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Default Mode of Brain Function in Monkeys
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Human neuroimaging has revealed a specific network of brain regions—the default-mode network (DMN)—that reduces its activity
during goal-directed behavior. So far, evidence for a similar network in monkeys is mainly indirect, since, except for one positron
emission tomography study, it is all based on functional connectivity analysis rather than activity increases during passive task states.
Here, we tested whether a consistent DMN exists in monkeys using its defining property. We performed a meta-analysis of functional
magnetic resonance imaging data collected in 10 awake monkeys to reveal areas in which activity consistently decreases when task
demands shift from passive tasks to externally oriented processing. We observed task-related spatially specific deactivations across 15
experiments, implying in the monkey a functional equivalent of the human DMN. We revealed by resting-state connectivity that prefron-
tal and medial parietal regions, including areas 9/46d and 31, respectively, constitute the DMN core, being functionally connected to all
other DMN areas. We also detected two distinct subsystems composed of DMN areas with stronger functional connections between each
other. These clusters included areas 24/32, 8b, and TPOC and areas 23, v23, and PGm, respectively. Such a pattern of functional connec-
tivity largely fits, but is not completely consistent with anatomical tract tracing data in monkeys. Also, analysis of afferent and efferent
connections between DMN areas suggests a multisynaptic network structure. Like humans, monkeys increase activity during passive
epochs in heteromodal and limbic association regions, suggesting that they also default to internal modes of processing when not actively

interacting with the environment.

Introduction

Human neuroimaging studies revealed robust increases in corti-
cal activity during passive tasks in contrast to epochs when indi-
viduals are engaged in externally oriented decisions (Shulman et
al., 1997; Mazoyer et al., 2001; Laird et al., 2009). The ensemble of
brain regions active during passive tasks, called the default-mode
network (DMN), consistently includes the anterior and posterior
cingulate cortex, medial and lateral parietal cortex, and medial
prefrontal cortex (Raichle etal., 2001; Buckner et al., 2008). These
regions form nexuses of distributed connectivity throughout het-
eromodal cortex (Greicius et al., 2003; Buckner et al., 2009) and
possess metabolic properties that set them apart from other re-
gions (Raichle et al., 2001; Vaishnavi et al., 2010). In recent years,
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the DMN has attracted considerable interest, as well as contro-
versy, mainly in relation to its functions.

To test specific hypotheses about the functional role of the
DM, it is important to clarify whether default mode activity is
present in other primate species. Also, the definition of the DMN
in monkeys would permit the investigation of its single-cell prop-
erties and the use of invasive interventional protocols to probe its
functional role—which is less feasible in humans (Tsao et al.,
2006; Ekstrom et al., 2008; Moeller et al., 2008; Caggiano et al.,
2009). Despite the absence of linguistic abilities and presumably
certain forms of self-referential processing (Passingham, 2009),
many protoforms of human skills can be found in monkeys, thus
allowing for comparative monkey—human studies for a wide
range of tasks (Nakahara et al., 2002; Vanduffel et al., 2002; Or-
ban et al., 2004; Tsao et al., 2008). Cytoarchitectonic maps in the
vicinity of the human DMN have revealed anatomical similarities
between humans and monkeys (Parvizi et al., 2006; Vogt et al.,
2006; Buckner et al., 2008; Binder et al., 2009), supporting the
notion that elements of the DMN may be conserved across pri-
mate species, although analogies for regions including the infe-
rior parietal lobule are less certain (Caminiti et al.,, 2010).
Notably, activity reductions under specific tasks were recently
documented in monkeys by single-cell recordings in the poste-
rior cingulate (Hayden et al., 2009) and by positron emission
tomography (PET) in medial prefrontal and parietal areas (Ko-
jima et al., 2009). Furthermore, functional connectivity investi-
gations in anesthetized monkeys provide evidence for a network
of regions in the monkey that may be a functional equivalent of
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Table 1. Details of the monkey fMRI datasets used for the study
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Experiment Reference study Key scanning parameters

Monkey (runs)

Visual experiments

Adaptation Sawamura etal., 2005 1.5 scanner, 32 slices, voxel size 2 X 2 X 2 mm, TE 27 ms, TR 2.4 s (no gap), task/rest blocks 120/72 s, run duration 384 s M5 (25)
M6 (25)
Size invariance Sawamura etal., 2005 1.5 T scanner, 32 slices, voxel size 2 X 2 X 2 mm, TE 27 ms, TR 2.4 s (no gap), task/rest blocks 180/36 s, run duration 432s M1 (25)
M5 (25)
Eccentricity Nelissen etal., 2006 1.5T scanner, 32 slices, voxel size 2 X 2 X 2 mm, TE 27 ms, TR 2.4 s (no gap), task/rest blocks 96/24 s, run duration 360s M1 (20)
M5 (20)
Opponent motion Nelissen etal.,, 2006 1.5 T scanner, 32 slices, voxel size 2 X 2 X 2mm, TE 27 ms, TR 2.4 s (no gap), task/rest blocks 96/24 s, run duration 480s M1 (15)
M3 (12)
Optic flow Nelissen etal., 2006 1.5T scanner, 32 slices, voxel size 2 X 2 X 2 mm, TE 27 ms, TR 2.4 s (no gap), task/rest blocks 144/36 s run duration 540s, M1 (10)
M4 (8)
M5 (10)
Structure from motion  Durand et al., 2007 1.5 T scanner, 32 slices, voxel size 2 X 2 X 2 mm, TE27 ms, TR 2.4 s (no gap), task/rest blocks 180/36 s, run duration 432s M1 (16)
M3 (16)
M5 (16)
Stereo vision Durand et al., 2007 1.5 T scanner, 32 slices, voxel size 2 X 2 X 2 mm, TE27 ms, TR 2.4 s (no gap), task/rest blocks 180/36 s, run duration 432s M1 (16)
M3 (16)
M5 (16)
Shading Nelissen et al., 2009 1.5 T scanner, 32 slices, voxel size 2 X 2 X 2 mm, TE 27 ms, TR 2.4 s (no gap), task/rest blocks 180/36 s, run duration 432s M1 (16)
M3 (16)
M5 (16)
Attention experiments
Visual search Wardak etal., 2010 1.5 Tscanner, 32 slices, voxel size 2 X 2 X 2 mm, TE 27 ms, TR 2.4 5 (no gap), task/rest blocks 72/24 s, run duration 384s M9 (30)
M10 (30)
Pop-out Wardak et al., 2010 1.5 T scanner, 32 slices, voxel size 2 X 2 X 2 mm, TE 27 ms, TR 2.4 s (no gap), task/rest blocks 72/24 s, run duration 384s M9 (30)
M10 (30)
Action-observation experiments
Human action Nelissenetal., 2005 1.5T scanner, 32 slices, voxel size 2 X 2 X 2 mm, TE 27 ms, TR 2.4 s (no gap), task/rest blocks 108/36 s, run duration 432s M1 (27)
M3 (18)
M5 (9)
Action-moving object  Nelissenetal., 2005 1.5 Tscanner, 32 slices, voxel size 2 X 2 X 2 mm, TE 27 ms, TR 2.4 s (no gap), task/rest blocks 108/36 s, run duration 4325 M3 (20)
M5 (20)
Tool-use observation ~ Peeters et al., 2009 1.5 Tscanner, 32 slices, voxel size 2 XX 2 X 2 mm, TE 27 ms, TR 2.4 s (no gap), task/rest blocks 76.8/19.2 s, run duration 384 s M6 (48)
M13 (48)
M14 (48)
Auditory experiments
Monkey-human Jolyetal., 2011 1.5 Tscanner, 32 slices, voxel size 2 XX 2 X 2mm, TE27 ms, TR 5.0's (56% gap), task/rest blocks 240/40 s, run duration 560 s M13 (28)
sounds M14 (28)
M18 (28)
Scrambled sounds Jolyetal., 2011 1.5 Tscanner, 32 slices, voxel size 2 XX 2 X 2 mm, TE27 ms, TR 5.0's (56% gap), task/rest blocks 240/40 s, run duration 560 s M13 (28)
M14 (28)
M18 (28)
Resting-state experiment
Continuous fixation ~ — 3.0 Tscanner, 40 slices, voxel size 1.25 X 1.25 X 1.25mm, TE19 ms, TR 2.0 s (no gap), steady state, run duration 600s ~ M13 (20)
M14 (20)
M18 (20)
M19 (20)

For each monkey fMRI dataset, the experimental task, the reference study, the main acquisition parameters, and the number of monkeys and acquisition runs are provided.

the human DMN (Vincent et al., 2007, 2010; Margulies et al.,
2009).

However, the defining functional property of the DMN—that
it increases activity in passive states relative to active periods of
engagement with the environment— has not been explored in a
manner parallel to the work in humans. Here we conducted an
extensive meta-analysis of monkey fMRI data collected under
many experimental conditions to investigate whether a consis-
tent network of regions—a default mode network—is present in
macaques. Following identification of a DMN in the monkey, we
analyzed its network structure in a task-independent manner us-
ing resting-state connectivity. Furthermore, we compared the
resting-state connectivity results with published anatomical con-
nectivity data from tracing studies in the monkey.

Materials and Methods

Task experiments and data collection. Animal care met the Belgian and
European guidelines and was approved by the K.U. Leuven Medical
School. Experimental procedures were approved by the local Ethics
Committees of the K.U. Leuven. Task-related fMRI data were acquired
between 2003 and 2007 during 15 experiments conducted in our labora-
tory (Nelissen et al., 2005, 2006, 2009; Sawamura et al., 2005; Durand et
al., 2007; Peeters et al., 2009; Wardak et al., 2010; Joly et al., 2011) (Table
1). They were collected in one female and nine male monkeys with a 1.5
T MR scanner (Siemens Sonata). All experiments followed a block design
with fixation as control condition. The active task varied across experi-
ments and belonged to one of the following groups of experiments: vi-
sual, attention, action-observation, and auditory. The resting-state fMRI
data were collected in four fixating monkeys (three male and one female)
during the years 20082009 with a 3.0 T MR scanner (Siemens Trio).
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Before scanning, a contrast agent (MION or
Sinerem) was injected into the animal’s femo-
ral or saphenous vein (Vanduffel et al., 2001).
Eye position was monitored using a pupil-cor-
neal reflection tracking system (RK-726PCI,
Iscan) at 60 Hz. Monkeys were rewarded for
fixation on a small red target (0.30 X 0.35 vi-
sual degrees) in the middle of the screen (Van-
duffel et al., 2001, 2002). The dimension of the
fixation window was 2 X 3 visual degrees. The
functional volumes were gradient-echo-planar
images (GE-EPI) covering the whole brain.

Data preprocessing. fMRI time series were
preprocessed and analyzed using the SPM5.0
toolbox (Wellcome Trust Centre for Neuroim-
aging). Spatial preprocessing consisted of re-
alignment and rigid coregistration with a
template anatomy [monkey MI12 = MMI
from Ekstrom et al. (2008), 0.35 mm isotropic
voxels]. To compensate for EPI distortions and
interindividual anatomical differences, func-
tional images were warped by a nonrigid
matching technique (Nelissen et al., 2005,
2006). The monkey F99 image was used to de-
fine the target stereotaxic space. The images
were resliced to 1 mm isotropic voxels and
smoothed with an isotropic Gaussian kernel
at 2 mm FWHM. The resting-state fMRI data
were additionally preprocessed in prepara-
tion for functional connectivity analysis, ac-
cording to the procedure described by
Vincent et al. (2007). The preprocessing
steps included the following: (1) bandpass
filtering between 0.0025 and 0.05 Hz; (2) re-
gression of white matter and ventricle sig-
nals, and their first derivatives; and (3)
regression of three-dimensional motion pa-
rameters, and their first derivatives.

Meta-analysis of task fMRI data. A mask im-
age capturing the full extent of the template
brain was used for General Linear Model
(GLM) estimation. Head-realignment and eye-
movement parameters were included in the
model as covariates of no interest. Experiment-specific deactivation
maps were delineated by contrasting the B-value map in the fixation
condition with the B-value map in all the active-task conditions. Statis-
tical #-score maps were obtained from the B-value maps by fixed-effect
analysis. A consensus map for deactivations across experiments was cre-
ated by binarizing the deactivation maps from single experiments (p <
0.01, uncorrected), summing these binarized masks, and thresholding by
number of subjects (N = 8).

Definition of DMN areas. Since the monkey DMN was defined though
a meta-analysis across multiple subjects and experiments, uncertainty in
the exact definition of included areas is possible, due to the alignment of
multiple datasets to a template space and because fMRI responses often
include regions that span multiple areas. The monkey DMN regions were
determined by selecting local maxima (identified by their stereotaxic
coordinates) in the consensus map. Each peak was projected on the an-
atomical image of the template (monkey F99) using the MRIcron soft-
ware, and classified by comparing its position with respect to the monkey
atlas of Paxinos et al. (2008). We opted to use this atlas because it already
has an extended group of users (Frey et al., 2011). Subsequently, the peak
and the monkey DMN map were projected together on the anatomical
template image to evaluate the contribution of regions adjacent to the
DMN peak. In cases where the extended region of deactivation clearly
invaded neighboring monkey areas in the atlas, the classification was
adapted accordingly and uncertainty acknowledged.

Functional connectivity analysis of resting-state fMRI data. Regions of
interest (ROIs) in the monkey DMN were generated using the classified
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Network of consistent task-related deactivations in the monkey brain. 4, B, Brain areas deactivated (p << 0.01) in at
least 8 of the 15 monkey task-related experiments are illustrated in inflated cortical representations (lateral and medial views) (4)
and on flat maps (B). The areas are labeled on the flat maps on the basis of the monkey brain atlas by Paxinos et al. (2008).

DMN peaks. They were defined as spheres of 2 mm radius, centered on
the respective stereotaxic coordinates. For each ROI, a representative
time course was obtained by averaging the signals across voxels. Whole-
brain connectivity maps were created and converted to Z-scores by the
Fisher’s r-to-z transformation (Zar, 1998), correcting the degrees of free-
dom for the autocorrelation in the time-series (Shumway and Stoffer,
2006). A fixed-effect analysis was used to create group-level correlation
maps (Genest, 1992). Finally, the group Z-score maps were back-
converted to correlation maps by the Fisher’s z-to-r transformation (Zar,
1998).

Following the same statistical approach, a correlation matrix between
the ROI time courses was calculated. ROIs without any significant cor-
relation to other ROIs (p < 0.001) were excluded from subsequent anal-
yses. A residual (unthresholded) correlation matrix between correlated
ROIs was used for a network analysis across DMN nodes (Andrews-
Hanna et al., 2010). The goal of this analysis was to determine from the
pairwise regional correlations whether the DMN areas clustered into
coherent subsystems (Buckner et al., 2008). Graph analysis of the corre-
lation matrix was implemented using the Kamada—Kawai algorithm, a
spring-embedded algorithm that pulls connected nodes together and
pushes disconnected nodes apart in a manner such that the total energy
of the system is minimized (Kamada and Kawai, 1989). Network hubs,
defined as nodes connected to most of the other nodes, were identified by
means of the betweenness-centrality. This is a quantitative measure of
how connected a particular node is to other nodes (Freeman, 1977). The
nonhub nodes, connected by definition to only part of the network, were
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analyzed to detect the presence of network subsystems. To this end, the
hub nodes were excluded from the correlation matrix, and the remaining
correlations were processed by hierarchical cluster analysis using the
average linkage algorithm (Everitt et al., 2001). In addition, the network
structure emerging from resting-state connectivity data was qualitatively
compared to anatomical connectivity data in monkeys (efferent/afferent
connections), partially available through the CoCoMac database (Kétter,
2004).

Spatial comparison with the human DMN. We performed a spatial
comparison between the monkey and the human DMN, on the basis of
the monkey DMN nodes detected by our meta-analysis and of previous
results in humans. As no meta-analysis on rewarded fixation in humans
is available for a direct comparison with monkey data, we referred for the
human DMN to the meta-analysis conducted on fMRI datasets pub-
lished by Laird et al. (2009). For the definition of the areas in the network,
we applied the same procedure as for the monkey DMN. In this case, we
used the Colin image registered to the MNI space (as available in MRI-
cron) for anatomical reference. The cytoarchitectonic classification of
human areas was conducted using the SPM Anatomy Toolbox (Eickhoff
et al., 2005, 2010; Toga et al., 2006); for the areas left unclassified, we
referred to comparative cytoarchitectonic studies (Vogt et al., 1987, 2006;
Petrides and Pandya, 1999; Ongiir et al., 2003). These procedures have
multiple sources of uncertainty, so the correspondences should be taken
as best estimates.

Results

We delineated brain areas potentially belonging to the monkey
DMN by performing a meta-analysis of monkey fMRI data (Ta-
ble 1). Specifically, we calculated a consensus map to define areas
with consistent task-induced deactivation across different exper-
iments (single-experiment threshold at p < 0.01, N = 8). This
analysis revealed a widespread network including the anterior
and the posterior cingulate, and the posterior parietal cortices,
confirming the existence of a monkey DMN. By overlaying the
peaks in the consensus map onto the monkey atlas of Paxinos et
al. (2008), we tentatively defined areas 9/46d, 24/32, 8b, caudal
temporal parietal occipital (TPOC), 23, 31, v23, PGm, S2i, and
PEa to belong to the monkey DMN (Fig. 1, Table 2).

After the definition of the monkey DMN, we examined
whether this can be fractionated in functional-anatomical subdi-
visions, as suggested by human DMN studies (Andrews-Hanna et
al., 2010; Sestieri et al., 2011). Based on a methodology already
applied on human data (Andrews-Hanna et al., 2010), we mea-
sured resting-state connectivity between the monkey DMN
nodes to identify in an independent manner the presence of hubs
and subsystems. To this end, we used fMRI data collected in four
monkeys during fixation (see Table 1). Seed-based functional
connectivity analysis showed areas 9/46d and 31 to be connected
to the largest part of the remaining DMN areas (Fig. 24, B). The
connectivity measures from other DMN nodes, as for example
from areas 8b (Fig. 3A) and v23 (Fig. 3B), showed only parts of
the DMN, suggesting the presence of subsystems.

To test specifically for the existence of subsystems in the
DMN, we conducted a connectivity-based network analysis,
which allowed us to quantitatively delineate relations among re-
gions. The betweenness-centrality measure (Freeman, 1977)
confirmed regions centered at or near areas 9/46d and 31 to be
network hubs and to constitute the DMN core (Fig. 4A). A subset
of areas, such as area S2i and PEa, were not found to be signifi-
cantly correlated with any of the other nodes (p < 0.001). By
applying cluster analysis on the connected and nonhub nodes, we
defined two subsystems. These included areas 24/32, 8b, and
TPOC and areas 23, v23, and PGm, respectively (Fig. 4 B). Task-
related activity profiles revealed the functional selectivity of the
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Table 2. List of monkey DMN areas

Anatomical label Coordinates (x, y, 2)

Areas 24 and 32 in the left anterior cingulate cortex (24/32) (5,16,10)
Areas 24 and 32 in the right anterior cingulate cortex (24/32) (—6,15,9)
Areas 9 and 46d in the left dorsolateral prefrontal cortex (9/46d) (—8,15,14)
Areas 9 and 46d in the right dorsolateral prefrontal cortex (9/46d) (10, 14,13)
Left area 8b in the arcuate sulcus (8b) (—10,8,15)
Right area 8b in the arcuate sulcus (8b) (10 11 15)
Left secondary somatosensory area, internal part (52i) (—19,—10,9)
Right secondary somatosensory area, internal part (S2i) (19 10 10)
Left area 23 in the posterior cingulate cortex (23) (—5,—17,10)
Right area 23 in the posterior cingulate cortex (23) (4, —17,10)
Left parietal area PEa (PEa) (=7, —26,20)
Right parietal area PEa (PEa) (7, —26,21)
Left area v23 in the posterior cingulate cortex (v23) (—7,—28,6)
Right area v23 in the posterior cingulate cortex (v23) (6, 28 8)
Left temporal parietooccipital area, caudal part (TPOC) (—14, —29,16)
Right temporal parietooccipital area, caudal part (TPOC) (14 29 16)
Left area 31 in the posterior cingulate cortex (31) (=5, —29,10)
Right area 31 in the posterior cingulate cortex (31) (5,—30,11)
Left parietal area PG, medial part (PGm) (—3,—32,14)
Right parietal area PG, medial part (PGm) (4, —32,15)

For each brain deactivation peak, the anatomical region according to the atlas by Paxinos et al. (2008) and the
stereotaxic coordinates in F99 space are provided.

network core and its subsystems (see the significant differences in
percentage signal change across tasks, Fig. 4C).
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Figure2. Resting-state functional connectivity maps from monkey areas 9/46d and 31.4, B,
Brain regions showing correlated activity with areas 9/46d (4) and 31 (B) are illustrated on an
inflated cortex. The seed area is indicated with the red label. Correlation values are shown using
a color scale indicating the statistical significance.
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Figure3. Resting-state functional connectivity maps from monkey areas 8b and v23.4, B,
Brain regions showing correlated activity with areas 8b (4) and v23b (B) are illustrated on an
inflated cortex. The seed area is indicated in red. Correlation values are shown in color scale
based on the statistical significance.

Discussion

A previous PET study in monkeys showed regional blood flow
increases in the medial prefrontal and posterior cingulate cortex
during rest as compared to an active working memory task, pro-
viding support for the existence of the monkey DMN (Kojima et
al., 2009). Moreover, task-induced suppression of neuronal ac-
tivity has been shown in the monkey posterior cingulate cortex
during attention and working memory tasks (Hayden et al,
2009). By means of our meta-analysis on monkey fMRI data, we
defined a set of brain regions that are consistently deactivated
across many experimental conditions (Shulman et al., 1997; Gus-
nard and Raichle, 2001; Mazoyer et al., 2001; Buckner et al., 2008;
Laird et al., 2009). This set of areas putatively constitutes a mon-
key correspondence of the human DMN. Our results are valuable
for several reasons: (1) they allow an accurate description of the
DMN functional architecture, relying on the large number of
anatomical and neurophysiologic studies conducted in monkeys;
(2) they show that the DMN is relatively well preserved during
~25 million years of separate evolution between monkeys and
humans; (3) they suggest novel putative functional correspon-
dences between monkey and human brain areas, based on the
DMN foci in the two species; and (4) they show that many,
though not all, subunits of the DMN are monosynaptically con-
nected with each other.

Mantini et al. e Default-Mode Network in Monkeys

Network analysis A
TPOC
23
PGm
24/32
v23
Subsystem clustering B
8b TPOC  24/32 23 v23 PGm

Subsystem #1 Subsystem #2

Functional selectivity PSC

Core -0.4 %
Subsystem 05%
# -0.6 %

Subsystem
#2 -0.7 %

Visual Selective Action Auditory
stimulation  attention observation stimulation

Figure4. Functional subdivision of the monkey default-mode network. 4, Network analysis
on resting-state connectivity is performed using the Kamada—Kawai algorithm. Only significant
correlations at p << 0.001 are plotted in the graph. The thickness of the lines reflects the
strength of the correlation between regions. The size of the circles represents a measure of
betweenness-centrality. The two regions with the betweenness-centrality above average, ar-
eas 9/46d and 31, are considered DMN hubs. B, Hierarchical cluster analysis on the remaining
connected regions reveals that the monkey DMN is additionally comprised of two distinct sub-
systems including areas 24/32, 8b, and TPOC and areas 23, v23, and PGm, respectively. C,
Selectivity in the deactivation (in percentage signal change, PSC) across multiple experiments is
revealed for the network core and its subsystems. The groups of experiments for which the
deactivation is significant at p << 0.001 are marked with asterisks in the plot.

Monkey DMN components

In this study, the functional organization of the brain areas in-
volved in the DMN was characterized in the monkey using mul-
tiple tasks. It is worth mentioning that deactivations from a single
experiment may not be sufficient to consistently delineate the
DMN, for which instead a meta-analysis across multiple experi-
ments is more reliable (Shulman et al., 1997; Mazoyer et al., 2001;
Buckner et al., 2008; Laird et al., 2009). The anatomical definition
of the areas in the monkey DMN, classified using a recently pub-
lished parcellation of the monkey cortex (Paxinos et al., 2008),
may permit comparison of our results with the large body of
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Table 3. Anatomical connectivity between monkey DMN areas (Ktter, 2004; Kobayashi and Amaral, 2003; Petrides and Pandya, 2006; Morecraft et al., 2004; Seltzer and

Pandya, 2009)

To
From 9/46d 24/32 8b TPOC 31 23 v23 PGm PEa S2i
9/46h E/A E/A E/— E/A E/A E/A E/— —/—- —/=
24/32 E/— —/—= E/A E/A —/— —/= —/= -/=
8b E/A E/A E/A —/— E/— —/—= —/=
TPOC E/A E/A —/A —/A -/= —/—-
31 E/A E/A E/A —/- —/=
23 —/A —/A E/— -/=
v23 E/A —/- -/=
PGm —/—- -/=
PEa —/-
S2i

The presence of reported afferent/efferent connections from one area to the other s indicated in the scheme (E, efferent connections; A, afferent connections; —, no reported connection). The pairs of areas for which available information
from anatomical and resting-state connectivity correspond are presented in bold font. Where there is no correspondence between the two measures, lightface is used. The comparison revealed a correspondence between resting-state and
anatomical connectivity for 39 of the 45 analyzed connections. In some cases, such as between areas 24/32 and v23, no anatomical connections were described despite the observed resting-state connectivity. The core areas 9/46d and 31
were strongly connected with areas 24/32, 8b, TPOC, 23,v23, and PGm, according to both resting-state and anatomical connectivity. Areas in each DMN subsystem (24/32-8b-TPOCand 23-v23-PGm) were more strongly connected with each
other and with the core areas, rather than with the areas of the other subsystem. Both connectivity measures showed areas PEa and S2i to be weakly connected with the other DMN nodes.

available anatomical, connectional, and electrophysiological data
in the monkey. However, caution is needed with regard to the
heterogeneity in areal definitions across studies and inherent un-
certainties of the data.

Our results of resting-state connectivity from the monkey
DMN areas largely reflect known anatomical connections in the
monkey brain, although the match is not perfect (Table 3). The
monkey DMN, like its human equivalent, consists of a set of
interconnected subsystems that converge on hubs including the
posterior cingulate cortex (PCC) and regions within prefrontal
cortex (PFC) (Buckner et al., 2008; Andrews-Hanna et al., 2010;
Sestieri etal., 2011). These hubs correspond with areas 9/46d and
31, which are estimated to be anatomically connected to many of
the other monkey DMN areas (Barbas and Pandya, 1989; Ko-
bayashi and Amaral, 2003; Morecraft et al., 2004; Parvizi et al.,
2006; Petrides and Pandya, 2006, 2007; Price, 2007; Seltzer and
Pandya, 2009). Anatomical connectivity data fit well with func-
tional connectivity based on resting-state data of two functionally
distinct DMN subsystems, including respectively areas 24/32, 8b,
and TPOC (first subsystem) and areas 23, v23, and PGm (second
subsystem). Furthermore, not only resting-state based functional
connectivity, but also anatomical connectivity showed that areas
PEa and S2i are only weakly connected with the other DMN
nodes. In a limited number of cases, we found resting-state connec-
tivity in the absence of documented monosynaptic anatomical con-
nectivity. This may imply either that functional connectivity exists
between regions not monosynaptically connected or that ana-
tomical connections exist but have not been described yet (Bull-
more and Sporns, 2009), or alternatively may speak to the
imperfections in our estimates.

The multisynaptic structure of the monkey DMN and the
functional selectivity of its subsystems during goal-directed be-
havior suggest the network draws on multiple, specialized pro-
cessing systems. This may explain why there is only partial
overlap with the functional connectivity analyses. Functional
connectivity analyses are based on correlated fluctuations of
fMRI signals (Fox and Raichle, 2007), and therefore they cannot
determine the presence of task-related activations or deactiva-
tions. Despite the similarity in the medial anterior and posterior
areas, our monkey DMN map overlaps only in part with the
functional connectivity map originating in the posterior cingu-
late cortex, as reported by Vincent et al. (2007). It was shown in
later analyses of the same data that the choice of different seeds
within the posteromedial cortex results in the definition of dis-

tinct correlated networks (Margulies et al., 2009). In this regard,
our monkey DMN map fits best with the limbic—heteromodal
network obtained by Margulies et al. (2009) by seeding specifi-
cally the region at or near areas 23/31. It will be interesting to
explore further the relationship between network analysis of the
monkey systems and their increased activity during passive
epochs.

Comparison with the human DMN

The definition of the human DMN comes from multiple meta-
analyses demonstrating consistent task-related deactivations
across a network including the PFC, the PCC, and the inferior
parietal lobule (Shulman et al., 1997; Mazoyer et al., 2001; Raichle
etal., 2001; Buckner et al., 2008; Laird et al., 2009). Both anatom-
ical (Parvizi et al., 2006) and functional (Vincent et al., 2007;
Margulies et al., 2009) connectivity investigations focusing on the
posterior cingulate cortex suggested correspondent systems the
monkey.

To evaluate the potential similarity of the monkey DMN with
its human equivalent, we performed a comparative analysis of the
deactivation foci between species. To this end, we referred for the
human DMN to the results of a previous meta-analysis con-
ducted by activation likelihood estimation on 1711 neuroimag-
ing publications and 7920 experimental contrasts (Laird et al.,
2009). We did not carry out quantitative interspecies compari-
sons, since the tasks performed by monkeys and humans in the
two meta-analyses were not the same. The qualitative compari-
son between spatial maps showed similarities in the broad pattern
of deactivated areas (Fig. 5). Putative monkey—human corre-
spondences were primarily found in the vicinity of the medial and
dorsolateral prefrontal cortex, the insula/operculum, the lateral
parietal cortex, and the posterior cingulate cortex. In both spe-
cies, the posterior cingulate included multiple foci. It is possible
that not only anatomical correspondence, but also functional
similarities exist between areas 23/31 of monkeys and humans
(Vogt et al., 1987, 2006); however, additional evidence is needed
to substantiate such a claim.

We also detected possible interspecies functional similarity in
prefrontal cortex for area 8b, as already predicted by comparative
cytoarchitectonic studies (Petrides and Pandya, 1999). It is less
clear whether human area OP4, for which a homology with mon-
key area PV has been proposed (Eickhoff et al., 2010), may in-
stead correspond to monkey area S2i. The monkey DMN areas in
PFC correspond only in part to human DMN areas according to
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classical principles of homology and cor-
tical proximity (Orban et al., 2004). For
example, monkey area 32 in medial PFC
may correspond to two parts in the hu-
man brain, including regions 9/10/32ac
and 10/24/32 pl, respectively. This result
suggests that the prefrontal DMN areas
underwent a functional reorganization, in
line with the disproportional anatomical
expansion of these regions throughout
primate evolution (Ongiir et al., 2003;
Buckner et al., 2008). Interestingly, we
also observed deactivations within the
posterior-medial intraparietal sulcus in
monkeys, but not in humans. Future in-
vestigations will be necessary to clarify
whether this difference results from the
different tasks performed by monkeys and
humans or is more directly related to evo-
lutionary changes in the functional archi-
tecture of the primate brain.

Putative species-general DMN

functions

Several theories have proposed that the
DMN is involved in broad external atten-
tion or monitoring. An alternative hy-
pothesis is that the DMN participates in
internal modes of cognition evoked spon-
taneously during passive moments (see
Buckner et al., 2008 for a recent review). It
is currently unclear which cognitive abili-
ties are present in the monkey and which
instead would be exclusively human. The
present results suggest that, like humans,
monkeys default to consistent sets of pro-
cesses when left in undirected states. It is
tantalizing to infer that monkeys engage
in forms of spontaneous cognition de-
tached from the external environment
during idle moments. The observation
that the anatomy of the DMN in monkeys
includes heteromodal association areas
and not sensory regions supports this
speculative possibility.

In conclusion, our study robustly con-
firms the existence of a default mode of
brain function in monkeys. The topolog-
ical similarities of the monkey DMN with
the human DMN imply a role of this
system that generalizes across species,
possibly related to internally directed cog-
nition. The DMN may have acquired ex-
panded functions throughout evolution,
along with the development of linguis-
tic, self-referential, and social abilities that
characterize and distinguish human from
nonhuman primates (Schilbach et al.,
2008; Passingham, 2009). Further investi-
gations of the monkey DMN areas, for ex-
ample with intracranial recordings or
with fMRI combined with excitatory/in-
hibitory interventions (e.g., Ekstrom et
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Figure 5.  Comparison of monkey (A) and human (B) default-mode network foci. The monkey DMN obtained from our
meta-analysis (as shown in Fig. 1) is spatially compared with a representative human DMN (adapted from Laird et al.,
2009). The latter was obtained by a coordinate-based meta-analysis of deactivation peaks across a large number of
published human fMRI studies, using the activation likelihood estimation (ALE) method (see Laird et al., 2009 for more
details). The ALE map was thresholded at p << 0.005, corrected with false discovery rate. The monkey and human DMNs are
represented on an anatomical template (F99 and MNI, respectively) in selected axial and sagittal sections. The illustrated
foci are classified on the basis of cytoarchitectonic mapping studies. The monkey and human DMNs are spatially compa-
rable, but not necessarily the same in amplitude, as they have been obtained using different datasets and different
statistical approaches.
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al., 2008), are needed to evaluate the electrophysiological and
behavioral correlates of the default-mode activity and to better
understand the functional role of the DMN.
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