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Abstract
How tightly tuned are the synaptic and intrinsic properties that give rise to neuron and circuit
function? Experimental work shows that these properties vary considerably across identified
neurons in different animals. Given this variability in experimental data, this review describes
some of the complications of building computational models to aid in understanding how system
dynamics arise from the interaction of system components. We argue that instead of trying to
build a single model that captures the generic behavior of a neuron or circuit, it is beneficial to
construct a population of models that captures the behavior of the population that provided the
experimental data. Studying a population of models with different underlying structure and similar
behaviors provides opportunities to discover unsuspected compensatory mechanisms that
contribute to neuron and network function.

Almost 60 years ago, Hodgkin and Huxley constructed their classic model of the action
potential, starting from voltage-clamp measurements in the squid giant axon1. Hodgkin and
Huxley’s work established a paradigm: to describe the contribution of each conductance to
the dynamics of a neuron or network, the investigator (i) isolates each conductance found in
the cell and determines its maximal conductance and activation/inactivation properties, (ii)
assembles the conductances with the cell’s capacitance, and then (iii) numerically integrates
the resulting differential equations to produce traces of voltage versus time. When a model is
successfully constructed, then the effects of changing any of the parameters on the ensuing
dynamics can be easily studied. This procedure is deceptively simple in concept, and many
investigators have tried to use this paradigm to construct models that capture the dynamics
of a large variety of neurons2–4.

Despite the apparent simplicity of the Hodgkin-Huxley program, its implementation is
fraught with a number of difficulties, many of which have been either ignored or minimized
as investigators have tried to build models that describe the behavior of the neurons they
study. In this review, we will discuss some of these issues and then present a new paradigm,
in which large populations of model neurons are constructed. This newer approach solves
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some, but not all, of the problems encountered in the past when trying to construct
conductance- based models of neurons.

Problem 1: biological data are variable
Even genetically identical single-cell organisms display variability in their responses to
environmental stimuli and in the expression of mRNA and protein5. This can be attributed to
the accrued influence of the stochastic nature of every molecular biological process6 as well
as activity-dependent and environmentally influenced changes in channel, neurotransmitter
or receptor expression7. Consequently, genetically identical animals, be they Caenorhabditis
elegans, flies or human identical twins, are nonetheless individuals, who often generate
substantially different behaviors in response to similar conditions. If we were magically able
to look into each of those nervous systems and measure the numbers and properties of the
synapses, ion channels, receptors and enzymes in all of the individuals across the
population, we would find real biological variation in most, if not all, of these parameters.
And, presumably, this variation would be even larger in genetically diverse natural
populations.

How consistent is a given behavior across individuals of the same species? Some of the most
stereotyped behaviors are those produced by central pattern generators, networks that
produce rhythmic motor patterns8. The pyloric rhythm of the crustacean stomatogastric
ganglion is highly robust and reliable. One study examined the range of pyloric motor
patterns of the lobster stomatogastric ganglion recorded from 99 preparations under the
same conditions (Fig. 1)9. Although each of these animals produced characteristic triphasic
rhythms in which the lateral pyloric (LP), pyloric (PY) and pyloric dilator (PD) neurons
fired in sequence (Fig. 1a, b), the frequency varied over a twofold range (Fig. 1c). Although
the phase relationships were, on average, constant as a function of frequency across the
population9, individual animals showed variability in the extent to which they were phase
constant over a range of frequencies. Additionally, the number of LP and PD neuron spikes
per burst varied two- to threefold over the population9.

A series of recent studies has shown that individual stomatogastric ganglion neurons of the
same cell type show considerable neuron-to-neuron variability (characteristically two- to
sixfold) in the mRNA expression for ion-channel genes and in their maximal conductances
measured in voltage clamp10–15. Interestingly, there are significant correlations in the
expression of some of these ion channels12–14 and between some of these underlying
parameters of the neurons in the pyloric network and properties of pyloric motor patterns
themselves10.

The variability across animals seen in the stomatogastric ganglion data is similar to that seen
in many other preparations16,17, although this is often hidden when data are presented as
means and standard errors. This sort of variability will be familiar to any experimental
biologist, but until recently, most investigators in neuroscience have used a single model to
describe the ‘typical’ behavior of the system being studied. Obviously, a single model will
be unable to capture the variability of a natural population. Furthermore, neglecting
biological variability has several other deleterious effects, described below. Of course, there
is a component of measurement error in all experimental studies, and it can be difficult in
many cases to estimate the extent to which it contributes to apparent variability.

Problem 2: should one use ‘best’ data or mean data?
It is not uncommon for an electrophysiologist to measure the properties of one voltage-
dependent conductance in 10–20 neurons, a second conductance in another 10–20 neurons,
and so on. What values should be fit to describe the conductance in a model? In the past,
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some investigators chose their fastest and largest currents to fit, as most voltage-clamp
measurement errors would tend to make the currents appear smaller and slower than they
are. Alternatively, some investigators were uncomfortable with using a single measurement
and instead fit the mean currents. Both decisions are problematic. The first is problematic
because it ignores the possibility of correlated variability between measured quantities. If
two maximal conductances are variable but negatively correlated, then making a model that
has large values of both will not yield a realistic model. The second is troublesome because
it makes the tacit assumption that a neuron with all parameters equal to their mean values
would be typical. But in fact a neuron with mean parameters can fail to have properties
shared by all of the neurons in the population18.

To illustrate these ideas, one can imagine a population of neurons with a given target
behavior, with each neuron described by two parameters (Fig. 2). One can then consider the
properties of a model with mean parameters or with ‘best’ (that is, largest) parameters. In
some cases, the mean neuron will fall within the regime of typical neuron behavior (Fig. 2a).
Even in such a case, however, a neuron that had the largest observed values for each
parameter would not necessarily be representative of the population (Fig. 2a). In other cases,
the mean neuron may not be a typical neuron but rather may lie outside the population itself
(Fig. 2b)18. In still other cases, the mean may be a typical neuron, but the ‘best’ model may
fall at the boundary of the population (Fig. 2c) or outside of the population of the typical
neurons (Fig. 2d). In more fanciful but still possible scenarios, the mean neuron may not be
a typical neuron at all (Fig. 2e, f).

Even in well-studied systems, there are some conductances that have not been
experimentally well characterized. Some of the common tactics for dealing with this are (i)
to use the properties of the same conductance measured in a different system, or (ii) to
incorporate any available data into a model of the conductance, and then to adjust the
unknown parameters such that the emergent behavior of the model is reasonable. Because
models are never made with full knowledge of all the relevant parameters, good biological
intuition is invaluable in guiding decisions about how to handle or ignore missing data.

That insights into how systems of neurons, conductances or molecules work may not
necessarily come from studying the properties of system components one by one is
important, not only for modelers, but for experimentalists wishing to understand how system
performance depends on the interaction of the system’s components10.

Problem 3: what behavior to model?
One begins any modeling effort with a long list of behaviors one would like a model to
capture. But as one realizes how difficult it is to build a model that exhibits all of these
behaviors, inevitably one pares down the list to those that are most interesting, at least at that
moment.

Even the Hodgkin-Huxley model1 is only a good description of the squid axon within a
limited domain. Although it explains many features of the action potential (including
making an accurate quantitative prediction of its velocity), it fails to exhibit the spike-
frequency adaptation seen in recordings from real squid axons19. In theory, of course, it
should be possible to build models that capture all of a neuron’s behaviors, but given the
variability across individuals, this may require constructing a model for each individual
neuron.
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A population of models can mimic biological variability
To capture the range of pyloric rhythm behaviors (Fig. 1), a population of more than
20,000,000 model networks was created20 and then searched for those that produced outputs
that fit within the ranges of the biological data. This process produced about 400,000
pyloric-network models that varied considerably in the maximal conductances of the
intrinsic and synaptic currents. This variability is similar to the ranges seen in experimental
measurements of these same properties10–15,21. One important part of this process was that it
sidestepped any potential complications of choosing ‘typical’ data or concerns associated
with the use of mean data to constrain the model. The resultant population of models can be
studied to determine how the intrinsic and synaptic currents in the models contribute to its
behaviors22.

Degeneracy: multiple solutions produce similar outputs
An increasing number of studies have shown that the relationship between the parameters of
a model and its output can be degenerate; that is, there can be multiple sets of parameters
that give rise to the same (or similar) behaviors5,11,18,20,23–29. (Note that we are using this
term in the biological but not the mathematical sense5; Fig. 3.) Figure 3a, b shows two
model LP neurons, drawn from a large population, that are producing very similar firing
patterns in response to rhythmic inhibition27. Nonetheless, the maximal conductances in
these two models are quite different (Fig. 3c). For example, the axonal Na+ conductance is
large in model A and small in model B, while the reverse is true of the axonal leak
conductance27.

There are many possible relationships between system parameters and system output (Fig.
4). If the spike rate of a neuron is a function of one of its maximal conductances, and the
spike rate has a range of tolerated values, this implies a range of acceptable values of the
maximal conductance (Fig. 4a). The shallower the slope of this relationship, the wider the
range of acceptable values of the maximal conductance (Fig. 4b). In the limit of a zero slope,
the maximal conductance can take on any value (Fig. 4c). This is one kind of degeneracy: an
unconstrained parameter that does not contribute to the behavior of the studied system.

If multiple parameters affect a given neuronal output, another form of degeneracy is possible
(Fig. 4d)30. In this case, each firing rate can be achieved by a large range of parameters, and
one could observe constant spike rate in a population despite high variability of both
conductance 1 and conductance 2 as long as they compensate for one another. For the
functional relationship illustrated (Fig. 4d), this might be apparent as a strong positive
correlation between the two conductances when measured across the population. (This form
of degeneracy is not mutually exclusive of the zero-slope degeneracy discussed above.)
Likewise, constant function in a population can arise from compensatory mechanisms that
are seen as negative correlations between processes that are important for system function16.
Within an individual neuron or individual animal, alterations in one conductance (or other
parameter) may produce little change in system behavior if there are mechanisms that cause
changes in another conductance that compensates for the first change.

Some of the most interesting examples of compensation come from studies of genetic
knockouts of ion-channel genes that show little or no phenotype although acute blockade of
the same channel does show strong effects16,21,31. Another example of compensation is seen
in experiments in which the mRNA encoding the fast transient potassium current (IA) was
overexpressed in single stomatogastric ganglion neurons, with no obvious change in
function because it was accompanied by an increase in the hyperpolarization-activated
inward current (Ih)15,32.
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Robustness of degenerate solutions
The measured variability in synaptic and intrinsic conductances in individual animals with
similar outputs10–13,17,21 argues that biological nervous systems have degenerate solutions
to producing similar behaviors5. The advantage of this is obvious: it is not necessary to
specify the exact number of ion channels or receptors that each neuron should express, either
during development or over the lifetime of the neuron and animal. Instead, ongoing activity-
dependent rules of various kinds can be used to modify channel and receptor numbers and
distributions to maintain target-circuit performance despite ongoing channel and receptor
turnover33–37.

At the same time, it is clear that although there may be degenerate solutions to the
production of a given circuit output, animals with these different solutions will not respond
identically to all perturbations. Nonetheless, biological networks can be far more reliable in
response to perturbations than might be expected38,39. This may indicate that the set of
degenerate solutions found in a given biological population may be enriched for those with
the ability to respond reliably to the normal environmental perturbations seen by animals39

but not necessarily included during model selection. Moreover, homeostatic and other
compensatory mechanisms are likely to be continuously at work, allowing a variety of
adaptations to environmental and activity perturbations7,14,40.

More global forms of sensitivity analysis
Sensitivity analysis is often used to determine how changes in one parameter influence a
model’s behavior41–44. A population of models can illuminate other aspects of the
relationship between parameters and behavior. In traditional sensitivity analysis, one takes a
single model, varies one parameter at a time, and examines how that changes the model’s
output41–44. But with a large population of models, one can perform a more global
sensitivity analysis, in which the variation in parameters, and the resulting variation in
behavior, is described over the full population. This was done in the LP neuron population
described above27, and this generated a compact description of how strongly each parameter
influenced each behavior of the model (Fig. 5). The take-home lesson from this study is that
almost every behavior of the neuron arises from the contribution of many conductances, and
that each behavior is determined by a different subset of the underlying conductances27.
Additionally, this global sensitivity analysis describes these influences for the entire
population, not just in the vicinity of a single model27.

Although it is possible for models of similar behavior to be found in separate islands of
parameter space (Fig. 2e), in several large populations of models we have found that models
with similar behavior are found in connected regions of parameter space11,26,27,45. It seems
plausible that as the number of conductances in a model increases, so does the likelihood
that there will be some path that can connect models with the same behavior in a high-
dimensional parameter space. If neurons with a particular type of behavior are in a
connected region of parameter space, this may allow relatively simple homeostatic tuning
rules to work to maintain stable neuronal and network function despite ongoing turnover of
receptors and channels33–37.

Generating many models to capture the individual
As the computational power available to all of us has increased, it has become possible to
generate large populations of models relatively easily. A number of different methods are
available to generate a population of models with a target set of behaviors, without resorting
to handtuning. Evolutionary algorithms have been used extensively and successfully to
generate conductance-based models by investigators wishing to avoid handtuning23,46,47.
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Evolutionary algorithms can converge onto very specific target-activity patterns but have the
potential disadvantage that, in general, they do not uniformly sample the region of parameter
space where acceptable models lie.

As an alternative to evolutionary algorithms, a number of investigators have instead
generated populations of models either by sampling large volumes of parameter space on a
multidimensional grid20,26,48 or by randomly sampling large volumes of parameter
space11,27. These methods have the advantage that they uniformly sample the region of
parameter space in which acceptable models lie. However, they have the disadvantage that if
the acceptable models lie in a very small volume of parameter space, finding them may
require a prohibitive number of samples. This problem grows exponentially worse as the
number of parameters increases.

In addition to the methods described above, there is a large body of established Monte Carlo
techniques for sampling from an arbitrary distribution when only the probability density at
an arbitrary point is easy to calculate49. This body of techniques could profitably be used to
generate populations of models that conform to a probability distribution that mimics chosen
aspects of the biological distribution. The random-sampling technique above could be seen
as an example of the rejection-sampling technique49 with a probability density that is flat
over the region of acceptable models. Applying Monte Carlo techniques to generate
populations of neuronal models has promise for future work.

The ideal solution to many of the concerns addressed above would be to build a model of
every individual neuron or circuit studied, rather than building a population of models with
statistics that are similar to those of the biological population. This would presumably
involve subjecting each neuron or circuit to a battery of stimuli, varied and numerous
enough that the preparation’s response to them would provide enough information to
determine all of the parameters of the model. Some initial attempts along these lines have
been made46, but achieving these goals requires much additional work, both experimentally
and computationally. Recent results have shown that given accurate descriptions of channel
kinetics, one can use wideband stimuli to determine the maximal conductances of
isopotential model neurons46. However, the method seems to be sensitive to errors in the
channel kinetics and to the presence of unanticipated conductances. Thus, this kind of
method will need to be generalized to account for cell-specific differences in both channel
density and other channel properties.

Conclusions
Molecular techniques will soon enable us to determine routinely the genomic sequences of
individual flies, crabs and humans. Therefore, it is time to ask how much the brains of
normal, healthy animals differ. There are excellent historical reasons why experimentalists
have typically focused on mean data and neglected to some extent the ranges and variances
of their data. Nonetheless, there are newer studies that argue that variation in neuronal
function might be computationally advantageous50.

In the past, limited computational resources significantly constrained the kinds of models
that could be built. Today, we are entering an era in which we should attempt to collect as
much data as possible on each individual10, to attempt to see the correlations between
underlying mechanisms and system behavior. At the same time, as the computational power
available increases, it is now possible to construct and study large populations of models, to
understand better the ranges of synaptic and intrinsic parameters consistent with healthy
brain function, and in turn, to understand where the boundaries between health and disease
are found.
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Figure 1.
The pyloric rhythm has a variable period but phase relationships are held invariant. (a)
Extracellular recordings from a slow pyloric rhythm showing its characteristic repeating
pattern of PD, LP and PY neuron activity (on the LP and PY traces, only the largest spikes
correspond to spikes from the LP and PY neurons respectively). Arrows indicate
measurements made on each pyloric cycle. Gray arrow indicates pyloric period, measured as
the latency from the onset of one PD neuron burst to the next. Colored arrows indicate
latencies measured from the onset of the PD neuron burst. The dark blue arrow indicates the
latency of PD neuron offset. The red arrow indicates the latency of LP neuron onset. The
light blue arrow indicates the latency of LP neuron offset. The purple arrow indicates the
latency of PY neuron onset. The pink arrow indicates the latency of PY neuron offset. These
latencies were then divided by the period to give the phase relationships shown in c. (b)
Extracellular recordings from a fast pyloric rhythm. Data are presented as in a. (c) Phase of
burst onset/offset versus pyloric period. Each point represents one of 99 animals. Period is a
mean period calculated over many cycles, as are phases. Dark blue points, phase of PD
neuron offset; red points, phase of LP neuron onset; light blue points, phase of LP neuron
offset; purple points, phase of PY neuron onset; pink points, phase of PY neuron offset. The
histograms on top of the plot show the distribution of pyloric rhythm periods. The
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histograms on the right show the distributions of each of the phases, coded in color as for the
data points. Adapted from ref. 9.
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Figure 2.
Example distributions of neuron parameters for neurons that all share a common behavior or
set of behaviors. In all panels, dark blue dots represent individual neurons, the red cross
represents the mean of the distribution and the light blue triangle represents the hypothetical
neuron with all parameters set to their largest, or ‘best’, values. (a) A population with
statistically independent parameters. (b) A population in which the mean is not
representative. (c) A population with a strong positive correlation between parameters. (d) A
population with a strong negative correlation between parameters. (e) A population with two
very different subpopulations. (f) A population with a donut-shaped distribution.
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Figure 3.
Model LP neurons with similar behavior but substantially different parameters. (a, b) Traces
from two randomly generated model LP neurons receiving ongoing pyloriclike synaptic
input. (c) The parameters for the two models, which are quite different. Red and blue bars
show the parameters of the model that generated the red/blue trace in a. For each parameter,
a red and blue bar are superimposed, with their region of overlap shown as purple.
Parameters are sorted by the absolute difference between them in the two models. ḡ
parameters are maximal conductances of different currents, E parameters are reversal
potentials, P̄Ca is the maximal permeability of the Ca2+ current and V½, pr is the half-
activation voltage of a modulatory inward current. Max, maximum; min, minimum. The
model is described in ref. 27.
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Figure 4.
Tolerance and degeneracy. (a) Plot of the map between maximal (max) conductance and
firing rate for a hypothetical neuron with only a single variable conductance. Tolerance in
the spike rate translates into tolerance in the maximal conductance, with the maximal
conductance tolerance determined by the slope of the line. (b) As in a, but here the
relationship between spike rate and maximal conductance has a lower slope, leading to a
larger tolerance in the maximal conductance for the same spike-rate tolerance. (c) As in a
and b, but with a slope of zero. In this case, the firing rate is completely insensitive to the
maximal conductance, and thus the maximal conductance can take on any value. (d)
Contour plot of the map between maximal conductances and spike rate for a hypothetical
neuron with two variable maximal conductances. Each line denotes the set of maximal
conductances that yield the given spike rate. Although each conductance affects the spike
rate, there are many combinations of maximal conductances that yield the same spike rate.
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Figure 5.
Quantification of the effect of each model parameter on each model property for a
population of LP models. The area of each circle represents the average amount of variance
explained by that parameter as a fraction of the variance explained by the complete fit. The
areas of the circles in each row sum to 1. Most properties show contributions from many
conductances. Parameters are the same as those in Figure 3. Adapted from ref. 27.
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