electrical blockade as well as related insults from AD and ALS. ADNF is
suggested to be essential for neuronal survival and embryonic growth regulated by VIP [56—
61]. ADNF-9 derived from ADNF, also known as SAL (SALLRSIPA), is the active core of
its parent compound and mimics its neuroprotective activity [56, 57]. In AD, ADNF-9 has
been found to protect against AR, apolipoprotein E deficiencies, and oxidative insults, as
well as enhancing synapse formation [56, 62—64]. It is noteworthy that ADNF-9 showed a
greater prevention of cell death associated with stress than did other ADNF derived peptides
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such as ADNF-14, which also protects against cell death [56] and provides neuroprotection
against AD-related toxicity [57, 65]. ADNF-9 protects against Ap peptide and oxidative
stress through regulation of mitochondrial function, reduction of accumulating reactive
oxygen species, and regulation of the Nf-kb transcription factor (Figure 2) [62, 66].
Moreover, ADNF-9 also promotes axonal elongation through cAMP-dependent mechanisms
and increases chaperonin expression of heat shock protein 60, which leads to
neuroprotection against A insult (Figure 2) [66—68]. /n vitro studies using both
hippocampal and cortical neurons demonstrated that ADNF-9 stimulates synapse formation
[69]. ADNF-9 was also shown to have an effect on memory and learning in association with
polyADP ribosylation catalyzed by poly(ADP-ribose)polymerase-1 (Figure 2) [50]. Other
possible mechanisms of neuroprotection include the Bcl2 mitochondrial intrinsic signaling
pathway, which regulates cell survival and apoptosis [70] and the extrinsic JNK signaling
pathway [71]. The all D-amino acid analogue of ADNF-9 was found to protect against A
tau hyperphosphorylation, in early events, /n vitro and in vivo, with regards to
neuroprotection and maintenance of neuronal organization [72]. ADNF-9 was tested in in
vitroand in vivo ALS models [58]. This study demonstrated that ADNF-9 suppressed
SOD-1-mediated cell death. The neuroprotective effect of ADNF-9 involves CaMKIV and
tyrosine kinase signaling pathways. Neuroprotection is thought to occur as a result of
CaMKIV and tyrosine kinase involvement when ADNF is administered
intracerebroventricularly. Although prolonged survival of the ALS mouse model was
marginal, it did provide insight into a possible treatment for ALS.

Colivelin, hydrbrid synthetic peptide of ANDF-9 and Humanin, in AD and ALS

Neuroprotective peptide colivelin was created by adding ADNF-9 to the N-terminus of the
humanin peptide [2, 73]. Humanin was identified as an endogenous neuroprotective peptide,
which is suggested to protect against AD-related toxicity and cytotoxicity as a result of
various stimuli [1, 74]. Moreover, studies have shown that humanin suppresses
neurotoxicity through extracellular cell surface receptors, which induce cytoprotective
signals [74, 75]. It is suggested that humanin interacts with the Bcl-2 family of proapoptotic
proteins, blocking their action in the cytosol (Figure 3) [74, 76, 77]. Although the
mechanisms of action of colivelin in neuroprotection are unclear, two independent
prosurvival signals have been suggested: a humanin mediated STAT3 pathway and ADNF-9
mediated Ca?*/calmodulin-dependent protein kinase IV pathway (Figure 3) [73]. It is
noteworthy that ADNF-9 is active in the femtomolar concentration range, but activity is lost
by about 10 nM, whereas humanin analogue AGA(C8R)HNG17 is active starting at 10 pM
[56-58, 73].

Colivelin is active in the femtomolar range and does not lose activity at higher
concentrations [73]. Humanin was found to provide neuroprotection against AD-related
insults such as A neurotoxicity [75]. The JAK2/STATS3 signaling pathway showed
importance in colivelin neuroprotection against AD-related memory loss [78-80]. An /n
vivo study found that colivelin has more potent neuroprotective effects than humanin and
ADNF-9 have when tested against Ap neurotoxicity [73].

Although, ADNF-9 was found to suppress the FSOD1 ALS-related gene [58], colivelin was
found to be more neuroprotective than ADNF-9 in this model. Colivelin neuroprotection
was associated with motor performance improvement but not increased lifespan in the ALS
mouse model of SOD1 [58]. Moreover, another study showed that colivelin improved motor
performance and increased lifespan when compared to FSOD1, in addition to suppressing
motoneuronal death [15].
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CONCLUSION

The roles of neurotrophic factors and peptides are coming into focus for the treatment of

ne
ne
of

urodegenerative diseases such as AD and ALS. We discussed the potential application of
urotrophic peptides derived from ADNF and ADNP on the attenuation of the progression
ALS and AD. It is noteworthy that NAP is in Phase 1l clinical trials for the treatment of

AD. ADNF-9 shows potential therapeutic effects in animal models of ALS. In addition, the
hybrid peptide, colivelin, has been shown to be effective in animal models of ALS. In

co

ntrast to neurotrophic factors, these trophic peptides have the ability to cross the blood-

brain barrier for efficacy. Ample evidence suggests that these trophic peptides have potential
for the treatment of ALS and AD.
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Diagram shows several pathways involving NAP neuroprotection. Among these pathways,
NAP can co-localize with microtubules to regulate neuronal Ca* homeostasis to increase
neuronal survival. The neuroprotective effect of NAP, mediated by increases in Fyn kinase,
activated tyrosine phosphorylation and the level of Crk-associated substrate scaffold protein.
Alternatively, increases in neuronal outgrowth and differentiation might be mediated
through CREB involving MAPK/ERK and P13-K/Akt pathways, which are activated by

increased polyADP ribosylation.
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Figure2.

Diagram shows several pathways involving ADNF-9 neuroprotection. Among these
pathways, ADNF-9 regulates mitochondrial function and NF-kB, increases neuronal
elongation, decreases HSP60, decreases JNK, and increases Bcl2. ADNF-9 ameliorates
learning and memory through polyADP ribosylation.
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Diagram shows pathways involved in colivelin neuroprotection. Colivelin neuroprotection is
mediated through Bcl2, cytochrome ¢ and caspase-3 pathways. In addition, colivelin
neuroprotection may involve STAT3, JNK and Bad pathways. It is suggested that ADNF-9
fragment of colivelin involves Ca2*/calmodulin dependent kinase.
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