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Abstract

Bacillus thuringiensis (B1) produce inclusions that are composed of proteins known as crystal
proteins or Cry toxins. Due to their high specificity and their safety to humans and the
environment these Cry toxins are considered valuable alternatives to chemical pesticides in insect
control programs. It is believed that Cry toxin-induced membrane pore formation is responsible
for insect toxicity. The molecular mechanism of pore formation involves recognition and
subsequent binding of the toxin to membrane receptors. This binding is accompanied by toxin
oligomerization and transfer of domain | helices of the toxin to the lipid-water interface. This
toxin insertion creates pores that lyse the cells. Several receptors from lepidopteran, coleopteran,
and dipteran insects have been well characterized. Here we provide an overview of our
understanding of the interactions between Cry toxin and multiple receptors in mosquitoes, in
particular Aedes aegypti. We review the manner by which the receptors were identified and
characterized, with afocus on three proteins — cadherin, alkaline phosphatase and aminopeptidase-
N.
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1. Cry toxin receptors

Bacillus thuringiensis (Bt) is a spore-forming pathogenic bacterium that distinguishes from
other members of the Baci//usgroup because it produces crystalline inclusions known as
Cry 6-endotoxins. The insecticidal properties of B. thuringiensishave been exploited
worldwide for the control of insect vectors of human diseases and insect pestsin agriculture.
Due to the high selectivity and effectiveness of these toxins, their use surged dramatically
following the introduction of cry genesinto plants known as Bt crops (1, 2). Consequently it
isimportant to elucidate theirs mode of action to ensure these toxins do not cause deleterious
effects on human health and the environment (1, 3). Since Ae aegyptiisaprincipa

mosquito vector of several diseases, including dengue and yellow fevers, thisreview deals
primarily with the mode of action of Cry toxinsin this mosqguito species.
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Upon ingestion by a susceptible mosquito larva, the alkaline midgut environment promotes
solubilization of crystalline inclusions releasing the protoxins. Subsequent cleavage by gut
proteases results in formation of active toxins. The activated toxin fragments then bind to
specific protein receptors on midgut epithelial cells, leading to membrane insertion and pore
formation. These pores allow ions and water to pass though the cells, resulting in swelling,
lysis, and death of the insect (4-8). In the case of lepidopteran insects, sequential binding of
Cry1A toxins has been reported. The binding mechanism may initially involve
aminopeptidase-N (APN) and alkaline phosphatase (AL P) receptors followed by binding to
a cadherin protein. Interaction with the cadherin protein triggers cleavage of helix a1,
leading to the formation of oligomeric toxins (9). These oligomers then bind
glycosylphosphatidylinositol (GPI)-anchored proteinsin lipid rafts, including APN and
ALP, resulting in the insertion of oligomeric toxinsinto the cell membrane (10, 11). An
alternative model has been proposed that Cry1Ab toxins kill cells by a cascade of signal
transduction events (12). In this model, Cry1Ab first binds the cadherin receptor. This
interaction then stimulates a G protein and an adenylyl cyclase leading to an increasein
cyclic AMP and protein kinase A levels, which consequentially leads to cellular alterations
resulting in cell death. However, the preponderance of evidence supports the pore forming
model of toxicity.

In any case, specific receptors are necessary for Cry toxin action. Four different protein
receptors have been identified in lepidopteran insects — cadherin (13-15), APN (16, 17),
ALP (18), and a 270 kDa glycoconjugate (19). In addition, glycolipids have been implicated
(20). In mosguitoes, besides cadherin, APN, and ALP proteins, an a-amylase has been
identified as a novel receptor in Angpheles albimanus, one of the malarial disease vectors
(22).

Receptor expression levels have been shown to correlate with Cry toxin activity. For
example, in Manduca sexta, the three identified protein receptors are expressed in the
anterior, middle, and posterior regions of the midgut (22). These same regions also bind the
Cry1A toxins (23). However, while the cadherin receptor protein was observed in all three
regions, both the APN and AL P proteins were detected primarily in the posterior midgut.
ALPwasfound at higher levelsin the first and second larval instars, whereas APN was the
main GPl-anchored Cry1Ab binding protein in the fourth and fifth instars (10). It appears
that in early instars ALP plays a more important role in toxicity than APN proteins.
Potentially these differences in expression patterns could explain the decreased
susceptibility of late M. sextalarval instarsto Cry1Ab (10). In addition, it has been reported
that the presence of APN activity was not directly correlated with toxin binding (24).
Moreover, no clear relationship could be found between APN activity and the toxicity of
Cry proteins (25, 26), suggesting that the action of Cry toxinsis dependent on their presence
of protein receptors but not necessarily on their enzymatic activities (26).

However, interpretation of binding data may be obscured by irreversible associations of Cry
toxins with BBMV, aswell asits reversible associations (27-29). In fact, Cry toxin action is
relatively complex likely involving more than one mechanism or one receptor. The idea of
multiple receptor bindings may explain why toxin resistance has been linked to the
mutations detected in either one of the protein receptors — cadherins (30, 31) or GPI-
anchored protein such as APNs (32) and AL Ps (18, 33). Taken together, these results show
that cadherins, ALPs, and APNs are likely the potential receptors for Cry toxins. These
receptor proteins will be discussed in more detail with respect to Cry toxin action in Ae
aegypti larval mosquitoes.
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2. Potential receptors of Cry toxins in Aedes aegypti

2.1 Proteomic identification approaches

The larval mosguito midgut brush border has distinct structural elements, in which digestive
enzymes, ion channel proteins and various extracellular matrices are located. Identification
of the proteome of brush border membrane vesicles (BBMV) is a hecessary step in defining
potential Cry toxin receptors. Recently, a partial proteome of Ae aegypti midgut BBMV
was reported, in which atotal of 119 proteins were identified using two complementary
proteomic approaches (34). The most predominant proteins were arginine kinase, fatty acid
binding protein, actin, aldehyde dehydrogenase and protein disulfide isomerase (34).

M etall opeptidases with aminopeptidase activity and alkaline phosphatases, receptor
molecules that serve astargets for Cry toxins (6, 10, 35-38), were also identified.

In an alternative approach, proteins separated by two-dimensional electrophoresis gel were
probed with the Cry4Batoxin. In this case the toxin bound three ALP isoforms and an
aminopeptidase (39). Other Cry4Ba binding proteins included the lipid raft proteins, flotillin
and prohibitin, the V-ATPase B subunit and actin. Generally, a cadherin—catenin complex
forms a dynamic link with the actin filament network that is involved in the maintenance of
cytoskel eton architecture in eukaryotic organisms (40). Potentially insertion of the Cry
molecule into the membrane may expose regions of the toxin to the cytoplasm allowing
contact with actin, which could lead to disruption of cytoskeletal links and loss of host cell
shape and integrity (39, 41).

Identification of potential receptors through protein-protein interaction is another proteomics
approach commonly used (17, 18, 42-44). Fernandez et al. reported that BBMV proteins
purified from Cry11Aaligand chromatography generated two proteins of 65 and 62 kDa,
which bound the Cry11Aatoxin (36). In addition, the 62 kDa protein was a degraded
product of the 65 kDa protein and both proteins were characterized as GPl-anchored ALP
proteins (36). Recently, a pull-down assay using biotinylated Cry11Aatoxin as a bait
purified three protein bands with molecular weights of 140, 95 and 45 kDafrom Ae aegypti
larval midgut (45). With the exception of the 45 kDa actin, three of the proteins isolated
were identified as APN, two with a mass of 95 kDa. However, the pull-down assay used in
this study differed from that utilized by Fernandez et al, in which no APN proteins were
observed (36). In this case biotinylated Cry11Aatoxin was incubated directly with BBMV,
while Chen et a (45) incubated biotinylated Cry11Aawith a pool of proteins released from
BBMYV using phosphatidylinositol-specific phospholipase C (PI-PLC). Thus, differencesin
the methods used probably account for the separate identification of APN and ALP proteins
(45). However, it is particularly noteworthy that the cadherin-like mosguito protein was not
identified using the proteomic approaches utilized above (36, 39, 45-47). The high
molecular mass of cadherins (200 kDa or more) or its stability could potentially affect its
isolation using these approaches in mosquitoes. However, in lepidopteran insects these
approaches led to identification of cadherin as atoxin receptor (13, 14).

2.2 Cadherins

Cadherins, are single-span transmembrane proteins located primarily within adherens
junctions. They also belong to afamily of calcium-dependent transmembrane glycoproteins.
The presence of cadherins on the cell surface leads to cell sorting, cell adhesion, and
morphogenesis. Specific interactions provided by extracellular regions can transfer
information intracellularly by interacting with a complex network of cytoskeletal and
signaling molecules (48). Cadherins have long been known as the Cry toxin receptorsin a
variety of insectsin the orders L epidoptera (butterflies and moths) (14, 49-51), Coleoptera
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(beetles and weevils) (52), and Diptera (mosquitoes) (47, 53). However, the cadherins that
bind Cry toxins are distinct from other cadherins that are present within adherens junctions.

The toxin binding cadherins are localized in the insect midgut to regions in which toxin
binding has been observed. In the larval midgut of Ae aegypti, cadherin distribution is
observed on the apical side of the distal and proximal caeca and on posterior midgut
epithelial cells but not in the apical membranes of anterior midgut (47). Further studies
reveal that Cry4Baand Cryl1Aatoxins are also localized to these sites upon binding (47,
54). Thus, there appears to be a direct correlation between the binding pattern of Cry11Aa
and Cry4Batoxins and the localization of cadherin proteins leading us to believe that this
cadherin serves as one of the main targets of Cry toxin binding within the mosqguito gut.

The cadherin protein shown to interact with Cry11Aatoxin was a 250 kDa glycoprotein
identified in Ae aegypti BBMV (36). This protein, together with other two proteins of 100
and 65 kDa, was detected by ligand blot assay that bound Cry11Aa. The 65 kDa protein was
later identified as an ALP protein (36). The cadherin protein plays arolein Cryl1Aatoxin
binding to Ae aegypti midgut epithelia since an anti-AaeCad antibody could compete
readily with Cry11Aatoxin binding to BBMV. In contrast, an antibody to the sodium-
protein exchanger NHES3 that is also expressed in the midgut of Ae aegypti mosquito, did
not compete in the assay (47).

The Cry toxin binding cadherins have four distinct structural domains — a cytoplasmic
domain, atransmembrane domain, a membrane proximal extracellular domain (M PED), and
an ectodomain. The ectodomain in mosguitoes consists of 11 cadherin repeats (CR) instead
of 12 repeats observed in moths and beetles. In lepidopteran insects the toxin-binding
regions are primarily in the nearest cadherin repests next to the MPED (55-57). Similarly, in
Ae aegypti, the toxin-binding domain was mapped to a C-terminal fragment that contains
CR7 to CR11, with Cry11Aahaving an affinity of ~17 nM for this fragment (47). Within
this C-terminal fragment, CR9-CR11 were found to bind Cry11Aatoxin through domain |1
loops a8 and 2. Furthermore, a Cry11Aa mutant in loop a8, E266A, was unableto bind a
peptide fragment that contains CR9-11 (47). This binding is in agreement with previous
work that showed aloop a8 peptide can compete with Cry11Aabinding to Ae aegypti
BBMV (58). With Cry11Ba, an anti-cadherin antibody also inhibited toxin binding to Ae
aegypti BBMV (59). A cadherin fragment consisting of CR7-CR11 was able to compete
with Cry11Babinding to BBMV. Hence, as with Cry11Aa, the Cry11Batoxin binding
region islikely localized to CR9-CR11 of the Ae aegypti cadherin receptor (60).

The importance of the CRs as a toxin-binding region was further studied by determining the
correlation between binding and toxin susceptibility in different mosquito strains (53, 61). A
CR11-MPED peptide from the cadherin of An. gambiae(AgCadl) larvae acted as a
synergist of Cry4Bastoxicity to the Angphelesmosquito (53). It is believed that this
truncated cadherin peptide acts as a receptor, leading to cleavage of helix a1, thereby
promoting formation of the oligomeric form of the toxin that binds the GPI-anchored
receptors (62). Subsequently, it was demonstrated that the AngphelesCR9-11 and CR11-
MPED fragments also enhanced Cry4Batoxicity to Ae aegypti larvae whereas a cadherin-
based fragment isolated from a coleopteran insect, Diabrotica virgifera virgiferg did not
affect Cry4Batoxicity (61, 63). Both CR fragments were further tested for their binding
affinity with Cry4Batoxin. Using a one-site saturation model, it was shown that peptides
CR9-11 and CR11-MPED bound Cry4B with high affinities of 13 and 23 nM, respectively
(Table 1). Further the longer CR9-11 fragment was more potent than CR11-MPED in
enhancing Cry4Ba activity against Ae aegypti (61). Based on these results, these fragments
can be used as synergists to increase Cry toxicity and potentially overcome insect resistance.
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2.3 ALPs

Recently an Ae aggypti colony having alow level of resistanceto Bt israglensiswas
identified from afield collection. Preliminary identification of resistance genesidentified a
N-cadherin as well as two other proteinsincluding an APN as potential toxin targets (64).
The N-cadherin is expressed in the larval midgut but is hot known to bind any mosquitocidal
toxins to date.

Mutations of mosquito cadherin geneswill likely lead to lower larval sensitivity to single
Cry toxins. However, unlike lepidopteran active strains, mosquitocidal active strains, such as
Bt israglens’s, produce multiple toxins with different modes of action. Consequently the
development of high level mosquito resistance to these mosqguitocidal strains has been
lacking. In large part this lack of resistance development is due to the presence of Cyt1A,
which acts to delay resistance development (65) by acting as a surrogate receptor for the
mosquitocidal Cry toxins (66). In contrast, mosquito resistance to B. sphaericushas been
rapid in the field (67-69).

Thereisincreasing evidence that ALPs are Cry toxin receptors in various insect species (10,
18, 36, 70-72). In the Ae. aegypti mosquito, preliminary reports suggested mosquitocidal
Cry toxins bound proteins of 65 and 62 kDa (73, 74). Using a ligand blotting technique, the
binding of biotinylated Cry toxins to these proteins was shown to be reversible, and both
Cry4Baand Cry11Aatoxins competed for binding to these two proteins (73). The 65 kDa
protein lacked |eucine aminopeptidase activity and the 62 kDa protein was a degradation
product of the 65 kDa protein. Interestingly, Cry toxinsinactive against Ae aegyptilarvae,
such as the lepidopteran active Cry9Aatoxin, either fail to bind to the 65 and 62 kDa
proteins or bind but did not compete for Cry11Aatoxin binding (74). Based on these results,
the 65 and 62 kDa proteins are likely to be Cry4Baand Cry11Aatoxin receptorsin gut
epithelial cells of Ae aegyptilarvae.

Further identification of ALP as Cry toxin receptorsin Ae aegypti was made possible by
ligand blot analysis between Cry11Aatoxin and a pool of proteins released from BBMV by
PI-PLC treatment (36). Three proteins of 200 kDa, 100 kDa, and 65 kDa were identified to
bind the Cry11Aatoxin. The 65 kDa protein was purified by affinity chromatography with
Cry11Aatoxin, and this protein was later characterized as a GPI-anchored ALP enzyme
(70). The specific activity of this ALP was enriched up to 6-fold after PI-PLC treatment of
BBMV and Cry11Aa affinity chromatography suggesting an abundance of ALP proteinsin
Ae aegypti BBMV (36).

Immunofluorescence studies have shown that ALPs are located predominantly in gastric
caeca and posterior midgut epithelial cells. The distribution pattern is similar to that of the
cadherin protein and bound Cry11Aatoxin (47). Further studies have shown that phages
displaying ALP-specific peptides decreased toxicity against Ae aegypti larvae. Domain 11
loop a8 of Cryl1Aatoxin wasinvolved in the interaction with the ALP, since the binding of
Cry11Aaand the displayed peptide phages was specifically attenuated by a peptide with a
seguence corresponding to loop a8 (36). The putative ALP receptors have been
subsequently cloned and characterized (70). Of three cloned ALPs, the ALP1 isoform
(AAEL009077) was shown to bind Cry11Aa and the displayed peptide phage that
specifically binds the midgut ALP-Cry11Aareceptor. Furthermore, two Cry11Aaregions
(R59-G102 and N257-1296) that bind ALP1 were mapped by examining Cry11Aabinding
to nine overlapping peptides of ALPL. By using a peptide spot array of the Cry11Aadomain
[11 together with site-directed mutagenesis, it was shown that the ALP1 R59-G102 region
binds Cry11Aathrough domain Il loop a8, while the ALP1 N257-1296 region interacts with
Cry11Aathrough domain |11 S61RVQSQNSGNN®"0 |ocated in B18-p19. Conclusions drawn
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2.4 APNs

from these studies were that the Cryl1Aadomains |l and 111 are involved in binding two
distinct binding sitesin the ALP1 receptor (70).

Experiments carried out with Cry4Batoxin and toxin-overlay assays were used to identify
the toxin-binding BBMV protein complexesin Ae aegypti (54). It was reported that domain
[1-111 fragment reproducibly reacted with the same Ae aegypti BBMV proteins as did the
Cry4Batoxin. One of these proteins was a 60 kDa protein, a size that approximates that of
an ALP. However, the isolated domain I11 fragment did not bind these BBMV proteins,
suggesting domain 11 of Cry4Batoxinis essential for interaction with Ae aegypti midgut
proteins (54).

More recently, BBMV competitive assays revealed that the Cry11Babinding to Ae aegypti
BBMYV could be competed with Aedes ALPs. It was also demonstrated that AaeALP1 more
readily competes off the binding of Cryl1Batoxinto BBMV than do AaeALP2
(AAEL000931) and AacALP3 (AAEL003286), suggesting ALP1 could be more important
in the interaction with Cry11Bathan the other ALP isoforms (60). Thusthe ALP proteinis
an essential receptor molecule that mediates Cryl1Aatoxicity and also isinvolved in the
binding interaction of Cry4Ba and Cryl1Bawith Ae aegypti BBMV.

The diversity of ALPs present in mosquitoes is much larger than the three AL Ps identified
above. Depending on the level of diversity chosen, there are likely seven ALP familiesin
mosquito species (Figure 1). Moreover, there appears to be significant gene diversity within
these seven major ALP family classes. When compared with ALP sequences from other
insects including Drosophila melanogaster, there is even more significant diversity among
the ALP families (data not shown).

APNSs are membrane proteins, whose function is to cleave amino acids at the N-terminus of
polypeptides. It commonly serves, along with other enzymes, in the digestion of proteins
derived from the insect's diet (75). These proteins have long been identified as Cry toxin
receptorsin various insect species (16, 76-84). Recently, a deletion mutation of the APN
gene was associated with Cry1Ac resistance in Helicoverpa armigera(84) confirming that
APN proteins may play an important role in the mechanism of Cry toxicity.

APNSs require asignal peptide to direct nascent polypeptides to the outer surface of the
cytoplasmic membrane, where they are attached by a GPI anchor (5, 85, 86). The APNs also
undergo posttrandlational modifications through N- and O-glycosylation, including that by
N-acetylgalactosamine (GalNAc), which is considered to be important for interactions
between Cry1A toxins and APNs (42, 87-89). However, some APNs are believed to bind
toxins in a glycan-independent aspect as discussed below. Collectively these modifications
give mature proteins of between 90 and 170 kDa in size, which affect the protein structure,
stability, molecular recognition and signaling activities.

Lessis known of APNs as Cry toxin receptors in mosquitoes. In An. quadrimaculatusand
An. gambiag, APNs were identified as putative receptors for the Cry11Batoxin (90, 91).
Both of these APNs showed high affinity for the Cry11Batoxin. For instance, an APN from
An. quadrimaculatusbinds Cry11Bawith aK yof 0.56 nM, while a 106 kDa APN from An.
gambiaebinds the same toxin with an apparent affinity of 6.4 nM (Table 1). Thisis contrast
to the binding affinity of Cry1A toxinsto lepidopteran APN's that are in the range of 100
nM, suggesting that APN binding in mosquitoes may have a different rolein the initial
binding steps of mosquitocidal Cry toxins. It is believed that high affinity toxin binding
occurs first to the more abundant GPI-anchored proteins and then to cadherin (Fig. 2).
Nevertheless, no experimental evidence to date supports this possibility. A partial AGAPN2
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fragment expressed in £. coli was able to bind Cry1l1Batoxin in adot blot experiment and a
microtiter plate binding assay (91), suggesting this APN protein binds toxinsin a glycan-
independent manner. The 60 kDa APN (AgAPN2) from An. gambiaehas only about a 46%
homology to an APN from the sequenced genome (Agam P3.5 Gene Build, Vectorbase),
while the An. quadrimaculatus APN has significant homology to a number of APNs from
An. gambiae

Therole of this receptor class was demonstrated only recently in Ae aegypri(45). In this
study, Ae aegypti APNs, named AaeAPN1 (AAEL012778) and AacAPN2 (AAEL008155),
were isolated and identified as Cry11Aa-binding proteinsin a biotinylated Cry11Aatoxin
pull-down assay. As bait in the purifying process, Cry11Aatoxin bound four protein bands
with molecular weights of 140, 95, 45, and 32 kDa (45). The 32 kDa protein is a fragment of
Cry11Aatoxin. Three pulled down proteins were identified as APNSs; the 140 kDa protein
was AaeAPN1, while the 95 kDa consisted of two proteins identified as AaeAPN2 and
AaecAPN3 (AAEL012774). AaeAPN1 was cloned and a partial fragment expressed in £. coli
(45). Thisfragment was able to bind Cry11Aa suggesting the interaction of AaeAPN1-
Cry11Aais glycan-independent (45). Further studies revealed that the full-length AaeAPN2
and two of its fragments, AaeAPN2b and AaeAPN2e, bound Cry11Aatoxin and they also
competed with Cry11Aabinding to Ae aegypti BBMV. The data suggests amino acids
569-641 form part of the Cry11Aatoxin binding region in AaeAPN2 (Chen, J. and Gill, S.S.
unpublished work). Similarly in AaeAPN1, one of the Cry11Aa-binding regionsis localized
to amino acids 525-778 (45). However, it should be noted that these regions in the two
APNs are located toward the C-terminal part of the respective proteins. These binding
regions differ from the observed Cry1Aabinding site in an Bombyx mori APN, which is
localized to the N-terminal region (83, 92). Interestingly, Sf21 cells-expressing either
AacAPN1 or AaeAPN2 showed no increased sensitivity to Cryl1Aatoxicity. It is
noteworthy that the molecular weight of AaeAPN1 in Sf21 cells was lower than that of these
proteinsin BBMV. Therefore, it is possible that posttranslational modifications in Sf21 cells
might differ from that observed in the epithelial cells of Ae asgypti midgut and, also,
improper glycosylations could affect toxin binding (45).

Depending on the level of divergence considered APNs can be divided into eight classes
(91). It is evident, however, that mosquito APNs show significant differences from
lepidopteran APNs. Thereis agreat diversity in APNs among the three mosquito species
whose genomes have been sequenced. Indeed phylogenetic analysis of An. gambiag, Ae
aegypti and Culex pipiens APNs shows that eight major families can be readily classified
among these three mosquito species (Figure 3).

3. Toxin receptor expression

Although high level receptor expression is observed in tissues and cell types that bind Cry
toxins, the expression of cadherins, ALPs and APNs is not limited to these tissues. In fact all
three receptor types are also expressed in the adult female midgut, and in the Malpighian
tubules (data not shown). Clearly these proteins have functions which are critical for these
tissues.

The tissue distribution patterns of the three receptor types have been examined in greater
detail with immunofluorescence using specific antibodies. For example, Aedescadherin has
been localized to the apical side of the distal and proximal caeca and on the posterior midgut
epithelial cells but its expression is not observed in the anterior midgut (47). This pattern of
expression suggests some regionality in cadherin expression in the larval midgut. The
cellular distribution in the adult midgut or in Malpighian tubules has not been determined.

JAgric Food Chem. Author manuscript; available in PMC 2013 June 19.
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Asnoted earlier, AaeALP1L expression is similar to that of cadherin and hence it is expressed
in gastric caeca and posterior midgut epithelial cells (47).

In the larval Aedesmidgut AaeAPN1 showed a distinct expression pattern, with expression
observed in the apical side of posterior midgut epithelial cells but not in the anterior midgut
and gastric caeca cells (45). This expression pattern is similar to that observed in M. sexta
gut, in which APN was preferentially expressed in the posterior gut epithelial cells. In
contrast, AaeAPN2 was expressed not in posterior midgut cells but in the anterior midgut
and gastric caeca cells (Chen, J., AminovaK.G., and Gill, S.S. unpublished work).

Microarray experiments performed using the gene set obtained from the recently sequenced
Ae aegypti genome was used to assess the effect of toxin exposure on the expression
patterns of cadherins, ALPs and APNs. Low or high level toxin exposure had no effect on
cadherin expression (data not shown). Similarly, the expression of AaeALP1
(AAEL009077), which bound Cry11Aaand also binds Cry11Ba, did not change following
Cry1l1Aaexposure. In contrast, AaeALP2 (AAEL000931) and AaeAL P4 (AAEL013330),
which bind these toxins poorly showed significant decrease in expression levels following
Cryl1Aaexposure. A similar pattern was observed with APNSs. It thus appears that toxin
exposure had little effect on the receptor expression patterns.
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Phylogenetic tree obtained from Clustal X alignment followed by bootstrap analysis using
the maximum likelihood method of mosquito alkaline phosphatases. Protein sequences were
obtained from Vectorbase for the three mosquito species— An gambiae (Agam Gene build
3.5), sequences have a prefix AGA; Aedes acgypti (AaegL Gene build 1.2), sequences have
aprefix AAEL; and Culex pipiens (CpipJ Gene build 1.2), sequences have a prefix CPIJ.

These prefixes are used as in noted in Vectorbase.
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Figure2.

Models of Cry toxin mechanism in mosguitoes. Upon ingestion by a mosquito larva, the
alkaline midgut environment promotes solubilization of crystalline inclusions releasing the
protoxins, which are cleaved by gut proteases resulting in formation of active toxins. Toxin
binding occurs first with the cadherin protein triggering cleavage of helix a1, leading to the
formation of oligomeric toxins, which then bind anchored APN or ALP proteinsin lipid
rafts, resulting in the insertion of oligomeric toxinsinto the cell membrane. Alternatively
since mosquitocidal toxins have high affinity to APN and ALP receptorsit is possible toxin
binding initially involves APN and ALP receptors followed by binding to a cadherin protein.
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Phylogenetic tree obtained from Clustal X alignment followed by bootstrap analysis using
the maximum likelihood method of mosquito aminopeptidases. Protein sequences were
obtained from Vectorbase for the three mosquito species—An gambiae (Agam Gene build
3.5), sequences have a prefix AGA; Aedes acgypti (AaegL Gene build 1.2), sequences have
aprefix AAEL; and Culex pipiens (CpipJ Gene build 1.2), sequences have a prefix CPIJ.
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