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Abstract
Autoimmune connective tissue diseases (ACTDs) are a family of consistent systemic autoimmune
inflammatory disorders, including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA),
systemic sclerosis (SSc) and Sjögren’s syndrome (SS). Toll-like receptors (TLRs) are located on
various cellular membranes and sense exogenous and endogenous danger-associated molecular
patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs), playing a critical role in
innate immune responses. During the past decade, the investigation of TLRs in inflammation
autoimmune diseases has been fruitful. In this report, we review the significant biochemical,
physiological and pathological studies of the key functions of TLRs in ACTDs. Several proteins in
the TLR signaling pathways (e.g., IKK-2 and MyD88) have been identified as potential
therapeutic targets for the treatment of ACTDs. Antibodies, oligodeoxyribonucleotides (ODNs)
and small molecular inhibitors (SMIs) have been tested to modulate TLR signaling. Some drug-
like SMIs of TLR signaling, such as RDP58, ST2825, ML120B and PHA-408, have demonstrated
remarkable potential, with promising safety and efficacy profiles, which should warrant further
clinical investigation. Nonetheless, one should bear in mind that all TLRs exert both protective
and pathogenic functions; the function of TLR4 in inflammatory bowel disease represents such an
example. Therefore, an important aspect of TLR modulator development involves the
identification of a balance between the suppression of disease-inducing inflammation, while
retaining the beneficiary host immune response.

Keywords
Toll-like receptor; autoimmune diseases; inflammation; small molecule modulator; drug discovery

© 2013 Elsevier Inc. All rights reserved.
*Corresponding author: H.Yin, Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado at
Boulder, Boulder, CO 80309-0596, USA. Tel.: +1 303492 6786, hubert.yin@colorado.edu. .
#These authors contributed equally to this work.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Conflict of Interest Statement: The authors declare no conflict of interest.

NIH Public Access
Author Manuscript
Pharmacol Ther. Author manuscript; available in PMC 2014 June 01.

Published in final edited form as:
Pharmacol Ther. 2013 June ; 138(3): 441–451. doi:10.1016/j.pharmthera.2013.03.003.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



1. Introduction
Autoimmune connective tissue diseases (ACTDs) are characterized by the spontaneous
stimulation of the immune system with the production of autoantibodies, which are specific
for self-components in the nucleus and cytoplasm, often macromolecular complexes of
proteins and nucleic acids. ACTDs can affect any connective tissue of the human body via
inflammation or destruction. Possible causes of ACTDs include genetic (Chai, Phipps, &
Chua, 2012; Romano, et al., 2011), hormonal (Jacobson, Gange, Rose, & Graham, 1997;
Luppi, 2003) and environmental factors (Arnson, Shoenfeld, & Amital, 2010); genetic
factors may predispose an individual to the development of ACTDs. The classic ACTDs
include systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), systemic sclerosis
(SSc), Sjögren’s syndrome (SS) and mixed connective tissue disease (MCTD) (Diamond &
Lipsky, 2008).

Toll-like receptors (TLRs) are a family of evolutionarily conserved innate immune receptors
that play a crucial role in the first-line defense against foreign agents. These protein
receptors are characterized by their ability to respond to invading pathogens promptly by
recognizing particular TLR ligands, including flagellin and lipopolysaccharide (LPS) of
bacteria, nucleic acids derived from viruses and zymosan of fungi (Takeuchi, et al., 2002).
These ligands can activate dendritic cells (DCs), macrophages, B cells, T cells and other
antigen-presenting cells (APCs). These immunocompetent cells express different subsets of
TLRs (Table 1) and TLR activation allows for the effective presentation of microbial
antigens to cells of the adaptive immune system. However, recent findings have also
revealed that TLRs recognize and respond to endogenous ligands produced during infection
or damage (Asea, et al., 2002; Brentano, Schorr, Gay, Gay, & Kyburz, 2005; Okamura, et
al., 2001; Park, et al., 2004; Smiley, King, & Hancock, 2001; Termeer, et al., 2002; Vabulas,
et al., 2002; Vollmer, et al., 2005; Yasuda, et al., 2009) (Table 2). The identification and
characterization of endogenous ligands of TLRs provides a novel perspective for exploring
the etiology of autoimmune diseases. After ligands bind to TLRs or their accessory protein,
such as myeloid differentiation protein 2 (MD-2) for TLR4, TLRs dimerize (hetero- or
homodimerize) and undergo a conformational change that in turn leads to the recruitment of
downstream signaling molecules. A family of five adaptor proteins known as myeloid
differentiation primary response gene 88 (MyD88), TIR domain-containing adaptor protein
(TIRAP)/MyD88 adaptor-like protein (MAL), TIR-domain-containing adapter-inducing
interferon-β (TRIF), TRIF-related adaptor molecule (TRAM) and sterile α- and armadillo
motif-containing protein (SARM) are involved in the downstream signaling pathways of
TLRs (O’Neill & Bowie, 2007; O’Neill, Fitzgerald, & Bowie, 2003; Roelofs, Abdollahi-
Roodsaz, Joosten, van den Berg, & Radstake, 2008). These downstream pathways also
involve many kinases (IRAKs, TAK1, MAPK, PI3K, etc.), IRFs and NF-κB (for a recent
review, see (Akira & Takeda, 2004)), which leads to the production of pro-inflammatory
factors (IFN-α, IFN-β, IFN-γ, IL-6, etc.), perpetuating inflammation (Figure 1).

Increasing evidence suggests that innate and adaptive immune responses that mediate
autoimmune diseases are, at least in part, driven by the binding of PAMPs and DAMPs to
TLRs (Mills, 2011). TLR activation induces the production of pro-inflammatory factors and
type I interferons, which contributes to the development and/or progression of systemic
autoimmune diseases (Marshak-Rothstein, 2006). Therefore, targeting TLRs and modulating
TLR signaling have emerged as an important strategy for the treatment of ACTDs.

2. Systemic lupus erythematosus and TLRs
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease that involves almost
every organ of the human body, including the skin, kidney, blood cells, blood vessels, heart,
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pleura, central and peripheral nervous systems, muscles and joints (Tassiulas & T. Boumpas,
2008). Approximately 40% of SLE patients exhibit defects in the clearance of apoptotic
cells, which are removed rapidly by macrophages in healthy individuals (Kruse, et al.,
2010). An SLE murine model also shows a defect in the clearance of cellular debris
(Herrmann, et al., 1998). The inefficient clearance of cellular debris leads to an increased
release of host DNA and RNA, which induces the production of autoantibodies (Kruse, et
al., 2010). A number of studies have provided data consistent with the idea that TLRs
recognize the host DNA/RNA-containing immune complex and promote the inflammation
and activation of immune cells, leading to the production of pathogenic autoantibodies and
the development of clinical features of autoimmunity.

2.1 TLR3
TLR3 in SLE patients may act on mesangial cells in kidneys directly. The TLR3 ligand
polyinosinic/polycytidylic acid (poly(I:C)) worsens glomerulonephritis in MRLlpr/lpr mice
without an increased titer of anti-dsDNA antibodies (Patole, et al., 2005). Nonetheless,
deactivation of TLR3 does not affect the production of autoantibodies against either RNA-
or DNA-containing antigens or the severity of glomerulonephritis (Christensen, et al., 2005).

2.2 TLR4
The function of TLR4 is associated with the production of autoantibodies and
glomerulonephritis in SLE. Repeated injection of low-dose LPS into lupus-prone mice
(MRL/n, BXSB, or NZW) accelerates the development of lupus, increases the production of
autoantibodies and worsens renal injury (Hang, et al., 1983). Activation of TLR4 results in
the production of anti-dsDNA antibodies and the development of immune complex-
mediated glomerulonephritis in transgenic mice (B. Liu, et al., 2006). Inhibition of TLR4
signaling by Chaperonin 10 has been found to suppress cutaneous lupus and lupus nephritis
(Kulkarni, et al., 2012). These results suggest that enhanced TLR4 signaling alone is a
sufficient and a potent trigger to induce SLE. Renal injury is reduced and anti-nuclear, anti-
dsDNA and anti-cardiolipin antibodies titers are decreased in TLR4-deficient C57BL/6lpr/lpr

mice compared with TLR4-producing C57BL/6lpr/lpr mice (Lartigue, et al., 2009). TLR4
deficiency in tlr4−/− C57BL/6lpr/lpr mice also results in reduced levels of cytokines involved
in the development of SLE, i.e., IFN-γ and IL-6 (Lartigue, et al., 2009). No TLR4
polymorphism had been found to influence the susceptibility to SLE until recently. A
polymorphism in MyD88 adaptor-like (MAL) protein was found to be associated with
reduced susceptibility to SLE. Reduced SLE susceptibility modulates intracellular signaling
triggered by TLR2 and TLR4 activation (Castiblanco, et al., 2008).

2.3 TLR5
The chromosomal region lq41-42 is known to contain susceptibility genes of SLE (Graham,
et al., 2001). The TLR5 gene maps to chromosome lq41 and contains a common stop codon
polymorphism (allele C1174T), which abolishes the signaling of TLR5. Populations with
this stop codon produce reduced levels of pro-inflammatory cytokines compared with the
wild type control, suggesting that the TLR5 stop codon polymorphism is associated with
protection from the development of SLE; however, it may increase the risk of infection
(Hawn, et al., 2005).

2.4 TLR7/TLR9
TLR7 and TLR9 are associated with the production of IFN-α and the stimulation of B cells
in SLE. The nucleic acid-containing immune complexes engulfed by plasmacytoid dendritic
cells are translocated to the endosome and stimulate TLR7 or TLR9, resulting in a massive
release of IFN-α (Means, et al., 2005; Savarese, et al., 2006). Inhibitors of TLR7 abolish
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plasmacytoid dendritic cell IFN-α production stimulated by the immune complexes derived
from SLE patient sera (Barrat, et al., 2005). Delivery of the RNA-containing immune
complex to TLR7 is mediated by Fc γ receptors (FcγRs). TLR7 binding with RNA results
in dimerization, activation and internalization (Vollmer, et al., 2005). Myeloid dendritic
cells express FcγRs and respond to TLR7/8 ligands, which leads to the secretion of
IL-12p70 and the induction of IFNγ-producing type1 T helper (Th1) cell proliferation
(Napolitani, Rinaldi, Bertoni, Sallusto, & Lanzavecchia, 2005; Roelofs, et al., 2009). Murine
tlr7−/− plasmacytoid dendritic cells stimulated with an antibody binding U1snRNP produce
markedly reduced levels of IFN-α and IL-6 compared with wild type cells (Savarese, et al.,
2006). The immune complex can stimulate B cells via association with the B cell receptor
(BCR). Stimulation of B cells results in elevated proliferation and production of
autoantibodies (Leadbetter, et al., 2002). An extended study by Marshak-Rothstein and co-
workers has shown that murine tlr7−/− or tlr9−/− B cells are not stimulated by the immune
complex and the inhibitors of TLR7 or TLR9 eradicates the stimulation of B cells (Lau, et
al., 2005; Leadbetter, et al., 2002).

TLR9 is involved in the production of type I IFN (i.e., IFN-α and IFN-γ) and TNF-α in
SLE. The increased IFN-α levels in serum and type I IFN-regulated genes in peripheral
blood mononuclear cells (PBMCs) derived from SLE patients has been suggested to be
responsible for failed apoptosis (Baechler, et al., 2003; Bengtsson, et al., 2000). In the
presence of GM-CSF, DNA-containing immune complexes activate CD16 and TLR9 in
dendritic cells. The activation of CD16 and TLR9 results in the upregulation of TNF-α.
Inhibitors of TLR9 abolish the production of TNF-α and the tlr9−/− myeloid dendritic cells
reduce the effect of inhibition (Boule, et al., 2004). The immune complex co-localizes with
CD32 and TLR9 in the endosome and stimulates plasmacytoid dendritic cells to produce
IFN-α (Means, et al., 2005). Interferon regulatory factor 7 (IRF7) is a transcription factor
required for IFN-α production. IRF7 interacts with and is activated by MyD88 (an adaptor
of TLR9). In conventional dendritic cells, A/D-type CpG oligodeoxynucleotide (CpG-A, an
IFN-α-inducing TLR9 ligand) is rapidly transferred to the lysosome. CpG-A is retained in
the endosome of plasmacytoid dendritic cells together with the MyD88/IRF7 complex
(Honda, et al., 2005). Immune complexes containing nucleic acid stimulate plasmacytoid
dendritic cells and myeloid dendritic cells, which induce the proliferation of Th1 cells and
the release of IFN-γ. Auto-reactive Th1 cells promote the production of autoantibodies in B
cells. The key function of TLR7 and TLR9 in SLE has been also demonstrated in animal
models. Lupus-prone mice lacking TLR7 do not produce anti-Sm antibody (a specific auto-
antibody of SLE) and display ameliorated disease manifestation, decreased lymphocyte
activation and decreased serum IgG levels (Christensen, et al., 2006). In contrast,
overexpression of TLR7 aggravates systemic autoimmunity (Subramanian, et al., 2006).
TLR9 exhibits opposite functions in different murine models, which are reviewed in (W. U.
Kim, Sreih, & Bucala, 2009). TLR9 exerts a possible protective function against SLE, as
demonstrated in various murine models of lupus (Lartigue, et al., 2006; Wu & Peng, 2006;
P. Yu, et al., 2006). However, the function of TLR9 in humans remains unknown. It has
been shown that two alleles downregulate TLR9 expression and one of them predisposes
human to an increased risk of developing SLE, especially in the Japanese population (Tao,
et al., 2007).

3. Rheumatoid arthritis and TLRs
Rheumatoid arthritis (RA) is primarily a chronic inflammatory disease of the synovial joints
and the surrounding connective tissue (Firestein, 2008). Sometimes, RA presents as
systemic vasculitides that affects several organs (e.g., muscles, eyes, lungs, kidneys and
meninx) (Harris Jr. & Firestein, 2008). Many results have shown that various TLRs
participate in the development and maintenance of RA inflammation. Untreated RA can
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cause cartilage destruction, bone erosion and tendon fracture, leading to the deformation and
dysfunction of joints (Genovese, 2008). Autoantibodies are found in RA patients, in whom
rheumatic factor (directed against to the Fc portion of IgG molecules) and antibodies that
target citrullinated peptides display the highest prevalence and diagnostic value. The
production of autoantibodies involves the recognition of auto-antigens via TLR signaling
pathways.

The overexpression of a variety of TLRs (TLR2, TLR3, TLR5, TLR6, TLR7 and TLR9) has
been observed in RA synovium patients compared with healthy controls or osteoarthritis
patients (Radstake, et al., 2004; Roelofs, et al., 2005; Tamaki, et al., 2011). There are several
hypotheses regarding what triggers the overexpression of TLRs in RA joints. The microbial
pathogens or minor trauma that causes tissue damage can induce the release of endogenous
TLR ligands, leading to inflammation via TLR activation. Several microbes have been
suggested to participate in the pathogenesis of RA, including mycobacteria, mycoplasma,
Escherichia coli, Proteus mirabilis, Epstein-Barr virus and human parvovirus 19 (Rashid &
Ebringer, 2007). Nonetheless, conclusive evidence is still lacking. A recent study also
suggested that porphyromonas gingivalis is a potential source of RA pathogenesis
(Lundberg, Wegner, Yucel-Lindberg, & Venables, 2010). Stimulation and activation of
synovial fibroblasts via TLR2 leads to the production of multiple inflammatory chemokines
in RA joints, which causes chronic inflammation (Pierer, et al., 2004; Seibl, et al., 2003).
Compared with healthy controls, dendritic cells derived from RA patients have shown
elevated levels of inflammatory cytokines, such as TNF-α and IL-6, mediated by TLR2 and
TLR4 (Radstake, et al., 2004).

Multiple animal models have illustrated the important function of TLRs in the development
of arthritis (Huang & Pope, 2009). Intra-articular injection of streptococcal cell wall has
been shown to induce arthritis via TLR2 and MyD88 in mice (Joosten, et al., 2003). Another
TLR2 ligand peptidoglycan induces arthritis through the same pathway (Z. Q. Liu, Deng,
Foster, & Tarkowski, 2001). Necrotic cells release intracellular citrullinated proteins and
activate peptidyl arginine deiminase (PAD), which citrullinate fibrinogen and α-enolase in
RA synovium (Foulquier, et al., 2007). Citrullinated peptides are detected by APCs and
presented to T cells (Ireland & Unanue, 2011). B cells are also activated and produce anti-
citrullinated peptide antibodies (ACPAs). The RA-specific citrullinated fibrinogen-
containing immune complex co-stimulates macrophages via TLR4 and FcγR (Sokolove,
Zhao, Chandra, & Robinson, 2011). Although TLR2 and TLR4 expressed on the cell surface
are the primary targets of endogenous ligands in RA, endosomal TLR3 upregulated in
macrophages may also play a potential role in the initiation and maintenance of arthritis in
animal models (Meng, et al., 2010). Another endosomal TLR, TLR8, has been suggested to
contribute independently to the production of TNF-α in rheumatoid synovial membrane cell
cultures (Abdollahi-Roodsaz, et al., 2008; Sacre, et al., 2008). In the IL-1 receptor
antagonist knockout murine model IL1rn−/−, different TLR knockouts show opposite effects.
While tlr4−/− mice are protected against severe arthritis, tlr2−/− mice show much more
severe arthritis characterized by reduced suppressive function of regulatory T cells and
increased IFN-γ production by T effector cells (Abdollahi-Roodsaz, et al., 2008). Specific
inhibition of TLR4 reduces the severity of animal model arthritis and results in lower IL-1
expression levels in arthritic joints (Abdollahi-Roodsaz, et al., 2007). IL-1 is an important
cytokine in promoting damage associated with RA. Decreased expression of IL-1 results in a
reduction in joint inflammation (Furst, 2004). Therefore, TLR4 has been suggested to be a
potential target for RA treatment. Chaperonin 10, a TLR4 inhibitor, has been shown to be
well-tolerated and effective in the treatment of RA in a double-blind randomized trial
(Vanags, et al., 2006).
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4. Systemic sclerosis and TLRs
Systemic sclerosis (SSc) is characterized by the over-production and deposition of collagen
in the skin, kidneys, heart, lungs, gastrointestinal tract and blood vessel endothelium (Varga
& Denton, 2008). These abnormalities have been suggested to result from autoimmune
dysfunctions involving cytokines, immune cells and fibroblasts (Varga & Denton, 2008).
Meanwhile, many TLRs participate in the development of autoimmune dysfunction.

Several TLRs are implicated in the production of cytokines in SSc patients. Stimulation of
dendritic cells derived from SSc patients with the ligands of TLR2, TLR3 or TLR4 results in
increased secretion of IL-1, IL-6 and TNF-α compared with those isolated from patients in
the late stages of the disease or healthy controls (van Bon, et al., 2010). The levels of IL-12
produced by dendritic cells are low upon stimulation with TLR ligands in most SSc patients,
whereas the levels of IL-10 secreted by dendritic cells are particularly elevated in patients
with early diffused SSc (van Bon, et al., 2010). TLR4 has been suggested to mediate the
stimulation of monocytes and dendritic cells via LPS. TLR4-stimulated dendritic cells
secrete increased levels of IL-10 and to in turn increase the serum levels of the profibrotic
chemokine CCL18, which attracts T-cells, in SSc (van Lieshout, et al., 2009). The TLR3
ligand poly(I:C) substantially enhances the expression of both IFN and TGF-β responsive
genes in fibroblasts (Farina, et al., 2010). Serum HMGB-1 and soluble RAGE levels in SSc
patients are elevated, suggesting a correlation between disease severity and immunological
abnormalities (Yoshizaki, et al., 2009). The above results support the hypothesis that
autoantibodies stimulate T cells via TLRs and in turn promote the production of
autoantibodies from B cells in SSc patients in a similar way as observed in SLE. IFN-α
production in cultured normal PBMCs is significantly increased when induced by anti-
topoisomerase I antibody-positive SSc patient sera. Plasmacytoid dendritic cell activation
induces IFN-α production (D. Kim, et al., 2008). The production of IFN-α also requires
immune complexes containing CpG-rich DNA or single-stranded RNA (and associated
proteins, e.g., autoantibodies against DNA, RNA, or DNA/RNA binding proteins) derived
from dying cells and FcγRII (Boule, et al., 2004; D. Kim, et al., 2008; Ronnblom, Eloranta,
& Alm, 2006).

Recent studies have shown that SSc may share the same range of IFN-mediated diseases
with SLE. Some SSc patients manifest a “lupus-like” high IFN-inducible gene expression
pattern that correlates with the presence of anti-topoisomerase and anti-U1RNP antibodies
(Assassi, et al., 2010). Increased expression of interferon-responsive genes (IRGs) may be
mediated by DNA/RNA-containing immune complexes (Lafyatis & York, 2009). IFN-α
production is induced by the RNA-containing immune complexes in plasmacytoid dendritic
cells regulated by interactions with monocytes, NK cells and plasmacytoid dendritic cells
involving several pro-inflammatory and anti-inflammatory cytokines (Eloranta, et al., 2009).
These results support the hypothesis that the endosomal TLRs, such as TLR7 and TLR9,
may participate in the pathogenesis of SSc, such as in SLE.

5. Sjögren’s syndrome and TLRs
Sjögren’s syndrome (SS) is a systemic autoimmune disease in which immune cells
mistakenly attack and destroy exocrine glands (Carsons, 2008). This dysfunction of the
immune cells also involves TLRs. The salivary and lacrimal glands are heavily targeted;
therefore, typical symptoms of SS include dryness of the mouth and eyes. However, SS may
also affect other organs, including the kidneys, lungs, liver, pancreas, peripheral nervous
system and brain, with infiltration and destruction by immune cells (Carsons, 2008).

The expression profile of TLRs in SS patients varies greatly from that of healthy individuals.
TLR7 and TLR9 mRNA are upregulated in the PBMCs of primary Sjögren’s syndrome
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(pSS) patients compared with controls (Zheng, Zhang, Yu, & Yang, 2010). Some cells in the
epithelial islands, lymphocytes and ductal epithelial cells of the parotid gland in pSS patients
are positive for TLR7 and TLR9, while TLR7-positive or TLR9-positive cells are rarely
found in the ductal epithelial cells of controls (Zheng, et al., 2010). Cultured salivary gland
epithelial cells (SGECs) are found to express functional TLR2, TLR3 and TLR4 following
treatment with the respective ligands (Spachidou, et al., 2007). The constitutive expression
of TLR1, TLR2 and TLR4 mRNA is significantly higher in SS-SGECs than in control
SGECs (Spachidou, et al., 2007). TLR2, TLR3, TLR4 and MyD88 are overexpressed in the
labial salivary glands of pSS patients compared with controls. Expression of TLR2, TLR3,
TLR4 and MyD88 has also been observed in infiltrating mononuclear cells, acinar cells and
ductal epithelial cells. The TLR expression pattern is similar in cultured human salivary
gland cells (Kawakami, et al., 2007). The ligands of TLRs stimulate the expression of CD54
and the production of IL-6 and then induce the phosphorylation of ERK, JNK and p38,
without the phosphorylation of Akt or the activation of NF-κB p65 (Kawakami, et al.,
2007). Activation of TLR2 by peptidoglycan has been suggested to induce the production of
IL-17 and IL-23 in the PBMCs of SS patients via pathways including IL-6, signal transducer
and activator of transcription 3 (STAT3) and NF-κB (Kwok, et al., 2012). The TLR3 ligand
poly(I:C) not only stimulates innate immune responses, but it is also involved in the
activation of programmed cell death via anoikis in SS by upregulation of pro-apoptotic Bmf,
BimEL and Bax and the downregulation of pro-survival Bcl-2 (Manoussakis, Spachidou, &
Maratheftis, 2010).

TLR7 and TLR9 are involved in the proliferation, differentiation and transition of B cells.
Most TLRs are expressed at very low or undetectable levels in human naive B cells, while
the expression levels of TLR7 and TLR9 are rapidly induced by BCR activation. In addition
to producing antibodies, B cells can present antigens, secrete cytokines and regulate T cell
functions (Lanzavecchia & Sallusto, 2007; Meyer-Bahlburg & Rawlings, 2008). B cells
expressing specific BCRs of nucleic acids can internalize auto-antibody- and DNA-
containing immune complexes, resulting in the activation of endosomal TLR7 and TLR9
(Leadbetter, et al., 2002). TLR7/9 activation leads to the proliferation and differentiation of
human memory B cells into plasma cells. Plasma cells are responsible for the secretion of
cytokines and the upregulation of activation markers for antigen presentation to T cells
(Meyer-Bahlburg & Rawlings, 2008). The coupling of TLR9 and BCR in the absence of T
cells enables naive B cells to be selectively activated by microbial stimuli, which renders the
specificity of the human immune system. TLRs are constitutively expressed in memory B
cells, which ensure permanent antibody production of all memory specificities sustaining the
serological memory (Lanzavecchia & Sallusto, 2007; Meyer-Bahlburg & Rawlings, 2008;
Shlomchik, 2009). TLR9 has been suggested to deliver sufficient signaling to keep B cells
alive and confer auto-reactive B cells with a marginal zone-like phenotype. As clusters of
transitional type II B cells in the salivary glands of SS patients express mRNAs for Notch-2,
Blimp-1 and TLR9 but not Pax-5, Bcl-6 and activation-induced cytidine deaminase (AID)
(Guerrier, et al., 2012).

SS patients also display their own “IFN signature”. Immune complexes containing
U1snRNP and hY1RNA induce the production of IFN-α in SLE and SS patients (Lovgren,
et al., 2006). The expression profile of 23 genes in the IFN pathways (including TLR8 and
TLR9) varies significantly between SS patients and controls (Gottenberg, et al., 2006).
Engagement of TLR3 in salivary glands results in the loss of glandular function associated
with the production of IFN-α, IFN-β and inflammatory cytokines (i.e., IL-6 and TNF-α)
(Deshmukh, Nandula, Thimmalapura, Scindia, & Bagavant, 2009). Increased expression of
the IFN-inducible genes BAFF and IFN-induced transmembrane protein 1 in ocular
epithelial cells has also been demonstrated via real-time PCR (Gottenberg, et al., 2006).
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Analysis of mRNA isolated from the peripheral blood of SS patients has consistently
revealed the overexpression of IFN-induced genes (Emamian, et al., 2009).

6. TLR modulators as potential therapeutics of ACTDs
Blocking ligands binding to TLRs effectively suppress downstream inflammation activities.
This approach has proven to be successful for various diseases. Antibodies against TLRs
(Elass, et al., 2005; Erridge, Spickett, & Webb, 2007; Kumar, Nagineni, Chin, Hooks, &
Detrick, 2004; Roger, et al., 2009; Ungaro, et al., 2009; M. Yu, et al., 2006) and
oligodeoxyribonucleotides (ODNs) (Barrat, et al., 2005; Dong, Ito, Ishii, & Klinman, 2004,
2005; Latz, et al., 2007; Ranjith-Kumar, et al., 2008; Zeuner, et al., 2002) have been used to
inhibit TLR signaling (Figure 2). Additionally, small molecule inhibitors (SMIs) of TLR
downstream signaling have shown promise for targeting ACTDs (Figure 2) (Capolunghi, et
al., 2010; DeVry, et al., 2004; Dorner, 2010; Kawamoto, Ii, Kitazaki, Iizawa, & Kimura,
2008; Kishore, et al., 2003; Kyburz, Brentano, & Gay, 2006; Mbalaviele, et al., 2009;
Nakamura, et al., 2007; Schopf, et al., 2006; Tidswell, et al., 2010; Vanags, et al., 2006).

6.1 Antibodies against TLRs
Several antibodies have been designed to block the interaction between TLRs and their
respective ligands (Nelson, et al., 2000). Antibodies against TLR1, TLR2 and TLR4 have
been proven to be functional in vitro (Elass, et al., 2005; Erridge, et al., 2007; M. Yu, et al.,
2006). Matrix metalloproteinase-9 (MMP-9) is a critical factor of the host defense
mechanism, which functions by facilitating leukocyte extravasation in infected tissues.
Mycobacterial lipomannans (ML) induce MMP-9 gene expression in human macrophage-
like, differentiated THP-1 cells. Pretreatment with anti-TLR1 (IgG1κ clone GD2.F4), anti-
TLR2 (IgG2a clone TL2-1) and anti-CD14 (IgG1 clone MEM-18) antibodies inhibits
MMP-9 gene expression in cultured THP-1 cells (Elass, et al., 2005). In human coronary
artery endothelial cells, pre-incubation with anti-TLR2 (clone TL2.5) antibody inhibits E-
selectin expression induced by non-enterobacterial LPS and the established TLR2 ligand
Pam3CSK4 (Erridge, et al., 2007). Neutralizing anti-TLR2 antibody inhibits HMGB1-
induced IL-8 release in HEK/TLR2 overexpressing cells in a dose-dependent manner (M.
Yu, et al., 2006). OPN-305, a humanized IgG4 monoclonal antibody (MAb) against TLR2
developed by Opsona Therapeutics, is under development as a treatment for the prevention
of delayed graft function following renal transplantation (Arslan, et al., 2012). As TLR2
signaling also contributes to the development of ACTDs, OPN-305 might also be used to
treat ACTDs. Similarly, anti-TLR4 antibody inhibits HMGB1-mediated IL-8 release in
whole blood and isolated primary macrophages derived from healthy volunteers in a dose-
dependent manner (M. Yu, et al., 2006).

However, the current in vivo results of TLRs antibodies are less clear. A novel TLR4
antagonist antibody ameliorates inflammation but impairs mucosal healing in two murine
inflammatory bowel disease (IBD) models (Ungaro, et al., 2009). However, the repression
of inflammation demonstrates that overexpressed TLR4 in the intestinal mucosa of IBD
patients is not only a contributing factor to the development of inflammation but also an
important mediator of mucosal repair. This study also highlights the difference between the
therapeutic effect of anti-TLR4 antibodies in chronic inflammation and acute sepsis (Roger,
et al., 2009). Furthermore, in addition to the inconvenience of repeated injections and the
high costs, antibodies of TLRs only target cell surface TLRs, as they cannot cross the cell
membrane, limiting their application with endosomal TLRs.

Li et al. Page 8

Pharmacol Ther. Author manuscript; available in PMC 2014 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



6.2 Oligodeoxyribonucleotides (ODNs)
As shown in Figure 1 and Table 2, endosomal TLRs recognize different types of nucleic
acids. TLR3 recognizes double-stranded RNAs (Alexopoulou, et al., 2001; Brentano, et al.,
2005), TLR7 and TLR8 recognize single-stranded RNAs (Diebold, et al., 2004; Heil, et al.,
2004; Vollmer, et al., 2005), and TLR9 recognizes single-stranded DNA molecules
containing hypomethylated CpG motifs (Hemmi, et al., 2000; Yasuda, et al., 2009).
Endosomal TLRs may come into contact with nucleic acid directly via their ectodomain
(Latz, et al., 2007). This finding has led to the development of single-stranded
oligodeoxyribonucleotides (ODNs) designed to inhibit endosomal TLR activity (Table 3).
Some ODNs have demonstrated the ability to inhibit the activation of TLRs in recent studies
(TLR3 (Ranjith-Kumar, et al., 2008), and TLR7 and TLR9 (Barrat, et al., 2005)). ODNs
have been developed into medication for inflammatory diseases, as they have been effective
in murine models of arthritis (Dong, et al., 2004; Zeuner, et al., 2002) and SLE (Dong, et al.,
2005). Suppressive ODNs are hypothesized to interact directly with endosomal TLRs
competing with ligands and preventing signaling (Latz, et al., 2007). The sequence, length
and resistance to DNase of ODNs are essential for inhibition (Barrat, et al., 2005).

6.3 Small molecule modulators
Small molecule inhibitors (SMIs) can be taken orally and are designed to penetrate the cell
membrane and therefore target endosomal TLRs with low costs and convenience of use.
Based on evidence that malfunction of innate immune TLR signaling contributes to
autoimmune diseases, SMIs have been designed to inhibit innate immune signaling and treat
inflammation and autoimmune diseases.

Chloroquine and its derivatives have had moderate effects in the treatment of RA (Kyburz,
et al., 2006) and SLE (Dorner, 2010) for decades, although the mechanism of their
therapeutic effect is not precisely known (Abarientos, et al., 2011). Chloroquine derivatives
are thought to reduce TLR signaling by inhibiting the acidification of endosomes (Hacker, et
al., 1998), which is a prerequisite for activation of TLR3, TLR7, TLR8 and TLR9 (de
Bouteiller, et al., 2005; Gibbard, Morley, & Gay, 2006; Lee, et al., 2003; Rutz, et al., 2004).
However, significant off-target toxicity at higher doses limits their use.

CPG-52364, a specific SMI of TLR7/8/9 developed by Pfizer, interferes at an early stage of
the immune cascade by blocking inappropriate immune activation. Clinically, CPG-52364
has been reported to be well tolerated in healthy volunteers. CPG-52364 inhibits disease
development in SLE and other autoimmune disorders, such as RA and psoriasis, without
causing general suppression of immune function. Additionally, preclinical data have shown
that the combination of CPG-52364 with hydroxychloroquine delivers enhanced efficacy,
suggesting that CPG-52364 could be used clinically either in combination with
hydroxychloroquine or as a replacement therapy for hydroxychloroquine in the first-line
treatment of SLE.

RDP58, a protease resistant decapeptide (2HN-Arg-Nle-Nle-Nle-Arg-Nle-Nle-Nle-Gly-Tyr-
CONH2. Nle=norleucine) developed by a computer-assisted rational design based on human
leukocyte antigen (HLA)-derived peptides, has been found to both inhibit the interaction of
MyD88 with IRAK4 and TRAF6 and be effective in treating different types of autoimmune
inflammatory disorders (DeVry, et al., 2004; W. Liu, Deyoung, Chen, Evanoff, & Luo,
2008; Travis, et al., 2005). DeVry and co-workers have shown that RDP58 treatment
reduces cellular infiltration within the spinal cord and TNF-α expression levels in an acute
experimental autoimmune encephalomyelitis rat model (DeVry, et al., 2004). Liu and co-
workers have further found that RDP58 reduces TNF-α, nerve growth factor and substance
P expression and markedly ameliorates histopathology in an autoimmune cystitis mouse
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model. Clinical trials have shown that RDP58, administered at a dose of 200 mg or 300 mg,
is effective in treating mild-to-moderate ulcerative colitis (Travis, et al., 2005). Additionally,
oral administration of RDP58 conjugated to the cholera toxin B subunit has been found to
significantly improve survival rates and histopathology manifestation of allograft kidney
tissue (Yu, et al., 2012).

ST2825 (Table 4), a synthetic peptido-mimetic that inhibits MyD88 dimerization, interferes
with recruitment of IRAK1 and IRAK4 via MyD88 and suppresses pro-inflammatory factor
over-production. Capolunghi and co-workers have shown that ST2825 inhibits TLR9
activation and blocks autoantibody production in human B cells derived from SLE patients
(Capolunghi, et al., 2010).

IKK-2 is a protein subunit of IκB kinase, which is a critical component of TLR innate
immune signaling. IKK-2 activity causes activation of NF-κB and pro-inflammation factor
over-production (Baldwin, 2012; Kanarek & Ben-Neriah, 2012). Therefore, IKK-2 is also an
important drug target for ACTDs due to TLR signaling over-activation. ML120B (Table 4)
is a potent, selective, reversible and ATP-competitive inhibitor of IKK-2 with an IC50 of 60
nM. Newton and co-workers have shown that ML120B is effective to prevent activation of
NF-κB in pulmonary epithelial cells and results in the inhibition of pro-inflammatory factors
(Newton, et al., 2007). ML120B has therapeutic inhibitory effects on joint destruction in a
rat adjuvant-induced arthritis model (Schopf, et al., 2006). Additionally, ML120B has been
found to inhibit the inflammation of joints in a murine antibody-induced arthritis model
(Izmailova, et al., 2007). PHA-408 (Table 4), another ATP-competitive IKK-2 inhibitor
(IC50, 40 nM), developed by Pfizer, inhibits TNF-α production, joint swelling and bone
destruction in a streptococcal cell wall-induced arthritis rat model and is well-tolerated at
maximally efficacious doses (Mbalaviele, et al., 2009).

7. Perspectives
The human innate immune system is geared to sense endogenous/exogenous danger-
associated molecular patterns (DAMPs)/pathogen-associated molecular patterns (PAMPs).
Increasing experimental evidence suggests that the malfunction of TLR signaling
significantly contributes to the development of ACTDs; therefore, components of TLR
signaling pathways are highly relevant drug targets for the treatment of autoimmune
diseases. Several TLR modulators have been developed, which are currently being tested in
clinical trials. The challenge is to modulate immune signaling without over-suppressing
innate immune signaling and deregulating other signaling pathways. Therefore, it is
important to find a balance between the suppression of disease-inducing inflammation while
retaining the beneficiary host immune response. The future development of TLR modulators
for ACTD therapeutics shall focus on this goal.
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Abbreviations

ACTDs autoimmune connective tissue diseases

SLE systemic lupus erythematosus

RA rheumatoid arthritis

SSc systemic sclerosis
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SS Sjögren’s syndrome

MCTD mixed connective tissue disease

TLRs Toll-like receptors

DAMPs danger-associated molecular patterns

PAMPs pathogen-associated molecular patterns

MyD88 myeloid differentiation primary response gene 88

TRIF TIR-domain-containing adapter-inducing interferon-β

SARM sterile α- and armadillo-motif-containing protein

TIRAP TIR domain-containing adaptor protein

MAL MyD88 adaptor-like protein

TRAM TRIF-related adaptor molecule

TRAF tumor necrosis factor receptor-associated factor

TBK1 TRAF family member-associated NF-κB activator (TANK)-binding kinase 1

RIP1 receptor-interacting protein 1

IRAK IL-1R-associated kinase

TAK1 transforming growth factor β-activated kinase 1

TAB TAK1-binding protein

NF-κB nuclear factor-κB

IKK inhibitor of NF-κB kinase

IκB inhibitor of NF-κB

TNF tumor necrosis factor

IRF interferon regulatory factor

IFN interferon

mDCs myeloid dendritic cells

MKK mitogen-activated protein kinase kinase

JNK JUN N-terminal kinase

LPS lipopolysaccharide

MD-2 myeloid differentiation protein 2

HMGB1 high mobility group box 1

FcγRs Fc γ receptors

RAGE receptor for advanced glycation end products

APCs antigen-presenting cells

dsDNA double-stranded DNA

poly(I:C) polyinosinic/polycytidylic acid

BCR B cell receptor

PBMCs peripheral blood mononuclear cells
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IRF7 interferon regulatory factor 7

PAD peptidyl arginine deiminase

ACPA anti-citrullinated peptide antibodies

IRGs interferon responsive genes

SGECs salivary gland epithelial cells

SMIs small molecule inhibitors

STAT3 signal transducer and activator of transcription 3

AID activation-induced cytidine deaminase;

ODNs oligodeoxyribonucleotides

MMP-9 matrix metalloproteinase-9

ML mycobacterial lipomannans

IBD inflammatory bowel disease
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Figure 1. Toll-like receptor (TLR) signaling pathways
Myeloid differentiation primary response gene 88 (MyD88) is the key signaling adaptor for
TLR1, TLR2, TLR4, TLR5, TLR6, TLR7, TLR8 and TLR9. Only TLR3 and TLR4 signal
via TIR-domain-containing adapter-inducing interferon-β (TRIF). Each adaptor of the
respective receptor complex positively regulates transcription factor activation, with the
exception of, the sterile α- and armadillo motif-containing protein (SARM, not shown in
this figure), which inhibits TRIF-mediated transcription factor activation. MAL, MyD88
adaptor-like protein; TRAM, TRIF-related adaptor molecule; TBK1, tumor necrosis factor
receptor-associated factor (TRAF) family member-associated NF-κB activator (TANK)-
binding kinase 1; RIP1, receptor-interacting protein 1; IRAK, IL-1R-associated kinase;
TAK1, transforming growth factor-β-activated kinase; TAB, TAK1-binding protein; IKK,
inhibitor of NF-κB kinase; IκB, inhibitor of NF-κB; NF-κB, nuclear factor-κB; TNF, tumor
necrosis factor; IRF, interferon regulatory factor; IFN, interferon; mDCs, myeloid dendritic
cells; MKK, mitogen-activated protein kinase kinase; JNK, JUN N-terminal kinase.

Li et al. Page 23

Pharmacol Ther. Author manuscript; available in PMC 2014 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2. Diverse TLR modulators block TLR signaling pathways at different stages
Some SMIs, ODNs and TLR-neutralized antibodies directly block TLRs and TLR accessory
proteins. RDP58, which inhibits the interaction of MyD88 with IRAK4 and TRAF6,
ST2825, which inhibits MyD88 dimerization, and IKK-2 inhibitors (ML120B and
PHA-408) are promising drug-like SMIs for ACTD treatment. TNF-α-neutralized
antibodies have been widely applied in the treatment of ACTDs (such as RA and ankylosing
spondylitis).
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Table 1

Expression profile of TLRs among different immunocompetent cells

Cell type TLRs expressed Ref.

Macrophage TLR1-9 (McCoy & O’Neill, 2008)

B cell TLR1, TLR2, TLR3,
TLR4, TLR6, TLR7
and TLR9, but not
TLRs TLR5 and
TLR8

(Gururajan, Jacob, & Pulendran, 2007)

T cell TLR1-9 (Babu, Blauvelt, Kumaraswami, & Nutman, 2006; Tabiasco, et al., 2006)

Dendritic cell TLR1-9 (Reis e Sousa, 2004)

Note: TLR expression levels show a high degree of variation among individuals. In mice, there may be strain-specific differences in TLR
expression.
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Table 3

Oligodeoxyribonucleotides (ODNs) associated with endosomal TLRs

Endosomal TLR Targets Sequences of ODNs Ref.

TLR3 TCGTCGTTTGTCGTTTTGTCGTT (Ranjith-Kumar, et al., 2008)

TLR7 TCCTGGAGGGGTTGT (Barrat, et al., 2005)

TLR9 TGCTTGCAAGCTTGCAAGCA (Barrat, et al., 2005)

TLR7 and TLR9 TGCTCCTGGAGGGGTTGT (Barrat, et al., 2005)
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Table 4

Small molecule inhibitors (SMIs) of TLR signaling pathways applied for the treatment of autoimmune
diseases

Compounds Targets Chemical Structures Ref.

Hydroxychloro
quine

unknown (Dorner, 2010)

ST2825 MyD88 (Capolunghi, et al., 2010)

ML120B IKK2 (Schopf, et al., 2006)

PHA-408 IKK2 (Mbalaviele, et al., 2009)
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