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Abstract
Fibrosis is characterized by excessive accumulation of extracellular matrix (ECM) in basement
membranes and interstitial tissues, resulting from increased synthesis or decreased degradation of
ECM or both. The plasminogen activator/plasmin system plays an important role in ECM
degradation, whereas the plasminogen activator inhibitor 1 (PAI-1) is a physiologic inhibitor of
plasminogen activators. PAI-1 expression is increased in the lung fibrotic diseases and in
experimental fibrosis models. The deletion of the PAI-1 gene reduces, whereas the overexpression
of PAI-1 enhances, the susceptibility of animals to lung fibrosis induced by different stimuli,
indicating an important role of PAI-1 in the development of lung fibrosis. Many growth factors,
including transforming growth factor beta (TGF-β) and tumor necrosis factor alpha (TNF-α), as
well as other chemicals/agents, induce PAI-1 expression in cultured cells and in vivo. Reactive
oxygen and nitrogen species (ROS/RNS) have been shown to mediate the induction of PAI-1 by
many of these stimuli. This review summarizes some recent findings that help us to understand the
role of PAI-1 in the development of lung fibrosis and ROS/RNS in the regulation of PAI-1
expression during fibrogenesis.

INTRODUCTION
Fibrosis is a characteristic feature and terminal stage of many lung disorders, including
idiopathic pulmonary fibrosis (IPF), hypersensitivity pneumonitis, drug- and radiation-
induced lung injury, sarcoidosis, silicosis, asbestosis, cystic fibrosis (CF), and acute
respiratory distress syndrome (ARDS). Despite the severe outcome, no efficacious treatment
is known for these devastating fibrotic diseases because of a poor understanding of the
complex pathologic processes. Fibrosis, characterized by excessive accumulation of
extracellular matrix (ECM) in basement membranes and interstitial tissues, results from
increased synthesis or decreased degradation of ECM (or both). Although intensive studies
have been conducted, the molecular mechanism underlying the development of fibrosis is
still not well understood. ECM degradation is mediated mainly by the matrix
metalloproteinases (MMPs) and plasmin (4, 45, 129). Plasmin is converted from zymogen
plasminogen by tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen
activator (u-PA). The activities of tPA and uPA, under physiologic conditions, are controlled
by plasminogen activator inhibitor 1 (PAI-1). Therefore, PAI-1 plays an important role in
the regulation of ECM degradation. PAI-1 expression is increased in many fibrotic diseases
and in experimental fibrosis models. Genetic modification of PAI-1 expression alters the
sensitivity of animals to the fibrogenesis induced by various stimuli. These data suggest an
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important role of PAI-1 in the development of fibrosis, although the mechanism underlying
the induction of PAI-1 during fibrogenesis and whereby PAI-1 promotes fibrosis remains to
be further characterized. Emerging evidence indicates that reactive oxygen and nitrogen
species (ROS/RNS) contribute importantly to the development of fibrosis under many
pathologic conditions. The molecular mechanism whereby ROS/RNS mediate the fibrogenic
effect, however, is largely unknown. This review focuses on the role of PAI-1 in the
development of fibrosis and the redox regulation of PAI-1 gene expression during
fibrogenesis.

PLASMINOGEN ACTIVATOR INHIBITOR-1 AND FIBROSIS
Plasminogen activation system and collagen degradation

ECM degradation is mediated mainly by two proteolytic systems, the fibrinolytic
(plasminogen/plasmin) system and the MMP system. Although MMPs play a major role in
the degradation of the ECM, increasing evidence indicates that plasmin is also important in
ECM degradation. Plasmin can directly degrade various types of ECM proteins including
fibronectin, laminin, proteoglycan, fibrin, denatured collagens, and type IV collagen (4, 5,
14, 59, 99, 148, 231). Most MMPs are synthesized and secreted as inactive proenzymes. The
activities of MMPs are regulated at different levels, including gene expression, activation of
proenzymes, and inhibition of active enzymes by tissue inhibitors of metalloproteinases
(TIMPs) (106). Activation of promatrix metalloproteinases by sequential proteolysis of the
propeptide that blocks the active-site cleft is regarded as one of the key levels of regulation
of the activities for these proteinases. Although various agents/stimuli, including trypsin,
ROS, and organomercurials, can activate MMPs in vitro (49, 80, 176, 177), a relatively well
characterized mechanism for in vivo activation of MMP proenzymes involves the
plasminogen activator–plasmin cascade (134, 143, 166, 175, 240). Therefore, in addition to
degrading ECM proteins directly, plasmin can also activate MMPs, including MMP-2,
MMP-3, MMP-9, MMP-12, and MMP-13 (106, 134, 143, 161, 166), which in turn degrade
collagens and other ECM proteins.

Circulating plasminogen originates mainly from the liver, but many other tissues/organs,
including kidney, lung, heart, brain, and spleen, also produce plasminogen locally (251).
Inactive proenzyme plasminogen is converted to plasmin, a serine protease, by enzymatic
cleavage of a 19-amino acid peptide, catalyzed by tPA and uPA. Plasminogen activation
takes place in solutions, such as plasma, and on the cell surface. Many types of cells express
plasminogen receptor on their surfaces, allowing localized activation of plasminogen (31).
Binding to cell-surface receptors also substantially increases the rate of plasminogen
activation, as compared with the reaction in solutions (58, 67, 159). In general, tPA is
involved mainly in the activation of circulated plasminogen (fibrin clots), whereas uPA is
involved in the activation of cell surface–bound plasminogen (67, 159). Under physiologic
conditions, the activities of tPA and uPA are controlled by plasminogen activator inhibitors
(PAIs), which inhibit plasminogen activator activity and therefore the activation of
plasminogen, leading to ECM accumulation (Fig. 1).

Three PAIs have been identified, with type 1 plasminogen activator inhibitor (PAI-1) being
the primary physiologic inhibitor of tPA and uPA in vivo (51). PAI-1 is a single-chain
glycoprotein with a molecular mass of 50,000 Da, and it belongs to the serpin gene family
(51). PAI-1 reacts very rapidly with single-chain and two-chain t-PA as well as with two-
chain u-PA, with a second-order inhibition rate constant of 107 M/sec, but it does not react
with single-chain u-PA (123). In addition to inhibiting t-PA/u-PA activity directly, PAI-1
can also block t-PA–mediated clot lysis by binding to fibrin and can inactivate u-PA via
internalizing the u-PA and u-PA receptor (u-PAR) complex (43, 171, 196). PAI-1 is
synthesized and secreted as an active form, which is unstable in solution and spontaneously
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converts into the inactive (latent) form with a half-life ~1–2 h at 37°C (136). Almost all of
active PAI-1 in circulation binds to vitronectin, which extends its half-life by twofold to 10-
fold. By binding to vitronectin, PAI-1 competes with u-PAR-de-pendent or integrin-
dependent binding of cells to the ECM. Thereby, PAI-1 also plays an important role in cell
adhesion and/or migration via a mechanism independent of its antiproteolytic activity (53,
135).

Increased PAI-1 expression in human lung fibrotic diseases
Fibrosis is a terminal stage of many lung disorders including IPF, hypersensitivity
pneumonitis, drug- and radiation-induced lung injury, sarcoidosis, silicosis, asbestosis, CF,
and ARDS. It has been reported that the fibrinolytic activity is decreased in
broncheoalveolar lavage fluid (BALF) from patients with ARDS (13, 83, 100), IPF or
interstitial lung diseases (33, 75, 84, 121), and sarcoidosis (33, 89). Such decreased
fibrinolytic activity is associated with an increase in PAI-1 expression (75, 83, 121),
suggesting an important role of PAI-1 in the development of the lung fibrotic diseases (13,
83, 84, 100).

IPF is a progressive and lethal fibrotic lung disease with unknown etiology and poor
survival. It was speculated in the past that lung fibrosis results from an unremitting
inflammatory response to an exogenous insult, which led to fibroblast activation/
proliferation and eventually culminated in progressive fibrosis. Therefore, antiinflammatory
agents alone or in combination with cytotoxic drugs have been used in clinics as a standard
therapeutic regimen for the treatment of IPF. However, little evidence indicates that these
agents alter the natural history of the disease or improve survival of the patients, suggesting
that inflammation may not play a major role in the development of pulmonary fibrosis.
Nevertheless, although the mechanism underlying the development of IPF is unclear,
emerging evidence indicates that increased expression of PAI-1 may contribute importantly
to the pathogenesis of IPF. Nakstad et al. (167) reported that plasminogen activator activity
was significantly lower, associated with high levels of antifibrinolytic activity, in IPF
patients as compared with controls, suggesting that an imbalance between fibrinolytic and
antifibrinolytic systems plays a role in the pathogenesis of IPF. Kotani et al. (121) also
reported that PAI-1 levels in BAL supernatant fluids and PAI-2 levels in BAL cell lysates
were significantly higher in IPF patients than those in normal subjects. These observations
further suggest a critical role of PAI-1 in the development of IPF.

Several polymorphisms in the PAI-1 gene promoter, including the deletion/insertion
polymorphism (4G/5G), have been reported and are associated with increased plasma levels
of PAI-1 (152). In vitro experiments have shown that the 4G allele produces 6 times more
PAI-1 RNA than the 5G allele in response to IL-1b (46). Individuals homozygous for the 4G
allele have higher basal and inducible concentrations of PAI-1 than do those with one or two
copies of the 5G allele (46). Interestingly, Kim et al. (116) reported that the patients with
idiopathic interstitial pneumonia were more likely than the control population to have the
promoter genotype of 4G/4G. These data provide direct evidence that IPF is genetically
linked to high levels of PAI-1.

Sarcoidosis is a granulomatous disease associated with inflammation. Ninety percent of
sarcoidosis cases are found in the lungs and, in many cases, will progress to pulmonary
fibrosis. Chapman (33) reported that procoagulant activity in the macrophages extracted by
lavage from patients with sarcoidosis was increased as compared with those from controls.
Hasday et al. (89) further showed that mean procoagulant activity in the sarcoidosis group
was significantly elevated, whereas plasminogen activator activity tended to be lower as
compared with a control group. Therefore, it was concluded that in pulmonary sarcoidosis,
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abnormal expression of procoagulant and plasminogen activator activities in alveolar fluid
may favor accumulation of fibrin matrix at inflammatory foci (89).

Cystic fibrosis is a genetic disease caused by mutations of the CF transmembrane
conductance regulator (CFTR) gene (62, 239), which leads to a defect in CFTR proteins, a
cAMP-dependent chloride channel. The major clinical problems associated with CFTR gene
mutations are mucus accumulation, Pseudomonas aeruginosa infection, and chronic
inflammation, with a consequence of remodeling and derangement of lung structure.
Although the CFTR defect plays a dominant role in the development of CF, other factors
may also contribute to the pathogenesis of the disease. Klinger et al. (118) reported that the
PAI-1 gene, located at region q21.3-q22 of chromosome 7, is genetically linked with CF
(118). Xiao et al. (241), furthermore showed that the PAI-1 level was elevated in induced
sputum in patients with CF, which negatively correlated with pulmonary function. These
observations indicate that PAI-1 may play a role in CF pathology.

Acute respiratory distress syndrome (ARDS) arises from a variety of local and systemic
insults and is a major cause of acute respiratory failure. ARDS confers a high morbidity rate,
in part due to the excessive deposition of collagen during the development of pulmonary
fibrosis in the late-phase ARDS healing response. Fibrin deposition in the airspaces and lung
microvasculature in ARDS results from the activation of the coagulation cascade and the
impairment of fibrinolysis. Idell et al. (101) reported that procoagulant activity was
increased in BAL and plasma 3 days after the onset of ARDS, whereas fibrinolytic activity
was undetectable in BAL at 3 days after ARDS and remained depressed for up to 14 days.
Such depressed fibrolytic activity was accompanied by an increase in PAI-1 activity (101).
It has also been reported that alveolar PAI-1 antigen levels were more than 5 times higher in
the patients with aspiration pneumonitis who progressed to ARDS than in those with
uncomplicated aspiration pneumonitis, although plasma levels of PAI-1 antigen were not
significantly different between the two groups (61). Several types of lung cells, including
alveolar macrophages, endothelial cell, and epithelial cells, produce PAI-1 or PAs or both.
Unstimulated alveolar macrophages usually express PA and are profibrinolytic; however,
when stimulated, alveolar macrophages increased PAI-1 production and become
antifibrolytic (34, 35). Chapman et al. (35) reported that alveolar macrophages from ADRS
patients have increased PAI-1 mRNA, whereas Grau et al. (81) reported that lung
microvascular endothelial cells isolated from ADRS patients expressed more PAI-1 than did
controls and had a lower fibrinolytic potential, as measured by the PA/PAI-1 ratio. All these
observations suggest that increased PAI-1 expression or decreased PA activity or both
contribute importantly to the pathogenesis of ARDS.

Small-airway remodeling is a pathologic feature of asthma and contributes significantly to
airflow obstruction. One of the major components of airway remodeling is excessive
deposition of ECM proteins in bronchiolar walls (subepithelial fibrosis). Cho et al. (39)
reported that mast cells from a patient with an asthma attack produced an increased amount
of PAI-1. Buckova et al. (24) further showed that the 4G/5G polymorphism of the PAI-1
promoter is associated with an increased risk of asthma in the Czech population. These
observations suggest a potential role of PAI-1 in asthmatic airway pathology (24, 39, 95).

PAI-1 and lung fibrosis: animal models
The central role of PAI-1 in the development of fibrosis has been well documented in
several animal models. Bleomycin is a chemotherapy drug used for the treatment of some
types of cancers. One of side effects associated with bleomycin treatment is lung fibrosis.
The bleomycin-induced lung fibrosis model, therefore, has been widely used to study the
pathogenesis of pulmonary fibrosis as well as the antifibrotic effects of potential therapeutic
agents. It has been reported that intratracheal instillation of bleomycin to mice or rats
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increased PAI-1 activity in BALF and PAI-1 mRNA in the lung tissue, which was
associated with a decrease in uPA activity (178, 253). It has also been shown that mice with
homozygous deletion of PAI-1 were relatively protected from bleomycin-induced
pulmonary fibrosis, whereas overexpression of PAI-1 enhanced bleomycin-induced lung
fibrosis (40, 60, 90). Importantly, Hattori (90) showed that tranexamic acid, a plasminogen
activation inhibitor, reversed the accelerated fibrin clearance observed in PAI-1–deficient
mice, suggesting that increased plasminogen activation due to PAI-1 deficiency underlies
the accelerated fibrin clearance observed in PAI-1–deficient mice. To further test the
hypothesis that PAI-1 deficiency limits scarring through unopposed plasminogen activation,
a tetracycline-inducible uPA transgenic mouse model was established (213). After
doxycycline administration, these transgenic animals expressed increased levels of uPA in
their bronchoalveolar lavage fluid and reduced lung collagen accumulation as well as
mortality as compared with control mice after bleomycin treatment (213). Swaisgood et al.
(222) further showed that bleomycintreated mice deficient for plasminogen or uPA had
enhanced pulmonary fibrosis as compared with wild-type mice. By using adenovirus-
mediated gene-transfer technique, Sisson et al. (214) showed that administration of human
uPA–expressing adenovirus significantly reduced the amount of lung hydroxyproline and
attenuated the bleomycin-induced lung collagen deposition. Taken together, the data suggest
that the plasminogen system plays an essential role in ECM degradation and that increased
PAI-1 expression promotes ECM deposition in bleomycin-treated mice probably by
inhibiting plasminogen activation.

A potential role of PAI-1 in the development of lung fibrosis has also been studied in lung-
fibrosis models induced by other stimuli. Silicosis is an occupational lung disease caused by
inhalation of crystalline silica dust and features inflammation and scarring in the form of
nodular lesions in the upper lobes of the lungs. Lardot et al. (128) reported that a single
intratracheal administration of a fibrosing dose of crystalline silica in mice increased PAI-1
activity and protein levels in macrophages and neutrophils from BALF, associated with an
induction of PAI-1 and PAI-2 mRNA in lung tissue. Sustained upregulation of PAI-1 and
PAI- 2 mRNAs was still noted in lung tissue of these animals 1 month after silica treatment.
These findings support the critical role of PAIs in the lung-remodeling process induced by
silica. In an asthma model, Oh et al. (172) demonstrated that collagen deposition was
twofold less, fibrin deposition was fourfold less, and MMP-9 activity was threefold higher in
PAI-1 knockout mice than in wild-type mice after ovalbumin challenge, although the degree
of airway inflammation was similar between PAI-1 knockout and wild-type mice. These
results confirm a critical role of PAI-1 in ECM deposition in the airways of asthmatic
patients (24, 39, 95).

Potential mechanisms whereby PAI-1 promotes ECM deposition
Although controversy still exists, three potential mechanisms whereby PAI-1 promotes
ECM deposition have been proposed. The first and the most popular hypothesis is that
PAI-1 promotes ECM deposition by inhibiting the activities of tPA and uPA, which leads to
an inhibition of plasminogen activation and thus a decrease in ECM degradation. The
observations from human diseases (13, 24, 33, 39, 46, 61, 75, 83, 84, 95, 100, 101, 116, 118,
121, 167, 242) and from experimental fibrosis models (40, 60, 90, 128, 172, 178, 253)
strongly suggest that the abnormal induction of PAI-1 during tissue repair leads to the
deposition of ECM by decreasing PA activity and the extent of plasmin formed; thus, the
degradation of the ECM. In previous studies, we showed that transforming growth factor-
beta (TGF-β), a most potent and ubiquitous profibrogenic cytokine, induced PAI-1
expression and inhibited the activities of tPA and plasmin as well as collagen degradation in
cultured murine embryo fibroblasts (NIH3T3 cells) (234). Blockade of cell-surface binding
of plasminogen/plasminogen activation with tranexamic acid or inhibition of plasmin
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activity with aprotinin significantly reduced the basal level of collagen degradation, both in
the presence and absence of exogenous plasminogen (235). These data provide direct
evidence that the plasminogen/plasmin system plays a critical role in collagen degradation
and suggest that TGF- β inhibits collagen degradation probably by inducing PAI-1
expression and thus inhibiting plasminogen activation (235).

In addition to inhibiting ECM degradation, increasing evidence suggests other possible
scenarios for PAI-1 effects. Matsuo (154) reported that at least four fibrogenic pathways
were differentially expressed in PAI-1–overexpressing mice: (a) interstitial macrophage
recruitment was more intense; (b) more interstitial myofibroblasts were found; (c) TGF- β
and collagen I mRNA expression was higher; and (d) uPA activity was lower in PAI-1–
overexpressing mice than in wild type mice (154). These results indicate that, in addition to
potentially decreased fibrinolytic activity (decreased uPA activity), other mechanisms also
contribute to the development of fibrosis observed in these PAI-1–overexpressing mice. As
PAI-1 has been shown to regulate the adhesion and migration of a variety of cells in vitro
and in vivo (6, 32, 51), it has been proposed that the elevated PAI-1 may promote ECM
deposition by stimulating the migration of inflammatory or collagen-producing cells or both
into the damaged tissue (140). Krag et al. (122) reported that although PAI-1 deficiency
attenuated TGF-β–induced mesangial expansion, collagen accumulation, and basement-
membrane thickening, no difference in protease activity was found between PAI-1–deficient
and nondeficient mice. These data further support the notion that PAI-1 may promote ECM
deposition through other mechanisms than inhibiting protease activity.

The third potential mechanism whereby PAI-1 promotes ECM deposition highlights the role
of the plasminogen system in the release/activation of the antifibrotic growth factor,
hepatocyte growth factor (HGF), from its sequestered sites, the extracellular matrix (69, 70,
91, 155, 160). Mizuno et al. (160) reported that administration of recombinant HGF to
bleomycintreated mice increased lung MMP activities, induced myofibroblast apoptosis, and
stimulated ECM degradation, whereas injection with MMI270, a broad-spectrum MMP
inhibitor, blocked HGF-induced MMP activation and myofibroblast apoptosis. These data
suggest that HGF is a potent antifibrotic agent that blocks bleomycin-induced lung fibrosis
by activating MMPs. Matsuoka et al. (155) further showed that plasminogen addition to
NIH3T3 cells or mouse lung fibroblasts increased conversion of pro-HGF to its active form.
They also showed that the plasminogen effect was lost when lung fibroblasts from uPA-
deficient mice were used, and was increased by fibroblasts from PAI-1–deficient mice
(155), indicating that release of ECM-bound HGF by NIH3T3 cells and mouse lung
fibroblasts is plasminogen dependent (155). Most interestingly, it was reported that HGF
protein levels in BALF from PAI-1 knockout mice were higher than those from wild-type
mice after bleomycin administration (91). Blocking plasminogen activation with tranexanic
acid reversed such an increase in HGF in the BALF from PAI-1 knockout mice, whereas
administration of an anti-HGF neutralizing antibody markedly increased collagen
accumulation in the lungs of bleomycin-treated PAI-1 knockout mice (91). These results
strongly suggest that, in addition to inhibiting tPA/uPA and ECM degradation, PAI-1 may
promote ECM deposition by blocking HGF release/activation. A schematic diagram
elucidating the potential mechanisms whereby PAI-1 promotes ECM deposition is presented
in Fig. 2.

OXIDATIVE STRESS AND LUNG FIBROSIS
Fibrogenesis is a complex process and involves different types of cells as well as various
cytokines, chemokines, and growth factors. Fibrogenesis occurs in most organs and can be
induced by different stimuli, suggesting that common pathways or mechanisms may mediate
this response (140). Although intensive studies have been conducted in the past decade, the
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molecular mechanism underlying this complex pathologic process is still not well
understood. Oxidative stress occurs when exposure to oxidizing agents such as ozone and
nitrogen dioxide, two important environmental pollutants, or the production of ROS/RNS is
increased, or when the antioxidant capacity is decreased, or with a combination of these.
Increasing evidence indicates that ROS/RNS play important roles in the development of
fibrosis under various pathologic conditions such as liver fibrosis/cirrhosis caused by virus
infection or alcohol consumption (8, 139, 182, 184, 186, 192, 212, 243), renal fibrosis
associated with diabetics, hypertension, urinary tract obstruction (1, 55, 126, 168), and lung
fibrosis (25, 42, 56, 72, 77, 150, 181, 185, 191, 194, 195, 199, 217) [for review see (117,
193)].

Increased oxidant production and oxidative damage in lung fibrotic diseases
The lung is a major target for oxidant damage because of its direct exposure to the
atmosphere. Accumulating evidence suggests that oxidants generated endogenously or
inhaled from the environment play an essential role in the pathogenesis of various
pulmonary fibrotic disorders such as IPF, drug- and radiation-induced lung fibrosis,
silicosis, asbestosis, CF, and ARDS (25, 42, 56, 72, 77, 117, 150, 181, 185, 187, 191, 193–
195, 198–200, 217). It has been reported that inflammatory cells in BALF from IPF patients
release increased amounts of reactive oxygen and nitrogen species (28, 191, 219, 220). Lipid
and protein oxidation products, such as 8-isoprostane, have also been identified in the BALF
or lung tissue in IPF patients (150, 163, 187). In addition to increased production of
oxidants, numerous studies have shown that the levels of antioxidants including glutathione
(GSH) (9, 10, 19, 21, 157, 162, 194) and the enzymes involved in the antioxidant defense
such as MnSOD, catalase, and thioredoxin (127, 183, 228) are decreased in the lung-lining
fluid of IPF patients. Increased oxidant production (56, 187, 195, 199, 200, 217) and
decreased antioxidant capacity (30, 47, 181, 200, 201) have also been well documented in
the lung tissue or BALF in CF patients. Such an imbalance between oxidants and
antioxidants is most likely to contribute to the pathogenesis of IPF and CF, as antioxidant
treatment has been shown to be able to improve the clinical manifestations (15, 52, 82, 88,
230).

Silicosis—Silicosis, one of the oldest occupational diseases, still kills thousands of people
every year world-wide. It is an incurable lung disease caused by inhalation of dust
containing free crystalline silica, which causes inflammation and scarring of the lung tissue.
Exposure to particulate silica causes a persistent inflammation sustained by the release of
oxidants in the alveolar space. ROS, which include hydroxyl radical, superoxide anion,
hydrogen peroxide, and singlet oxygen, are generated not only at the silica particle surface
but also by phagocytic cells attempting to digest the silica particle (16, 17, 72, 120, 233).
The importance of ROS/RNS in silica-induced fibrosis has been well documented by
studying the temporal relation between these events and by altering the fibrotic response
with antioxidants. Porter et al. (188) reported that silica exposure induced pulmonary
inflammation and damage in the rat lung tissue, which progressed to lung fibrosis, even after
silica exposure ended. They further showed that silica-exposed rat lungs were in a state of
oxidative stress and that silica-induced pulmonary NO and ROS production persisted even
after silica exposure ended and the lung silica burden declined (189). These results suggest
that ROS/RNS generated by silica itself or released by activated macrophages are
responsible for the development of fibrosis in these silica-exposed rats (189). Gossart et al.
(78) demonstrated that intratracheal instillation of silica in rats led to fibrosis characterized
by cellular interstitial infiltrates with granulomas. Alveolar macrophages isolated from these
rats showed an early and continuous increase in ROS production as well as TNF-α
expression (78). Pretreatment of rats with a free radical scavenger, N-tert-butyl-α-
phenylnitron, reversed lung histopathologic changes and decreased ROS production and
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TNF-α expression (78). Srivastava et al. (216) further showed that silica exposure resulted
in lung inflammation, macrophage apoptosis, and significantly larger and more numerous
silicotic lesions in wild-type mice than in inducible nitric oxide synthase (iNOS) –knockout
mice, suggesting a role of NO in silica-induced lung injury. Taken together, these
observations indicate that ROS/RNS mediate silica-induced lung fibrosis.

Radiation-induced lung fibrosis—Progressive irreversible fibrosis is one of the most
clinically significant sequences of ionizing radiation. Three successive clinical and
histopathologic phases can be distinguished for radiation-induced fibrosis: the prefibrotic
inflammatory phase, the constitutive fibrotic cellular phase, and the matrix densification/
remodeling phase. Growing evidence indicates that ROS play a key role in radiation-induced
lung fibrosis, although the molecular mechanism whereby ROS mediate fibrogenic effects
of radiation is not well understood (12, 50, 63, 64, 130, 147, 197, 236). Hydroxyl radicals
are generated by ionizing radiation, either directly by oxidation of water, or indirectly by the
formation of secondary ROS, which can be subsequently converted to hydroxyl radicals by
further reduction by metabolic processes in the cell. Therefore, secondary radiation injury is
influenced by the cellular antioxidant status and the activating mechanisms. Numerous
studies have shown that antioxidants reduce the radiation-induced fibrotic disorders, both in
clinical practice and in animal experiments (50, 63, 64, 130, 147, 236), further suggesting an
important role of ROS in radiation-induced lung fibrosis.

Bleomycin-induced lung fibrosis—Lung fibrosis is one of the major side effects
caused by bleomycin, a chemotherapy drug used for the cancer treatment. ROS/RNS have
been shown to play important roles in bleomycin-induced lung fibrosis. Inghilleri et al. (102)
reported that bleomycin treatment increased ROS production in both phagocytes and in type
II alveolar epithelial cells in rats. Manoury et al. (151) further showed that BAL cells from
bleomycin-treated wild-type mice had enhanced ROS production, whereas no increase was
observed with BAL cells from the mice deficient in p47phox, a component of NADPH
oxidase. Most important, no collagen deposition was found in the lungs of the p47phox-
knockout mice after bleomycin treatment, suggesting that NADPH-oxidase–derived ROS
are essential to the development of pulmonary fibrosis in bleomycin-treated mice.
Extracellular superoxide dismutase (EC-SOD) is highly expressed in the ECM of the lung.
Localization of EC-SOD to the matrix of the lung may protect against oxidative tissue
damage that leads to pulmonary fibrosis. Fattman et al. (66) showed that the severity of lung
fibrosis after bleomycin treatment was significantly increased in EC-SOD null mice as
compared with wild-type mice.

The importance of ROS/RNS in the development of bleomycin-induced lung fibrosis has
also been well elucidated in numerous studies with antioxidants. Chemicals with antioxidant
properties or the enzymes involved in antioxidant defense have been shown to effectively
ameliorate bleomycin-induced lung fibrosis in different animal models (3, 20, 137, 215, 245,
246). These data further suggest that ROS/RNS are essential in bleomycin-induced lung
fibrosis.

Glutathione and lung fibrosis
Strong evidence that ROS/RNS are involved in the development of lung fibrosis comes from
the studies using antioxidants. GSH, a tripeptide, is the most abundant intracellular free thiol
and an important antioxidant. GSH participates in diverse biologic processes such as the
synthesis of DNA and the metabolism of endogenous and exogenous compounds. However,
the most important function of GSH is to detoxify oxidants. GSH concentration in the lung
lining fluid has been reported to be 100-fold higher than that in plasma (29), indicating a
critical role of GSH in lung antioxidant defense. It has been reported that the GSH
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concentration is decreased in experimental fibrosis models induced by various stimuli (3, 26,
144, 170) and in the lung-lining fluid in patients with pulmonary fibrotic disorders such as
IPF, asbestosis, CF, and ARDS (9–11, 19, 21, 27, 149, 157, 158, 162, 194). The mechanism
underlying GSH depletion in fibrotic diseases is unclear. Glutamate cysteine ligase (GCL) is
the rate-limiting enzyme in de novo GSH synthesis. It has been reported that TGF-β, a most
potent profibrogenic cytokine, suppresses the GCL promoter activity and inhibits
endogenous GCL mRNA and protein expression, associated with a decline in the
intracellular GSH level and an increase in cellular reactive oxygen species in different types
of cells (2, 7). Tiitto et al. (229) further showed that GCL expression is low in the fibrotic
areas of IPF disease. These data suggest that decreased GSH biosynthesis capacity may
underlie the decrease in GSH concentrations observed in these diseases.

Although the mechanism and biologic significance of GSH depletion in fibrotic diseases has
not been fully elucidated, GSH and N-acetylcysteine (NAC), a precursor of GSH, have been
used clinically for the treatment of fibrotic diseases (10, 15, 22, 52, 82, 88, 157, 230). It has
been reported that aerosol administration of GSH or NAC restored GSH concentration in
lung-lining fluid and slowed the deterioration of lung functions in IPF and CF patients (15,
52, 82, 88, 230), indicating a potential therapeutic value of GSH/NAC in the treatment of
lung fibrotic diseases. Several studies using bleomycin-induced lung fibrosis models also
showed that NAC, when given orally or by aerosol inhalation, attenuated bleomycin-induced
lung fibrosis in mice and rats (41, 87, 153, 246). These data further suggest that oxidative
stress resulted from increased ROS/RNS production and that decreased GSH concentration
contributes importantly to the development of fibrosis.

The mechanism underlying therapeutic/antifibrotic effects of GSH/NAC remains to be
further explored. In previous studies, we showed that TGF-β decreased GSH and stimulated
ROS production in murine embryo fibroblasts (NIH3T3 cells), whereas exogenous GSH
abrogated TGF-β–induced collagen accumulation (138). Furthermore, we demonstrated that
exogenous GSH or GSH ester selectively inhibited TGF-β–in-duced PAI-1 expression and
restored tPA and plasmin activities, as well as the collagen degradation rate in TGF-β–
treated fibroblasts (235). Most important, we showed that inhibition of plasminogen
activation with tranexamic acid or the addition of active PAI-1 to a culture medium almost
completely eliminates the restorative effects of GSH on collagen degradation in TGF-β–
treated cells. As TGF-β is a most potent and ubiquitous profibrogenic cytokine and its
expression is increased in almost all fibrotic diseases, our results suggest that GSH or NAC
may exert antifibrotic/therapeutic effects by blocking TGF-β signaling, inhibiting PAI-1
expression, and stimulating collagen degradation (Fig. 3).

REDOX REGULATION OF PLASMINOGEN ACTIVATOR INHIBITOR 1 GENE
EXPRESSION
Regulation of PAI-1 activity at protein level

Active PAI-1 has a very short half-life, and plasma PAI-1 concentration is low (6–80 ng/ml)
under physiologic conditions; however, PAI-1 expression is rapidly induced upon
stimulation, suggesting a high synthesis rate and tight control of PAI-1 gene expression.
Many types of cells, including endothelial cells, adipocytes, fibroblasts, hepatocytes, smooth
muscle cells, and epithelial cells, can synthesize PAI-1. The production of PAI-1 by these
and other cells can be induced by various growth factors such as TGF-β and basic fibroblast
growth factor, insulin-like growth factor, by cytokines such as interleukin-1 (IL-1) and
interleukin-6 (IL-6), and by hormones such as corticosteroids (51, 54, 57, 141, 142). PAI-1
is synthesized and secreted by cells as an active form; however, two different activity states,
active and latent, have been detected in vivo (51, 92, 133). The active inhibitory form of
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PAI-1 spontaneously converts to a latent conformation that can be partially reactivated by
denaturing agents (133, 165). In addition to converting to latent PAI-1, which can be
reactivated, the active inhibitory form of PAI-1 can be converted to the substrate form,
which is irreversibly degraded by its target proteinases (76, 135). The biologic functions of
latent and substrate forms of PAI-1 are unclear.

Although factors controlling the conversion of different forms of PAI-1 under physiologic
conditions are unknown, it has been reported that oxidants can inactivate PAI-1 activity in
vitro (131, 218). Lawrence et al. (131) showed that the rapidly acting PAI purified from
cultured bovine aortic endothelial cells was inactivated by chloramine T under conditions
that specifically oxidize methionine and cysteine residues. Both the PAI inhibitory activity
and the ability of the PAI to form complexes with tPA were decreased in a dose-dependent
manner by chloramine T. Incubation of the chloramine T–inactivated PAI with methionine
sulfoxide peptide reductase in the presence of dithiothreitol (DTT) restored >90% of the PAI
activity, although little activity was restored by either the reductase or DTT alone, indicating
that the oxidation of at least one critical methionine residue is responsible for the loss of PAI
activity (131). Strandberg et al. (218) showed, however, that mutant proteins of PAI-1, in
which Met347 and either of two other methionines, Met266 or Met354, have been replaced
with oxidation-resistant valine residues, were equally sensitive to oxidation as wild-type
PAI-1, suggesting that a specific oxidation of the methionine residues is not responsible for
the inactivation (218). They further showed that when PAI-1 was oxidized, it underwent a
rapid conformational change that correlated to the loss of inhibitory activity, suggesting that
the increased sensitivity to oxidation may be caused by a conformational change in the
inhibitor molecule (218). Nonetheless, to uncover the molecular mechanism whereby PAI-1
activity is regulated under physiologic and pathologic conditions will greatly benefit the
development of the therapeutic agents for the treatment of fibrotic diseases in which PAI-1
plays a pivotal role.

Redox regulation of PAI-1 gene expression
Although the PAI-1 activity can be modified at the protein level, the regulation of PAI-1 is
achieved mainly by alteration in the rate of PAI-1 gene expression (103). The human PAI-1
gene is ~12.2 kb in length, composed of nine exons and eight introns. A similar structure has
been found with rat and mouse PAI-1 genes (23, 190). The 5′-flanking region of the human
PAI-1 gene contains a perfect “TATA” box and several transcription factor binding sites,
including binding sites for Smads, activator protein 1 (AP-1), SP-1, hypoxia-induced factor–
responsible element (HREs), and NF- κB (38, 97, 115, 164, 237). The transcription factor
binding sites identified in the rat PAI-1 promoter show a high degree of sequence similarity
to sequences in the mouse (190) and human (23, 36, 110) PAI-1 promoter, suggesting that
they are regulated by similar mechanisms. PAI-1 is involved in many physiologic and
pathologic processes, and its gene expression is induced by numerous stimuli. In this
section, we focus only on the redox regulation of PAI-1 gene expression by several
important growth factors/cytokines/agents that are involved in the development of fibrosis.

Transforming growth factor beta (TGF-β)—Although various cytokines, chemokines,
and growth factors have been shown to play important roles in the development of fibrosis,
TGF-β is considered to be the most potent and ubiquitous profibrogenic cytokine. TGF-β
induces PAI-1 gene expression in various types of cells (37, 44, 85, 94, 125, 204, 244); an
elevated PAI-1 level is also associated with increased TGF-β expression and ECM
deposition under diverse pathologic conditions (48, 65, 79, 90, 145, 209, 232), indicating a
critical role of PAI-1 in TGF-β fibrogenesis. TGF-β induces its target genes mainly through
the Smad signaling pathway. Induction of PAI-1 by TGF-β through the Smad pathway has
been well described in the past decade. On the binding of TGF-β to the membrane receptor,

Liu Page 10

Antioxid Redox Signal. Author manuscript; available in PMC 2013 June 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



TGF-β signaling is transduced to the nucleus by a series of events involving phosphorylation
of Smad 2/3 and nuclear translocation of Smad 2/3 and Smad 4 complex. Binding of the
Smad2/3 and Smad 4 complex to Smad-binding sites in the promoter of the PAI-1 gene
initiates the gene transcription.

Importantly, it has been reported that TGF-β increases ROS production (74, 93, 96, 105,
111, 169, 227), decreases GSH concentration (2, 7, 71, 107, 205), and suppresses the
activities of antioxidant enzymes such as catalase, superoxide dismutase (SOD), and
glutathione peroxidase (105, 114) in various types of cells and in vivo. Many of the effects
of TGF-β (68, 74, 109, 111, 132, 205, 223, 255), including induction of PAI-1 (109, 207),
are indeed mediated by ROS, although the underlying molecular mechanism is still not
completely understood. In addition to the Smad pathway, several other pathways, including
the mitogen-activated protein kinase (MAPK) pathway, also play a role in TGF-β induction
of PAI-1 expression in various types of cells (73, 85, 94, 125, 204, 241, 244). As MAPK
pathways are sensitive to the redox state of cells, it is hypothesized that ROS/RNS may
mediate TGF-β induction of PAI-1 expression through activating MAPKs. Nevertheless,
although it has been well documented that TGF-β increases ROS production, activates
MAPK pathways, and induces PAI-1, whether ROS mediate the induction of PAI-1 by TGF-
β through activating MAPKs and which component(s) in MAPK pathways is (are) the redox
sensor, however, are unclear.

In an effort to elucidate the potential link between ROS production, MAPK activation, and
the PAI-1 induction by TGF-β, we systematically studied the effects of the specific
inhibitors and dominant negative mutants for JNK, p38, ERK MAPKs on TGF-β–induced
PAI-1 expression, as well as the effecs of ROS scavengers, including GSH on TGF-β–
induced MAPK activation and PAI-1 expression in NIH3T3 cells. Our results show that
TGF-β increases ROS production, activates JNK and p38 pathways, but not ERK pathway,
in NIH3T3 cells, associated with an induction of PAI-1 expression (234). JNK/p38 pathway
inhibitor or dominant negative mutant significantly reduces TGF-β–induced PAI-1
expression at both mRNA and protein levels (234). Most importantly, inhibition of NADPH
oxidase, which is responsible for the production of ROS in TGF-β–treated cells, or treatment
of the cells with exogenous GSH, almost completely blocks TGF-β–induced JNK and p38
phosphorylation and partially inhibits TGF-β–induced PAI-1 expression (234). These results
support the notion that MAPK pathways are involved in the induction of PAI-1 by TGF-β
through a redox-sensitive mechanism.

The human PAI-1 promoter region close to the TATA box contains two TRE-like elements.
The c-Jun homodimers and c-Jun/c-Fos heterodimers bind to these elements to mediate
TGF-β responses (115). It has been reported that the transcriptional activation by Smad is
mediated through the AP-1 transcription factor complex (85, 247). It has also been shown
that ATF-2, a downstream substrate of both JNK and p38, participates in transcription
complexes in association with Smad proteins (206). Two SP-1 binding site–like sequences
are also identified at −72 to −67 and −45 to −40 in the proximal promoter region of the
PAI-1 gene (38). It has been reported that TGF-β upregulates PAI-1 gene expression by
activating SP-1–dependent transcription through the induction of Smad/SP-1 complex
formation (44, 98). These data suggest that oxidants may mediate TGF-β–induced PAI-1
expression by activating MAPK pathways, which then facilitate the binding of Smad
proteins to the PAI-1 promoter and activate PAI-1 gene expression. This notion is supported
by our recent findings that, although GSH has no effect on TGF-β–induced Smad 2/3
phosphorylation or pSmad 2/3 and Smad 4 nuclear translocation, it blocks the binding of the
transcription factors to not only the AP-1 and SP-1 but also Smad cis-elements in the PAI-1
promoter (234). Blocking the transcription factors AP-1, SP-1, and Smad ODNs with decoy
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oligonucleotides, on the other hand, abrogates the inhibitory effect of GSH on TGF-β–
induced PAI-1 promoter activity (234).

Tumor necrosis factor alpha (TNF-α)—TNF-α is another important growth factor
involved in the development of fibrosis under many pathologic conditions. The expression
of TNF-α is increased in various lung fibrotic diseases (18, 179, 250, 252), and importantly,
the elevation of TNF-α level in many fibrotic diseases is companied by an increase in PAI-1
expression (202, 225, 242). In vitro studies further show that TNF-α induces PAI-1 in
various types of cells (37, 97, 146, 180, 203, 223, 224, 226) and ROS mediate such
induction (174, 203, 223). Swiatkowska et al. (223) reported that PAI-1 expression in
endothelial cells is upregulated by TNF-α or H2O2, which was reversed when NAC was
added to the culture medium. NAC also blocked the PAI-1 promoter activity stimulated by
TNF-α (223). Although it is not clear which signaling pathway(s) mediates TNF-α
induction of PAI-1 expression through a redox-sensitive mechanism, several studies have
suggested that NF-κB may be involved. Swiatkowska et al. (224) showed that TNF-α
induced PAI-1 gene expression through a regulatory region present in segment −664/−680
of the PAI-1 promoter, which interacts with NF-κB, and that ROS mediate such induction
(224). Hou et al. (97) also showed that a TNF-α–responsive enhancer located 15 kb
upstream of the transcription start site in the PAI-1 gene, which contains a conserved NF-
κB-binding site, mediated TNF-α response in bovine aortic endothelial cells. Conversely,
Takeshita et al. (226) showed that protein kinase C, MAPK, protein tyrosine kinase, and NF-
κB pathways are all involved in the induction of PAI-1in TNF-α–treated nonmalignant
human hepatocyte cells. As the NF-κB pathway is sensitive to ROS, these data suggest that
ROS/RNS mediate the induction of PAI-1 by TNF-α, probably by altering the NF-κB
pathway signaling (Fig. 4).

Angiotensin II (Ang II)—Ang II has numerous biologic functions and is involved in many
pathologic conditions, including the development of fibrosis (104, 108, 112, 113, 119, 211,
221). It has been reported that Ang II induces ECM accumulation by a mechanism
independent of its vasopressor effect (156), probably by stimulating PAI-1 expression and
therefore inhibiting ECM degradation (108, 112, 113, 119, 173, 238). Oikawa et al. (173)
reported that angiotensin-converting enzyme inhibitors (ACEIs; captopril or enalapril) or
angiotensin II receptor antagonist (AIIRA, L158,809) markedly attenuated increased PAI-1
mRNA expression and reduced glomerular lesions (thrombosis, mesangiolysis, and sclerosis
index) in a radiation-induced kidney fibrosis model. The data suggest that inhibition of the
renin–angiotensin system may ameliorate radiation-induced injury by suppressing PAI-1
expression and thus accelerating ECM degradation. Jesmin et al. (108) further reported that
the expression of PAI-1 in coronary vessels and the perivascular area was increased in
diabetic hearts, which was associated with reduced activities of MMP-2 and membrane
type-1 MMP (MT1-MMP) and increased deposition of collagen type I and III as well as
fibrin. Such an increase in PAI-1 expression and ECM deposition was reversed to
nondiabetic levels by the angiotensin II type 1 receptor blocker can-desartan (108). These
results suggest that increased production of Ang II causes coronary matrix remodeling in
insulin-resistant diabetes at least in part by increasing PAI-1 expression and thus decreasing
MMP-2 and MT1-MMP activities (108). Although the molecular mechanism whereby Ang
II induces PAI-1 expression has not been completely elucidated, several studies have shown
that Ang II increases ROS/RNS production, which mediates the induction of PAI-1 by Ang
II in different types of cells (124, 248, 249). It has been reported that Ang II increased ROS
production in adipose tissue/adipocytes (124) and in rat aorta endothelial cells (248, 249),
whereas olmasartan, an angiotensin II (Ang II) type-1 receptor blocker (124), and NAC
(248, 249) suppressed Ang II–stimulated ROS production and PAI-1 expression.
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Radiation—Although the underlying mechanism is still not well understood, it has been
proposed that free radicals produced by radiation contribute importantly to radiation-
associated fibrosis, in part by inducing PAI-1 expression. Zhao et al. (254, 255) showed that
irradiating rat kidney tubule epithelial cells (NRK52E) with 1 to 20 Gy gamma-rays led to
dose-dependent increases in steady-state levels of PAI-1 mRNA and protein within 24 and
48 h, respectively, whereas enhancement of intracellular soluble thiol pools with NAC
abolished the radiation-induced upregulation of PAI-1. Overexpression of catalase also
inhibited radiation-induced PAI-1 expression, suggesting a mechanistic role for hydrogen
peroxide in the induction of PAI-1 expression during radiation exposure (255). Hageman et
al. (86) demonstrated that irradiation of HepG2 cells leads to a significant increase in PAI-1
mRNA levels, whereas TGF-β shows strong cooperative effects with radiation in activating
the PAI-1 gene (86). Schultze-Mosgau et al. (208) further showed that radiation induced
PAI-1 expression in the skin of Wistar rats by increasing TGF-β expression as anti-TGF-β
antibody blocked radiation-induced PAI-1 expression and skin fibrosis. Damage to the skin
ECM is the hallmark of long-term exposure to solar UV radiation. Seite et al. (210) showed
that a single minimal erythemal dose of UV significantly enhanced IL-1α, IL-1β, and PAI-1
mRNA levels in human skin in vivo (p < 0.05), indicating that increased PAI-1 expression is
involved in UV-light–induced skin pathology. Nevertheless, as in many other situations, the
signaling pathway(s) mediating ROS induction of PAI-1 expression in radiation-treated cells
or animals remain largely unknown.

CONCLUSIONS
PAI-1 plays a pivotal role in the development of lung fibrosis. Various growth factors,
cytokines, and chemical/physical agents can induce PAI-1 expression, and ROS/RNS
mediate the induction of PAI-1 by many of these stimuli. Although MAPK and NF- κB
pathways have been shown to be redox sensitive and may be the downstream effectors of
ROS/RNS in the induction of PAI-1 by different stimuli, the molecular mechanism
underlying PAI-1 induction by ROS/RNS remains largely unknown. As PAI-1 plays a
critical role in the development of fibrosis, not only in the lung but also in many other
organs, and increasing ROS/RNS production is a common feature for many fibrogenic
agents, to uncover the mechanism underlying the induction of PAI-1 by ROS/RNS will
provide important information not only for understanding the pathogenesis of these fibrotic
diseases but also for the development of effective therapeutic agents for the treatment of
these devastating diseases.
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ECM extracellular matrix

ELF epithelial lining fluid

ERK extracellular signal regulated kinase

GSH glutathione

HGF hepatocyte growth factor

IPF idiopathic pulmonary fibrosis

JNK c-Jun NH2-terninal kinase

MAPK mitogen-activated protein kinase

MMP matrix metalloproteinase

NAC N-acetylcysteine

NF-κB nuclear factor κB

PA plasminogen activator

PAI-1 plasminogen activator inhibitor 1

ROS/RNS reactive oxygen/nitrogen species

SBE Smad binding element

TGF-β transforming growth factor beta

TNF-α tumor necrosis factor alpha

tPA tissue-type plasminogen activator

uPA urokinase-type plasminogen activator
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FIG. 1. Plasminogen activation system and extracellular matrix (ECM) degradation
Plasminogen is converted to plasmin by tissue-type plasminogen activator (tPA) and
urokinase-type plasminogen activator (uPA). Plasmin then degrades ECM components
directly or indirectly by activating matrix metallo-proteinases (MMPs). Under physiologic
conditions, the activities of tPA and uPA are controlled by plasminogen activator inhibitor 1
(PAI-1).
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FIG. 2. Potential mechanisms whereby PAI-1 promotes ECM deposition
PAI-1 promotes ECM deposition by (a) inhibiting tPA and uPA activities and thereby
plasminogen activation and ECM degradation; (b) recruiting inflammatory cells to the sites
and therefore increasing profibrogenic cytokines; and (c) suppressing the release of
antifibrogenic growth factors from the sequestered sites on the ECM.
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FIG. 3. Potential mechanism whereby GSH inhibits TGF-β–induced collagen accumulation in
NIH3T3 cells
GSH inhibits TGF-β-–induced PAI-1 expression and therefore increases plasmin formation
and collagen degradation.
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FIG. 4. Potential signaling pathways mediating ROS induction of PAI-1 by TGF-β and TNF-α
TGF-β and TNF-α increase ROS production, which, by activating the MAPK pathways and/
or the NF-κB pathway, increase the transcription rate of the PAI-1 gene.
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