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Abstract

The effects of habitat fragmentation and their implications for biodiversity is a central issue in conservation biology which
still lacks an overall comprehension. There is not yet a clear consensus on how to quantify fragmentation even though it is
quite common to couple the effects of habitat loss with habitat fragmentation on biodiversity. Here we address the spatial
patterns of species distribution in fragmented landscapes, assuming a neutral community model. To build up the
fragmented landscapes, we employ the fractional Brownian motion approach, which in turn permits us to tune the amount
of habitat loss and degree of clumping of the landscape independently. The coupling between the neutral community
model, here simulated by means of the coalescent method, and fractal neutral landscape models enables us to address how
the species–area relationship changes as the spatial patterns of a landscape is varied. The species–area relationship is one of
the most fundamental laws in ecology, considered as a central tool in conservation biology, and is used to predict species
loss following habitat disturbances. Our simulation results indicate that the level of clumping has a major role in shaping the
species–area relationship. For instance, more compact landscapes are more sensitive to the effects of habitat loss and
speciation rate. Besides, the level of clumping determines the existence and extension of the power-law regime which is
expected to hold at intermediate scales. The distributions of species abundance are strongly influenced by the degree of
fragmentation. We also show that the first and second commonest species have approximately self-similar spatial
distributions across scales, with the fractal dimensions of the support of the first and second commonest species being very
robust to changes in the spatial patterns of the landscape.
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Introduction

There is an overwhelming belief that habitat loss and

fragmentation are the major forces contributing to the decline of

biological diversity, which is supported by both theoretical and

empirical studies [1–4]. On the other hand, there is also

controversial evidence, based on long-term empirical surveys that

provide instances of a positive correlation between species richness

and habitat loss and fragmentation [5–7]. In this context, there is

an extremely fruitful debate about the relative significance of

habitat loss and changes in spatial configuration on the outcome of

the spatial patterns of species distribution in fragmented

landscapes [8].

One important tool to address this question is the species–area

relationship (SAR), which has reached the status of an ecological

law [9]. The species–area relationship describes the increase in the

number of species along a gradient of ecosystems of increasing

size. It has become a nearly ubiquitous pattern of biodiversity. The

SAR has a major role in conservation biology, since it can be used

as an indirect method to predict extinction rates from habitat loss

[10,11]. To study how habitat loss and fragmentation influence the

scenarios displayed by the species–area relationships we make use

of methods of modelling neutral landscapes, which can capture the

essence of the spatial patterns of real landscapes [12]. In natural

landscapes, habitats tend to be clumped or spatially correlated,

and therefore the percolation maps [12,13], whereby completely

random landscape strucutures are produced, do not provide a

satisfactory means for assessing the ecological consequences of a

landscape structure because it is not possible to disentangle the

effects of amount of habitat from those of its fragmentation

[12,14]. To circumvent this limitation, here the landscape is

modelled through the use of an important class of neutral

landscape models, known as fractal landscapes [15,16].

In this paper the diversity of species is investigated in a spatially

explicit neutral community using a model similar to the voter

model of Durrett and Levin [17,18]. The voter model with

mutation, as defined by Durrett and Levin [18], is one of the first

and simplest spatially explicit models for studying the observed

patterns of the species–area relationships. The model is repre-

sented on a two-dimensional lattice, where every site is occupied

by a single individual. The dynamics of the model accounts for the

processes of birth, local dispersal and speciation, the latter

resulting from occurrences of point mutation. One important

feature of the model is the functional equivalence between

different species, which is one of the basic assumption of Hubbell’s

neutral theory [19]. This means that the rates of death, birth,

dispersal and speciation are the same regardless of the individual’s

identity. Unlike the original proposal here we consider fragmented
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landscapes, where some sites of the lattice can be unsuitable for

occupancy. In addition, the configuration and distribution of

suitable/unsuitable habitats are controlled by a fractional

Brownian motion, which produces spatially correlated landscapes.

In this generalized model, we can easily tune the level of spatial

autocorrelation and so produce very distinct landscape structures.

This paper also presents some simulation results for species

abundance distributions and the fractal dimension of the support

for where the first and second commonest species reside. In what

follows, we describe our modelling in the section Material and

Methods, and then we discuss the results. We present our

conclusions in the last section.

Materials and Methods

Our study is based on extensive computer simulations. Because

we are only interested in the spatial patterns of species distribution

in an equilibrium state, a powerful coalescence method which

employs ideas from coalescence theory [20,21] fulfills the

requirements of computer efficiency and more importantly the

attainment of an equilibrium regime. A brief description of this

method follows.

The Model
The model assumes a finite population of size Ns|p arranged

on a two-dimensional square lattice with sides of length L, so that

Ns~L|L. The proportion of suitable habitats p is an input

parameter of the model. In this way, each cell (habitat) of the

lattice can be occupied by at most a single individual. Unsuitable

habitats are considered to be uninhabitable and remain unoccu-

pied indefinitely. Of course, this is an oversimplication because

habitats that are hostile to one set of species can provide a

beneficial environment to another set of species. Multi-habitat

landscape models can be used in a more generalized context since

they take into account the affinities of each species to the different

types of habitat [22,23]. Nevertheless, our framework assumes a

complete equivalence between the species, which is a premise of

the neutral theory [19].

The distribution of suitable/unsuitable cells is not completely

random but has a controlled level of aggregation, a desirable

feature of more realistic spatial patterns for habitat distribution

[24]. With this aim, we use fractal landscapes, a long standing and

useful tool in realistic rendering and modelling of geographical

reliefs and frontiers, among other natural surfaces and interfaces

[15]. Once the landscape is established, the next step concerns the

dynamics of the neutral community model.

Fractal Landscapes
Fractal landscapes are constructed through the use of fractional

Brownian motion [25]. A fractional Brownian motion (fBm) is a

generalization of a random process X (t) with Gaussian increments

so that

var(X (t2){X (t1))!jt2{t1j2H ð1Þ

where var denotes the variance, and H~1=2 characterizes the

ordinary Brownian motion. In fractional Brownian motion the

Figure 1. Instances of fragmented landscapes with varying degree of spatial autocorrelation. In the left panels the Hurst exponent is set
at H~0:01, while for the middle and right panels its value is set at H~0:5 and H~0:9 respectively. In the upper panels the sites in a 256|256 grid
are are color-coded according to an elevation scale X , with scale identifier shown along the right side bar. To each site in the grid corresponds a
height, as provided by the fractional Brownian motion (fBm) algorithm. The lower panels are obtained from their corresponding configurations in the
upper panels by fixing the fraction of suitable habitats at p~0:5.
doi:10.1371/journal.pone.0066495.g001

Biodiversity in Fragmented Landscapes
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scaling behaviour of the different traces is determined by the Hurst

exponent, H, taken in the range 0vHv1. When H is around

zero, the fBm produces very rough structures, while at the other

extreme H?1, smooth traces are generated. Thus, by varying the

parameter H starting from zero, one produces a fragmentation

gradient, and the landscape structure changes gradually from

highly fragmented to highly clumped. The fBm conceives

statistically self-affine structures with the symmetry property

X (rt)~rH X (t) for any real rw0 [15]. To generate an fBm we

employ the spectral synthesis method, which is established on the

Figure 2. Effect of H on biodiversity levels. Species-area relationships for different values of the Hurst exponent H and fixed fraction of suitable
habitats p~0:6. The parameter values are L~1024; Hurst exponent: H~0 (circles), H~0:1 (diamonds), H~0:5 (triangles up), H~0:7 (triangles left)
and H~0:9 (stars); and speciation rate: n~1|10{6 (left panel) and n~1|10{4 (right panel). The data points represent an average over 50
independent runs. The error bars are smaller than the symbols.
doi:10.1371/journal.pone.0066495.g002

Figure 3. Change of the biodiversity levels with the occupation probability p. The parameter values are lattice size L~1024, speciation
rate n~1|10{5 , and Hurst exponents H~0:1 (left panel) and H~0:9 (right panel). The occupation probabilities are p~0:3 (circles), p~0:5927
(triangles) and p~0:7 (diamonds). The data points represent an average over 50 independent runs. The error bars are smaller than the symbols.
doi:10.1371/journal.pone.0066495.g003

Biodiversity in Fragmented Landscapes
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spectral representation of the samples of the process X (t). The

spectral density of a fractional Brownian motion depends on the

frequency f according to

S(f )!
1

f b
ð2Þ

where b~2Hz1. In order to convert the resulting structure into

two-dimensional spatial patterns of ones and zeros corresponding

to suitable and unsuitable habitats, the fBm is segmented [16]. The

points which are above (below) a given critical elevation Xc are

ascribed the value one (zero). The critical elevation Xc is settled by

the fraction of suitable habitats p. Thus, each realization of the

landscape construction corresponds to a new value of Xc.

Neutral Dynamics
The species–area relationship (SAR) is a central concept in

ecology and has acquired the status of an ecological law [9,26]. It

has become axiomatic that the number of species S grows

approximately with the sampled area A as S*Az, where z denotes

the species–area exponent. If the relative species abundances

follow a lognormal distribution, and each area is a random sample

from the larger population, then according to Preston S*A0:25,

i.e., z~0:25 [27]. While the canonical relationship of Preston has

not been evidenced by empirical measurements, the values of z are

rather conservative, and the great majority of the reported values

are within the range 0:1{0:5 [26]. From a different perspective,

MacArthur and Wilson have proposed that the number of species

in a given region arises from a balance between immigration and

local extinctions [28]. These ideas have been further developed:

dispersal and speciation have been incorporated into a spatially

explicit model aiming at explaining the observed patterns of

species–area relationships [18,19]. This model is a version of the

voter model, primarily conceived for studying the spreading of

opinions in a social system [17].

The voter model with mutation as defined by Durrett and Levin

[18], and used here, is represented on the space by a two-

dimensional integer lattice of size (L|L), which is then divided

into square cells (sites), each one being occupied by at most a single

individual. The model assumes reproductive equivalence of

species, regardless of a species’ identity, a premise of Hubbell’s

unified neutral theory of biodiversity and biogeography [19]. At

each time step an individual chosen at random dies. This empty

location is then, with probability n, filled by a new species

Figure 4. Species abundance distributions. Upper panels: the parameter values are p~0:7, n~1|10{5 (left set of panels) and n~1|10{4

(right set of panels). Lower panels: the parameter values are p~0:3, n~1|10{5 (left set of panels) and n~1|10{4 (right set of panels). The Hurst
exponents are indicated in the figures.
doi:10.1371/journal.pone.0066495.g004
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(speciation event), or else it is filled by a species chosen from its

neighbourhood, which comprises the four cells that are orthogonally

adjacent to the site of interest (the von Neumann neighbourhood). In the

latter event, the four neighbouring cells are equally likely to

contribute offspring to occupy the empty location. Note that as

soon as an individual is eliminated, its location is immediately filled

up. Therefore, each time step corresponds to a death event, and

the parameter n is the speciation rate in units of the death rate (for

a detailed description of the model, see [18]). In fragmented

landscapes, as studied here, only the suitable habitats in the

neighbourhood contribute to the recolonization of an empty

location.

The species are indexed by a real number in the interval (0,1),
and each new species is labelled by a randomly chosen number

from this interval not duplicating an existing index. A cell’s being

Figure 5. Measurement of the fractal dimension Dr of the spatial distribution of the commonest species. N(E) versus E. The parameter
values are L~1024, speciation rates n~1|10{4 (left panels), n~1|10{5 (middle panels), n~1|10{6 (right panels). In the upper panels the
fraction of suitable habitats is set at p~0:3, whereas in the lower panels p~0:7. The symbols denote different values of H : H~0:1 (circles), H~0:5
(diamonds) and H~0:9 (triangles). The data points represent an average over 20 independent runs. The error bars correspond to one standard error.
doi:10.1371/journal.pone.0066495.g005

Table 1. Fractal species distribution.

H = 0.1 H = 0.5 H = 0.9

v = 161024 ; p = 0.3 1.78 (1.49) 1.74 (1.50) 1.80 (1.51)

v = 161025 ; p = 0.3 1.79 (1.55) 1.74 (1.62) 1.80 (1.62)

v = 161026 ; p = 0.3 1.78 (1.69) 1.77 (1.69) 1.82 (1.73)

v = 161024 ; p = 0.7 1.86 (1.48) 1.82 (1.48) 1.84 (1.47)

v = 161025 ; p = 0.7 1.85 (1.58) 1.80 (1.59) 1.81 (1.60)

v = 161026 ; p = 0.7 1.84 (1.72) 1.81 (1.73) 1.82 (1.73)

The fractal dimension of the distribution of the first (second) commonest
species.
doi:10.1371/journal.pone.0066495.t001

Biodiversity in Fragmented Landscapes
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in state w indicates that it is occupied by one individual of species

w, whereas the state 0 denotes an unsuitable habitat. The

population evolves according to the above dynamics until the

system reaches an equilibrium regime. Although the model

provides some dispersal among next-nearest cells, it is feasible to

allow long-range dispersal [29–32], as we will briefly discuss in

Figure 6. Effect of dispersal on the species-area relationship. Number of species S is plotted against area for p~0:5 and dispersal parameter
K~7 and distinct values of the clumping parameter H : H~0:1 (open circles), H~0:5 (open diamonds) and H~0:9 (filled triangles). Left panel:
n~1|10{6 , middle panel: n~1|10{5 and left panel: n~1|10{4 . The data points represent an average over 20 independent runs. The error bars
correspond to one standard error.
doi:10.1371/journal.pone.0066495.g006

Figure 7. Species-area curves for different values of dispersal parameter. Number of species S is plotted against area for p~0:5 and
speciation rate n~1|10{6 . The symbols denote diferrent set of parameter values : K~10 and H~0:1 (circles), K~7 and H~0:1 (triangles up),
K~10 and H~0:9 (diamonds), K~7 and H~0:9 (left triangles). The line is the theoretical prediction for the species-area curve if dispersal is not
limited as given by Eq. (5). The data points represent an average over 20 independent runs. The error bars correspond to one standard error.
doi:10.1371/journal.pone.0066495.g007
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subsection 3.4. For the sake of completeness it is important to

mention that our model assumes a finite landscape with closed

boundary conditions.

Long-range dispersal. The aforementioned model can be

generalized with a dispersal rule enables individuals to disperse

over larger distances than the next-nearest cells. In Results section

we briefly discuss the results for this generalized model, in order to

address the role of immigration in the patterns of the species–area

relationships.

Once again, at each time step, a randomly chosen individual in

the grid dies and gives rise with probability n to an individual of a

new species, and otherwise is replaced by one of the species which

are located inside a square dispersal kernel of linear size 2Kz1
centered on the empty location. All individuals in the dispersal

kernel have the same probability of sending offspring to the empty

site, i.e., p(x,y)~1=n, where p(x,y) is the probability an offspring

is sent from x to y and n denotes the number of suitable habitats,

excluding the empty location, in the area of size

(2Kz1)|(2Kz1). This is the simplest form of dispersal kernel,

though Rosindell and Cornell have shown that the different forms

of dispersal kernels are equivalent provided that the averaged

square dispersal distances are the same [29].

The Coalescence Method
Instead of performing extensive forward simulations in time, a

powerful approach known as the coalescence method can be used

to efficiently produce equilibrium configurations in the neutral

model [21]. According to this method, an infinite-time equilibrium

configuration can be reached by tracing backwards in time the

evolutionary trajectory of the population. The key idea of the

method is to construct the genealogy of the entire population until

the most recent common ancestor is found. The problem is

mapped onto a system of coalescing random walks whereby each

individual performs a random walk over a finite lattice. The time

at which the walkers coalesce into a single walker is related to the

consensus time of the voter model. In addition to coalescence

events, the approach also considers the random extinction of

walkers at rate n, equivalent to speciation events in the forward

approach. For more details about method, see [21,30].

When nearest neighbour dispersal is assumed, as in the original

voter model, unconnected clusters of suitable habitats have

independent genealogies. Under this circumstance, one way to

minimize the computational cost is to apply the Hoshen–

Kopelman algorithm [33] so that all clusters are properly

recognized, and we then perform independent runs of the

coalescence approach to each cluster independently. Here, cluster

refers to a contiguous structure of occupied sites which is

surrounded inside and outside by vacant regions of irregular

shapes and areas, and so each cluster is disconnected from every

other cluster in the lattice. The Hoshen–Kopelman algorithm [33]

was an important breakthrough for cluster analysis in percolation

theory. It owes its success to its linear time and superior space

computational complexities in terms of lattice size [34,35]. The

Hoshen–Kopelman algorithm probes the grid, looking for

occupied cells. The purpose of the algorithm is to assign a cluster

label to each occupied cell, so that cells belonging to the same

cluster get the same label. The easiest situations occur either when

a cell is isolated and hence receives a new label, corresponding to a

new cluster, or when there is a single occupied cell in its immediate

neighbourhood, and in this case it receives the same label as its

neighbour. In the case the focal cell has more than one occupied

neighbouring cell, one ascribes the lowest-numbered cluster label.

Occupied neighbouring cells that are identified by different cluster

labels indeed belong to the same cluster, and therefore as a final

stage, the algorithm merges these clusters into one cluster.

Measurement Procedures
This study mainly concentrates on measurements of biodiver-

sity, within a sampled area, that correspond to the number of

species in the area regardless of their commonness or rarity. In the

simulations, the length of the side of the system is kept fixed,

L~1024. We perform measurements of the a-diversity, which

means that to assess the spatial pattern of the species distribution,

one increases the coverage of the system (which has a constant size)

by using larger and larger sampled areas. The species–area

relationships are thus obtained through dividing the grid into

several sublattices, or regions, and then taking averages over all the

distinct regions. Regions entirely composed of unsuitable sites are

not taken into account. Ensemble averages are performed over 50
independent runs.

Results and Discussion

The lower panels of Figure 1 depict three typical configurations

of fractal landscapes generated in these simulations, which differ in

the amount of spatial autocorrelation. The suitable habitats are

represented by black sites. From left to right, H increases from

0:01, a situation which characterizes a highly fragmented

landscape, to H~0:9, where large connected domains of

populated sites are obtained. These three configurations of black

and white sites derive directly from the upper panels, where the

points in the grid are represented in greyscale by an elevation scale

X with scale identifier shown along the right side. The fraction of

suitable habitats p then settles a critical height value XC , and

thereby assigns the value one to every point with elevation

XwXC , denoting a suitable habitat, whereas points with elevation

values XvXc are set to zero, this denoting an unsuitable habitat.

Biodiversity Measurements
Figure 2 shows the average diversity of species as a function of

the area, S(A), for lattices with a side of length 1024, and five

distinct values of the Hurst exponent. In the figure, the same value

of occupation probability for the habitat sites is used (p~0:6), and

fixed values of the speciation rates are considered: n~1|10{6

(left panel) and n~1|10{4 (right panel). Except in the range of

very small areas, the observed biodiversity S(A) increases when H
decreases, for fixed values of area: this is due to the fact that if H is

low, the population is dispersed over a large number of

unconnected domains, which also means that they are geograph-

ically isolated from each other. Another important feature is that

as H decreases, it enhances the chance that different parts of a

given cluster become linked through narrow corridors. In this way,

because one has nearest neighbour dispersal, it is very likely that

one species blocks the corridor, making it impassable to any other

species [30]. On the other hand, for larger H, closer to unity,

corresponding to smoother landscapes, we get a greater effective

connectivity of the habitat, with a small number of fragments, and

thereby the number of species shrinks for a fixed area. This effect

occurs mainly because the onset of the linear regime, which takes

place in broad scales, is shifted to larger sampled areas as the

landscape becomes more clumped.

The same plot demonstrates a nontrivial dependence, S*Az, in

the range of small and intermediate sampled areas, which is

achieved for intermediate and large values of the clumping

parameter H . The validity of the scaling S*Az then extends over

a broader interval of areas as H approaches unity. The estimated

z-values are z~0:13,0:14 and 0:16, when H~0:9,0:7 and 0:5,

Biodiversity in Fragmented Landscapes
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respectively. Larger values of z are estimated for an upper

speciation rate (right panel), z being in the range 0:29{0:31.

The non-trivial relationship S*Az is especially hard to observe

in highly fragmented landscapes since as the fraction of suitable

habitats approaches the critical threshold pc, the power-law regime

becomes constrained to a very narrow range of sampled areas

[30]. When the fraction p of suitable habitats is below the critical

threshold, the landscape becomes fragmented into a large number

of domains. It is important to point out that the critical threshold

depends on H, shifting to lower p as H grows. As such, it is

expected that the power-law regime will persist over a broader

range of p for more clumped landscapes [24]. Furthermore, Figure

2 evinces a dispersion of the biodiversity values with H as the

speciation rate increases. That is, the S(A) curves tend to collapse,

irrespectively of the value of H for sufficiently high speciation

rates, reflecting the irrelevance of the landscape details in this

particular domain of the speciation rate. A collapse of the species–

area curves can also be attained in the state of high fragmentation,

as indicated in Figure 3. We notice that the onset of the linear

regime occurs at the beginning of the scale. In this case, it is not

possible to describe the dependence of S on A by a non-trivial

scaling, S*Az. In fact, a non-trivial scaling, S*Az, is achieved

when a higher degree of clumping is considered, as shown in Panel

(b) of Figure 3. In these instances, the best fittings provide

z~0:11,0:17 and 0:19, when p~0:3, 0:59 and 0:7, respectively.

We thus see a slight increase of z with p, which is not due to any

substantial change of the spatial pattern of the landscape, but

instead is due to a change in the number of habitats. We also note

that higher levels of biodiversity (larger S) are sustained as the

amount of habitats raises in highly clumped landscapes. A similar

outcome is seen in a multispecies contact process (MCP) [36],

whereby fragmentation stems from the internal dynamics and not

from the structure of the landscape, being the state of the sites

(vacant or occupied) a dynamical feature. In that model,

individuals also tend to be clumped since the colonization of

vacant sites depend on the occupation of their neighborhood. In

their study, Cencini et al. [36] show that as the expected

occupation level increases the biodiversity levels approach the

outcome of non-fragmented habitats.

The Distributions of Species Abundance
The coalescence method affords us not only the possibility to

obtain the number of species within a sampled area, but also

provides information about their distribution across the commu-

nity. Making use of this information, complementary achieve-

ments about the behaviour of the neutral community with the

features of the landscape can be obtained, such as the distribution

of species abundance, which tells us how common or rare a species

is relative to other species. In Figure 4, we have the number of

species, A(N), plotted for different abundance intervals, i.e., the

number of individuals N (log-bins, logarithms are to base 2). The

results are shown for different values of the Hurst exponent. The

division of bins follows the procedure used by Chave [37,38],

where the bins encompass the abundances 1, 2{3, 4{7, 8{15,

and so on. The qualitative pattern is nearly the same when

comparing the panels, despite the change in the occupation

number p and speciation rate n. This figure suggests that the

special case H~1=2 reflects a separation between two different

regimes of A(N). For Hv1=2, the distribution A(N) is unimodal

and decays hyperbolically with log N, while for Hw1=2, the

abundance presents a bimodal aspect, with two maxima for

populations of different sizes. In addition to the dependence on H,

it is worth mentioning that the small population peak clearly

shortens with p and also, to a minor extent, with n. In all these

plots, the sample size is equal to the total community size so that

the statistics takes into account all the existing species.

Fractal Dimension of Species Distribution
A question of general interest which has not yet been examined

is how each species fills up the suitable habitats from the point of

view of fractal dimension. Although this is a complex undertaking

for the entire community of species, at least we can ask how it is

distributed in our ecosystem model for the principal dominant

species in terms of the basic parameters of interest. In particular, it

is opportune to know about the fractal dimensions D1 and D2 of

the sets where the first and the second dominant species are

concentrated. In order to answer this question, we performed an

extensive statistical analysis of these dimensions for different values

of the parameters H, n, and p. To accomplish this task, we used

the box-counting method [39]. In this method, we count the

number Nr(E) of square cells of size E needed to cover all the sites

where the dominant species of a particular rank r is distributed. In

the scaling region the fractal dimension Dr and Nr(E) are simply

related by Nr(E)*(E=L){Dr , where L~A1=2.

Whereas the SAR relation involves two macroscopic quantities,

namely the number of species S and the area A where such species

are distributed, the box-counting relationship Nr(E=L) introduces

a microscopic analysis which complements that macroscopic

description. Thus if we know the set fDrg of fractal dimensions

associated with the supports of the distribution of each species, we

have in the scaling region the sum rule

N*
XS

r~1

E=A1=2
� �{Dr

|sr, ð3Þ

for fixed length scales E and A1=2~L, with N~
PS

r~1 Nr|sr

being the total number of individuals irrespective of species within

the area A, and sr the density of species r at the same resolution

(i.e., the average number of individuals of species r within boxes of

area E2).

If each species is distributed with a two-dimensional support,

i.e., if for each species r, Dr~2 is a constant, the last result must

reduce trivially to

N~A
XS

r~1

sr: ð4Þ

On the other hand, if different species are not associated to the

same fixed dimension D~2 of their support, equation (4) does not

follow and we need to consider the more general equation (3). In

this way, we believe that such types of measurements of Dr are

important. They could be implemented in field research or in

controlled lab experiments with a small number of species of

microorganisms competing for resources in a culture medium of

area A.

Typical plots of N(E), which represent averages over 50
independent runs, for different sets of parameter values are shown

in Figure 5. It can be observed that all these plots exhibit a clear

scaling behaviour over three orders of magnitude of the side

length. Table 1 shows the variation of the fractal dimensions D1

and D2 with H, n, and p. It indicates that all the values of D1 are

confined within the interval 1:80+0:06, i.e., the relative dispersion

of D1-values is inferior to 4%. The values of D1 are essentially

independent of n and p provided that H is constant. The
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dimension D2 found in our simulations is significantly smaller than

D1. Unlike D1, D2 clearly decays as the speciation rate grows.

That is, unlike the behaviour exhibited by D1, the values of D2 are

dependent on n, although not very dependent on p, for H
constant. Actually, all these measurements lack empirical evi-

dence, mainly due to the difficulties involved in obtaining field

data in ecosystems for the abundance versus the fractal

dimensions. There are only a few empirical measurements that

try to quantify the correlation between the degree of aggregation

(which is not the same as the fractal dimension) and the species

abundance in tree species [40,41]. Though, even if these relations

between the abundance of the species and their fractal dimensions

are only be warranted within the framework of the neutral

dynamics model, which serves the purpose of a null model, it could

shed new light on basic aspects connected with the practical

usefulness of the neutral theory.

Long-range Dispersal
Figure 6 compares the species–area relationships for a fixed

speciation rate and varying values of the clumping parameter H.

As expected, when further neighbour dispersal is allowed, there is

a departure from a biphasic to a triphasic shape. This is owing to

the appearance of a second crossover point, which delimits the first

phase for small areas from the intermediate phase where the

power-law regime S*Az holds. This crossover point occurs

around areas of size A*(2Kz1)2 where dispersal is the dominant

mechanism [31]. The triphasic scenario becomes less prominent as

the speciation rate increases. These curves are steep at fine and

broad scales and shallow at intermediate scales [19,26,42]. This

triphasic pattern is a quite universal aspect of species–area curves

when viewed over many orders of magnitude of area [19,26]. The

theoretical explanations invoke random sampling and broad-scale

dispersal limitation as the main determinants of this relationship

[19,26].

One important feature of the plots in Figure 6 is that for low and

intermediate areas, smoother structures (high H) can harbour a

higher number of species, whereas very fragmented landscapes

sustain a greater number of species in broad scale. This is

somewhat expected since the ecological processes are uncorrelated

in the broad scale because of limited dispersal, thus the

enlargement of the coverage area implies the merging of distant

locations with very distinct species composition. Therefore, in this

continental regime, as it is called by Hubbell (2001), the number of

species grows approximately linearly with area. This aspect is even

stronger in extremely rough landscapes. On the other hand, in fine

and intermediate scales, a more compact region is less susceptible

to local extinctions due to ecological drift since these structures

exhibit a greater effective connectivity.

Figure 7 shows the species–area curves for different values of the

dispersal parameter K . For very clumped landscapes (H~0:9),
one does not observe any strong influence of the area of the

dispersal kernel on the observed values of species number S. On

the other hand, in rough landscapes (H~0:1), one observes that

dispersal limitation reduces the biodiversity in the fine and

intermediate scales, mainly because increasing values of K permit

connecting regions supposedly unconnected, a fact that weakens

the role of ecological drift and so reduces local extinctions. As

aforesaid, in a broad scale, the ecological processes are uncorrelated

and there is a merging of regions with dissimilar species

composition. The dissimilarity is certainly enhanced in rough

structures. In the same plot, the comparison with the theoretical

prediction for the species–area curve under the assumption of no

dispersal limitation, as demonstrated by Hubbell [19], is made.

According to Hubbell, the expected number of species S is given by

E Sjh,J½ �~ h

h
z

h

hz1
z

h

hz2
z � � �z h

hzJ{1
ð5Þ

where h~2rL2n is the fundamental biodiversity number, and

J~rA. The quantity r corresponds to the density of individuals,

which here is the same as the frequency of suitable habitats p, r~p.

It is clearly seen that the assumption of no dispersal limitation

greatly enhances the number of species, especially for small and

intermediate areas, and then its rate of growth slows down in the

broad scale. For large J, Eq. (5) provides that the number of species

depends logarithmically on the sample size [19,43].

Conclusions
There has been a long-standing debate in conservation biology

about the effects of habitat fragmentation and loss on biodiversity

[8,44,45]. This issue has been addressed in the present paper

within a steady state perspective. The very diverse conceptualiza-

tions and measurements of habitat fragmentation in the landscape

ecology literature has been a cardinal difficulty for unifying and

producing concise conclusions about the role of habitat fragmen-

tation in changes in the composition of ecosystems.

For a deeper understanding of the role played in biodiversity by

interplay between landscape structure and its ecological response,

the present paper has employed a more realistic spatial pattern for

habitat distribution through the use of a different landscape model,

whereby the fragmentation of the landscape can be controlled by

the parameter H , which tunes the degree of spatial autocorrelation

among adjacent cells. Our choice relies on the class of fractal

landscapes, which have long been recognized as a very useful tool

in the realistic rendering and modeling of natural phenomena

[15]. This design allows us to address the relationship between the

degree of habitat fragmentation and the strength of the

biodiversity response. Naturally, these neutral models have

limitations and are not able to portray all the complex spatial

patterns present in real landscapes.

In order to simulate fractal landscapes with tunable properties,

we employed the fractional Brownian motion model of Mandel-

brot and Van Ness [25]. The nontrivial biodiversity–area regime

S*Az was identified and the dependence of the exponent z on H,

the speciation rate n, and the occupation probability p was

obtained. There is a slight propensity for increased values of the

species–area exponent z as the landscape becomes more

fragmented. When dispersal is constrained to the next-nearest

neighbours, as originally assumed by Durrett and Levin [18], a

biphasic scenario emerges. The crossover point which delimits the

fine and intermediate scales from the broad scales is very sensitive

to the speciation rate n, the fraction of suitable habitats p, and the

aggregation parameter H . Long-range dispersal changes consid-

erably the patterns of the species–area curves, which now exhibit a

triphasic behaviour. The additional crossover point now delimits

the fine and intermediate scales and occurs around areas of size

(2Kz1)2, where dispersal is the prevailing ecological mechanism

[30–32]. Thus, the shape of the species–area relationship is also

clearly affected by species characteristics, more especially their

gap-crossing abilities which can vary by orders of magnitude. For

example, species-area relationships for birds clearly display a

triphasic pattern [26]), whereas flowering plants conform more to

a biphasic pattern, very similar to those reported in our

simulations [26].

Furthermore, the dependence of the abundance of species as a

function of the population as well as the dependence of the fractal

dimensions D1 and D2 of the support where the first and second
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dominant species are distributed were examined for different

values of H, n and p. The extension of this last type of analysis

within our model for the third, fourth, . . ., rth dominant species is

of great interest because we know that different species use

different kinds of habitat, and different species require different

amounts of habitat for their persistence [8]. A complete analysis of

the model studied here in the space of parameters (H , n, p) is far

beyond the scope of the present paper and in this sense we urge

that a more systematic investigation be made to evaluate all the

potential uses of this model for taking into account all the effects of

habitat fragmentation on the biodiversity of real systems.
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