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Abstract
Inhibition of the endocannabinoid receptor CB1 improves insulin sensitivity, lowers glycemia and
slows atherosclerosis. We analyzed if common variants in the gene encoding CB1, CNR1, are
associated with insulin resistance, risk of type 2 diabetes (T2D) or coronary heart disease (CHD).

We studied 2,411 participants of the Framingham Offspring Study (mean age 60 years, 52%
women) for quantitative traits and CHD, and the Framingham SHARe database for T2D risk. We
genotyped 19 single nucleotide polymorphisms (SNPs) that tagged 85% (at r2=0.8) of common
(>5%) CNR1 SNPs. Fasting blood glucose and insulin at the 7th (1999–2001) exam were
collected. We used age-, sex-, BMI-adjusted models to test additive associations of genotype with
HOMA-IR (linear mixed-effect models), T2D or CHD. To account for multiple tests of SNPs, we
generated empirical P values. The C allele at SNP rs806365 (frequency, 57.4%), ~4.1kb 3′ from
CNR1, was associated with increased HOMA-IR (n=2,261, beta=0.05 per C, empirical P=0.01),
risk of T2D (674 cases, OR=1.19 per C, nominal P=0.01) and CHD (237 cases, HR=1.23 per C,
nominal P=0.04). The association of rs806365 with HOMA-IR was replicated in a meta-analysis
of two independent cohorts (NHANES III plus Partners Case-Control Diabetes Study; 2,540 white
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individuals, beta=0.037, nominal P=0.007), but not in the large MAGIC Consortium (n=29,248,
nominal P=0.74). The association of rs806365 was not replicated either with T2D in DIAGRAM
(n=10,128, nominal P=0.31), or with CHD in PROCARDIS (n=13,614, nominal P=0.37).

Although supported by initial results, we found no reproducible statistical association of common
variation at CNR1 with insulin resistance, T2D or CHD.
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Introduction
Overweight, increased insulin resistance and subsequent progressive pancreatic beta cell
relative insufficiency are determining factors for the development of type 2 diabetes mellitus
(T2D) (1). Genetic background plays a role in the development of T2D (2), yet the
contribution of variation in common single nucleotide polymorphisms (SNPs) has so far
modestly explained the genetic basis of T2D (3,4) or improved risk prediction when added
to validated clinical scores (5,6). Additional genetic contributors to T2D remain to be found.

The endocannabinoid system modulates body weight and insulin sensitivity (7–10).
Endogenous cannabinoids (endocannabinoids) are lipid molecules that target the receptors
CB1 and CB2 (11). CB1 is widely expressed in the brain, as well as in the liver, adipose
tissue, gut, skeletal muscle and pancreas (12–14). In animal models, CB1 agonists lead to
increased food intake, whereas CB1 inhibition reduce food intake and promote weight loss,
thus reducing insulin resistance (15). Accordingly, therapy with rimonabant, a selective CB1
antagonist, is associated with significant weight loss, diminished waist circumference,
improved cardiovascular risk profile and lower fasting insulin levels (16) and in the
STRADIVARUS trial, with reduced coronary artery total atheroma volume by coronary
intravascular ultrasonography (17). In T2D patients, rimonabant improves glycemic control,
lowers insulin resistance and promotes weight loss (18–19).

We have previously tested the association of common genetic variation in or around CNR1,
the gene that encodes CB1, with adiposity-related quantitative traits, finding no significant
associations (20). Here, our main objective was to test the hypotheses that 1) common
variants in the CNR1 gene are associated with insulin resistance and glucose-related
quantitative traits in non-diabetic individuals and 2) insulin resistant-associated variants
confer an increased risk for T2D and CHD. We studied the community-based, prospective
Framingham Offspring Study, found one promising variant and sought replication of the
finding in additional independent datasets.

Methods and Procedures
Primary association study population

The original prospective Framingham Heart Study was started in 1948 to study predisposing
factors for cardiovascular disease. Participants are essentially all of white European
ancestry. In 1971, the Framingham Offspring Study enrolled 5,124 offspring of the original
cohort and the spouses of the offspring (21). Participants have been seen in the clinic about
every 4 years (up to 7 exams) to receive a complete medical history and physical exam,
including anthropometric measurement and blood sample collection. The data used for this
study pertain to exam 7 (1998–2001). Genotypes were available for 2,792 participants.
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For the analysis of quantitative continuous glycemic traits, we only included the 2,411 non-
diabetic participants of the Framingham Offspring Study (1,389 unrelated and 1,022 related,
that is, from 282 pedigrees with two or more members genotyped) for whom complete
clinical and genotype data were available (Figure 1). To look for the association with risk of
T2D as a binary trait, we conducted a case-cohort analysis using the FHS-SHARe database,
that comprises the ~7,900 individuals from the three Framingham Heart Study cohorts
(original, offspring and third generation) who have both genotype and follow-up data for
diabetes onset at each exam (674 T2D cases) (22). Finally, only data from the Framingham
Offspring Study were used to evaluate incidence of CHD (237 cases). All participants gave
written informed consent. The study protocols were approved by the Institutional Review
Board at the Boston University Medical Center.

Framingham outcome and control variables
Our main interest was to evaluate the association of genetic variation in or around CNR1 in
the Framingham Offspring Study at exam 7 with insulin resistance reflected by the
Homeostasis Model Assessment of Insulin Resistance (HOMA-IR=fasting insulin × fasting
glucose/22.5) (23), as well as test for the association among common variation at CNR1
with risk of T2D and CHD. As secondary outcomes, we also analyzed fasting blood glucose
levels, fasting insulin levels and glycated hemoglobin A1C at exam 7. We defined T2D as
having a fasting plasma glucose ≥126 mg/dl (7.0 mmol/l) at any exam or diabetes treatment
at any exam. To calculate body mass index (BMI) we divided weight in kilograms by height
in meters squared. Coronary heart disease (CHD) was defined as according to established
criteria (24).

Single-nucleotide polymorphism (SNP) selection
CNR1 is located on chromosome 6q15. We selected the 19 tagging SNPs in the region using
a pair-wise approach to capture (with an r2=0.8) 100% of common variation (minor allele
frequency (MAF) >5%) in the chromosomal region +20 kb 5′-upstream- and +10 kb 3′-
downstream- of CNR1, using the Tagger function as implemented in Haploview (25), based
on the Hap Map release 21a. We genotyped tag SNPs on an iPLEX Sequenom platform.
Genotyped SNPs passed quality-control filters (MAF >5%; P>0.001 for deviation from
Hardy-Weinberg equilibrium (HWE); minimal call rate: 94%, average call rate: 98%). The
observed genotype frequencies for one SNP (rs6928813) deviated from HWE (P<0.001) and
this SNP was not considered in our association analyses. After the present analysis was
almost complete, an updated assembly of the CNR1 region was found to include a novel
20.5 kb segment in the 5′ region (26,27). However, given our wide initial tagging approach
and the strong linkage disequilibrium in the region, the original 18 tag SNPs (after excluding
rs6928813) still allowed for 85% coverage of CNR1 +10 kb downstream with r2=0.8.

Replication study populations
We looked for replication of association of CNR1 SNPs with HOMA-IR and T2D by de
novo genotyping or in silico replication in several large independent cohorts. For
associations with HOMA-IR we evaluated genotype data of the participants of the National
Health and Nutrition Examination Survey III genetic cohort (NHANES-III) (28), as well as
genotype data from the participants in the Partners Case-Control Diabetes Study from the
Massachusetts General Hospital and the Brigham and Women’s Hospital (29). In NHANES-
III, 1,986 of the subjects were white, did not have T2D and had available information. In the
Partners Case-Control Diabetes Study, which had recruited 1,157 individuals, 630 subjects
were white non-diabetic controls. We then meta-analyzed the replication results in whites
(n=2,616, adding 1,986 from NHANES-III plus 630 from the Partners Study).
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We sought additional confirmation of significant associations with HOMA-IR in the Meta-
Analyses of Glucose and Insulin-related traits Consortium (MAGIC) data, in which the
Framingham Offspring Study, the NHANES-III and the Partners datasets are included (30).
For this study, MAGIC provided laboratory values information for up to 46,152 individuals.
Framingham contributed data for 6,040 subjects to MAGIC, whereas both NHANES-III and
Partners Study contributed to MAGIC with 1,219 and 635 subjects respectively.

We also searched for replication of the association with T2D risk in the Diabetes Genetics
Replication and Meta-analysis (DIAGRAM) database (n=10,128) (31). Lastly, we had
access to PROCARDIS (32), a large database designed to evaluate CHD, to look for
replication of the association with CHD (n=13,614, including control data from the
Wellcome Trust Case Control Consortium (WTCCC)).

Statistical methods
The values for HOMA-IR, fasting glucose, fasting insulin and HbA1C were logarithmically
transformed for the regression analysis. In order to account for familial relationships, we
used linear mixed-effect models as implemented in LMEKIN (version 1.1.0) in the R
statistical programming environment (version 2.9.2) (33). As the main hypotheses, we tested
the association of the SNPs around CNR1 with HOMA-IR. In predefined secondary
analyses, we evaluated associations with fasting glucose levels, fasting insulin levels and
HbA1C. For the meta-analysis of the NHANES and Partners datasets, we used METAL (34)
to summarize the effects from linear regression models adjusted for sex, age and BMI.

To correct for multiple testing for each phenotype in the FHS sample, we used a simulation
to determine the distribution of the minimum P value across all SNPs under the null
hypothesis of no association. We simulated 1,000 null traits for our sample using SIMQTL
in SOLAR with heritability set to 35% (35, 36). Each simulated trait was analyzed using
linear mixed-effect models, and the minimum P values over all SNPs were recorded. The
empirical P values correspond to the proportion of simulated minimum P values smaller or
equal to the observed P values in our data. We set an empirical P value <0.05 to denote
statistical significance. With our sample size of 2,516 individuals with genotyped DNA we
had a statistical power of 87.8% at a significance level of 5% to identify SNPs explaining at
least 0.5% of the variance of the quantitative traits, assuming an additive genetic model and
a pair-wise correlation between the tested SNPs and a causal variant of r2 ≥ 0.8.

To test for associations with T2D, we built logistic regression models, adjusted for sex, age
and BMI, to calculate odds ratios (ORs) in the SHARe case-cohort data. Using the same
covariate adjustments for CHD, we used Cox proportional-hazards models using frailty for
sibling correlation to estimate hazard ratios (HRs). The precise ascertainment in time for
CHD events allowed for its analysis using Cox method. Since we planned to test one
hypothesis (that the SNP associated with HOMA-IR was also associated with T2D or CHD),
for these ORs and HRs, a nominal P value ≤ 0.05 defined statistical significance.

Results
Association of genetic variants in CNR1 with HOMA-IR

Our sample was a middle-aged cohort (mean 60.8±9.6 years), with about half women (52%)
(Table 1). Online supplemental (OLS) Table S1 shows the characteristics and quality criteria
for the tagging SNPs in the CNR1 gene. OLS Figure S1 depicts the updated CNR1 locus
from 88,906,306 to 88,932,486 in chromosome 6q15 and its linkage disequilibrium structure
in the CEU Hap Map population. The C allele of SNP rs806365 (frequency, 57.4%) (37),
~4.1 kb 3′ from CNR1, showed a significant association with increased HOMA-IR relative
to T allele carriers in the BMI-adjusted model in the Framingham Offspring Study at exam 7

de Miguel-Yanes et al. Page 4

Obesity (Silver Spring). Author manuscript; available in PMC 2013 June 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(n=2,261; beta=0.052 per C, empirical P=0.01; Figure 2 and Table 2). When waist
circumference was substituted for BMI, results were unchanged. SNP rs806365 was not
significantly associated with HOMA-IR in the non-BMI-adjusted model (empirical P=0.19),
nor did it show any significant associations with fasting glucose levels or HbA1C (OLS
Table S2). No other SNP was found to be significantly associated with HOMA-IR, fasting
insulin, fasting glucose or HbA1C levels at an empirical P value <0.05 in the Framingham
Offspring Study at exam 7. We observed that nominal significant or borderline associations
between some of the SNPs and HOMA-IR in the tagging SNP analysis were clustered
within a genomic segment whose boundaries were defined by rs806371 and rs10485171, 5′
to 3′ (Table 2). In order to fine map this signal, we built common (frequency >5%)
haplotypes using five SNPs included in this genomic segment that showed nominally
significant associations with HOMA-IR. Indeed, common haplotypes in this region of CNR1
have been previously associated with lipid traits (38). We found that the common haplotypes
having the C allele for SNP rs806365 showed the strongest positive associations with
HOMA-IR in our Framingham Offspring population, largely recapitulating our SNP
analysis.

Association of genetic variants in CNR1 with the risk of T2D
We tested for the association between SNP rs806365 with risk of T2D in the FHS-SHARe
database. We detected a significant association for rs806365 with risk of T2D in the sex-,
age-adjusted model (OR=1.15 [1.01–1.30] per C, nominal P=0.03) and also after further
BMI-adjustment (OR=1.19 [1.04–1.35] per C, nominal P=0.01).

Association of genetic variants in CNR1 with coronary heart disease
In the sex-, age-adjusted proportional hazards model, the C allele of CNR1 rs806365
significantly conferred a higher risk of CHD in the Framingham Offspring Study (n=237
cases, HR=1.26 [1.02–1.55], nominal P=0.03). After further BMI-adjustment, the
association remained significant (HR=1.23 [1.00–1.51], nominal P=0.04).

Tests of replication of associations with rs806365 in other cohorts
With these promising results for rs806365, we sought replication in other cohorts. In the
meta-analysis of the NHANES-III and Partners data combined, SNP rs806365 was
significantly associated with both HOMA-IR (n=2,540; beta=0.037, nominal P=0.007) and
fasting insulin (n=2,553; beta=0.036, nominal P=0.004) in sex-, age-, BMI-adjusted models,
supporting our initial finding in FHS (Table 3). We also evaluated rs806366 and rs806369
for HOMA-IR in these combined cohorts, since their empirical P values neared statistical
significance in the FHS cohort. Nonetheless, the NHANES and Partners meta-analysis did
not show significant associations for these SNPs (for HOMA-IR, nominal P values=0.5 and
0.27, respectively) (Table 3).

As results from both FHS and the NHANES-Partners meta-analysis consistently supported
significant associations for SNP rs806365 with HOMA-IR, we searched for additional
confirmation of the association between SNP rs806365 with HOMA-IR in the MAGIC
dataset. We did not find a significant association of rs806365 with HOMA-IR (n=29,248;
nominal P=0.74) or with fasting glucose levels (n=34,558; nominal P=0.07) in MAGIC in a
sex-, age-, BMI-adjusted model (Table 3). Unfortunately, the phasing of haplotypes is not
available in all data sets, which did not allow us to seek replication of the haplotype analyses
results in our replication cohorts.

With regard to risk of T2D, the DIAGRAM database disclosed no statistically significant
association with rs806365 (n=10,128, OR=1.0, nominal P=0.31), but these aggregate results
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were not BMI-adjusted (Table 3). P values for heterogeneity in MAGIC and DIAGRAM
were 0.51 and 0.13, respectively.

Finally, the association of rs806365 with CHD in Framingham was not replicated in
PROCARDIS (n=13,614; beta=0.025, nominal P=0.37).

Discussion
As a main finding, our study highlights the preliminary significant association of the SNP
rs806365 near CNR1 with HOMA-IR, T2D and CHD in the Framingham Offspring Study.
For these phenotypes we consistently found that the C allele, associated with higher levels of
HOMA-IR, was also associated with increased risk for T2D. However, we acknowledge that
rs806365 may not be the true functional variant that explains the significant association with
the traits. For a complex trait like glucose homeostasis, the causative allele may actually be
composed of a combination of common and rare variants (39).

The fact that the association between rs806365 with HOMA-IR was only significant after
BMI-adjustment in Framingham would suggest that factors other than obesity may be
playing a role to explain this association in our population. The associations with T2D and
CHD in age, sex adjusted models remained significant before and after adjusting for BMI.

We replicated the association of rs806365 with HOMA-IR in a meta-analysis comprising the
independent NHANES III and Partners cohorts, reinforcing the notion of its possible
association with insulin resistance (40). Nonetheless, our efforts to confirm the results in the
larger databases from the MAGIC, DIAGRAM and PROCARDIS consortia failed to
disclose a significant association among CNR1 tagging SNPs with insulin resistance traits,
risk of diabetes or CHD.

We performed this candidate-gene study of the CB1 cannabinoid receptor CNR1 gene to test
the hypothesis of its association with insulin resistance-related traits. Previously described
physiological facts supported the working hypothesis: firstly, mice null for the cannabinoid
receptors have a lean phenotype even when they are fed with a high fat diet (41). Secondly,
the cannabinoid receptors modulate glucose-induced calcium transient concentrations and
insulin secretion by beta cells (8, 13). Thirdly, genetic variation may be associated with
lower expression levels of CB1 in adipose tissues (42). This receptor regulation has been
described within adipose tissues for SNP rs12720071 in CNR1, which is located ≈5.2 kb
upstream from rs806365, yet in low linkage disequilibrium with it (r2=0.12). In spite of the
reported CB1 regulator activity, we found no significant associations for rs12720071 with
any trait in our cohort. And fourthly, accumulated evidence indicates that inhibition of CB1
activity with rimonabant is associated with a better glycemic control and diminished insulin
resistance in treated patients (19).

Notwithstanding this background supporting the association of levels of function between
CNR1 and both insulin secretion and resistance, there are few previous studies exploring the
plausible association among common genetic variation in CNR1 and risk of diabetes or
insulin resistance (38). Studies testing the association among genetic variants of the
endocannabinoid gene and obesity have also shown conflicting results, since some groups
(43,44) did not replicate results that had been reported earlier (45–48). The absence of an
association with obesity in an earlier report by our group (20) did not preclude us from
testing it for its association with T2D risk and insulin resistance, as a mutation in a gene
might theoretically increase insulin resistance without having a discernible impact on
obesity.
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It is not clear why the positive replication results in the independent NHANES III and
Partners databases were not reproduced in the larger MAGIC, DIAGRAM and
PROCARDIS studies. The possibility of a falsely positive result in our cohort cannot be
completely ruled out. Inclusion criteria in the different cohorts may vary. Genome-wide data
are available in Framingham and there is no evidence of inflation of the type-I error for the
traits analyzed due to population stratification (49). The NHANES III and Partners cohorts
included population samples which were fairly similar to Framingham in terms of sample
size and ancestry. Neither the publicly-available DIAGRAM nor PROCARDIS provided
BMI-adjusted data. Although it might be argued that heterogeneity in larger databases can
hamper the detection of true associations present in more homogeneous samples, the P
values for heterogeneity for both DIAGRAM and MAGIC databases are not statistically
significant. Thus, the negative evidence provided by the large consortia datasets does not
allow to definitely prove or rule out a significant association among common genetic
variation in or around CNR1 and insulin resistance or risk of T2D.

The large, unbiased community-based design, the standardized assessment of clinical
covariates, the spectrum of insulin resistance and glucose-related traits and the
comprehensive coverage of common genetic variation in and around the CNR1 gene
initially gave robustness to our results. However, some limitations must be taken into
account: our database is mainly comprised of white subjects of European ancestry, so that an
attempt to extrapolate the results to other ethnicities must be done with caution. We focused
on common genetic variants, and the coverage of the CNR1 region was not complete (85%);
thus, we cannot definitely rule out that rarer genetic variants (minor allele frequency <5%)
or additional tagging SNPs around this gene might be associated with insulin resistance-
related traits. Finally, variants with very modest effects on the variance of the traits could
have been missed, since we only had adequate power to detect genetic variants that
explained >0.5% of the variance in the traits.

Conclusions
Although supported by initial results and biologically plausible, we did not find a
reproducible statistical association of common variation at CNR1 with insulin resistance or
T2D. Despite the lack of replication, a small significant effect for rs806365 on insulin
resistance cannot be completely ruled out. The results remain consistent with the hypothesis,
supported by other data, that genetic variation in the endocannabinoid system may have a
modest effect on insulin resistance and related phenotypes.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Flow-chart showing which databases have been used as primary association study
populations or as replication cohorts for each trait. Framingham SHARe database includes
the Framingham Heart Study original cohort, the Framingham Offspring Study and the
Third Generation cohort. Framingham Heart Study, NHANES III and Partners databases
contribute to MAGIC. SNP: single nucleotide polymorphism. CHD: Coronary heart disease.
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Figure 2.
Association among the CNR1 SNPs with HOMA-IR. The observed negative logarithm base
10 of the empirical P values for the association of CNR1 SNPs with HOMA-IR, without
(white circles) and with BMI-adjustment (black circles) are plotted against genomic
location. The recombination rate across the locus is shown by the thin grey line. The upper
transverse dashed line represents an empirical P value = 0.05.
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