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Abstract
High-throughput genomic data that measures RNA expression, DNA copy number, mutation
status and protein levels provide us with insights into the molecular pathway structure of cancer.
Genomic lesions (amplifications, deletions, mutations) and epigenetic modifications disrupt
biochemical cellular pathways. While the number of possible lesions is vast, different genomic
alterations may result in concordant expression and pathway activities, producing common tumor
subtypes that share similar phenotypic outcomes.

How can these data be translated into medical knowledge that provides prognostic and predictive
information? First generation mRNA expression signatures such as Genomic Health's Oncotype
DX already provide prognostic information, but do not provide therapeutic guidance beyond the
current standard of care – which is often inadequate in high-risk patients. Rather than building
molecular signatures based on gene expression levels, evidence is growing that signatures based
on higher-level quantities such as from genetic pathways may provide important prognostic and
diagnostic cues. We provide examples of how activities for molecular entities can be predicted
from pathway analysis and how the composite of all such activities, referred to here as the
“activitome,” help connect genomic events to clinical factors in order to predict the drivers of poor
outcome.

Background
Tumor subtypes define clinically relevant and molecularly recognizable classifications of
cancer

Cancers manifest in different subtypes defined by a set of characteristic attributes such as
mutations, cell lineage markers, and histology. Classifying tumors into clinically relevant
subtypes is a major step in identifying therapeutic strategies. The distinctions between
subtypes may reflect differences in the originating cells transformed by oncogenesis. For
example, luminal breast cancers are often more differentiated than basal breast tumors and
have a higher proportion of estrogen receptor expression. Subtype distinctions may also
reflect different etiologies at work in similar cells due to the nature of the genomic damage.
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For example, colorectal tumors can exhibit a global DNA methylation phenotype thought to
silence DNA repair genes such as MLH1, which then leads to an associated higher
background mutation rate compared to other colorectal cancer subtypes. Tumors respond
variably to small molecule inhibition and the differences in drug sensitivity between
subtypes persist even when the tumors are transformed into cell line models [1]. New high-
throughput technologies will aid in the characterization and recognition of established and
novel subtypes to better tailor therapeutics.

Genome-wide expression levels, organized as mathematical vectors of statistically
differential gene levels, can be used as signatures of tumor subtypes. Signatures allow the
detection of correlations between tumor characteristics such as the possibility that two
different mutations may affect the same cellular wiring or that a particular mutation is
associated with a clinical outcome. Signatures based only on gene expression may overlook
signals from other cis- and trans-regulatory logic. Thus, we seek to find a comprehensive
cellular pathway activity description we call the activitome. Just as the genome is the
comprehensive description of a cell's genetic information, the activitome is a comprehensive
description of a cell's functional and dysfunctional activity based on expression,
methylation, copy number, and other high-throughput assay technologies. Here we give a set
of examples of data-driven approaches for predicting patient therapy using signatures based
on the activitome inferred from global pathway analysis.

Inferring the activitome using global pathway analysis
Increases in computational power and the availability of comprehensive genetic networks
make possible a systematic pathway analysis of tumor cells. Rather than focusing on one or
a few known pathways, developments in probabilistic graphical models allow all known
pathways of a cell to be computationally represented and used for multiplatform data
analysis. We developed an integrated pathway approach called PARADIGM [2]. In this
framework, each type of omics measurement is mapped to a graphical model based on the
central dogma of molecular biology (DNA is transcribed to RNA which is translated into
amino-acids and hence proteins, and that protein may exist in passive and active forms). We
enrich the model with the knowledge that proteins and RNA may regulate DNA.
PARADIGM uses a merged set of constituent pathways from various databases called the
SuperPathway. PARADIGM then infers the maximum likelihood integrated pathway level
(IPL) of pathway elements including genes, proteins and protein complexes. The algorithm
currently incorporates four types of high-throughput gene-level data: mRNA expression
levels (including microarray and RNA-Seq), genomic copy number measures, epigenetic
methylation data, and protein level data (such as from the new reverse phase protein arrays,
or from mass-spectroscopy approaches).

Figure 1 illustrates how gene activities can be inferred for a “small toy” pathway, i.e. a
pared-down model, simpler than reality. The PARADIGM graphical model centered on a
particular gene is shown in detail in Figure 1A. Multiple different data measurements of a
tumor sample are connected into a graphical model as observed variables (shaded ellipses).
Unobserved states of gene expression and activity are connected into the graph as hidden
variables (open ellipses). A computationally intensive method called Bayesian belief
propagation is then used on the underlying factor graph to set the internal probabilities of the
graphical model to a configuration that has a high likelihood according to the observed
data[3].

The toy pathway in Figure 1B shows a small pathway involving a single kinase, PAK2 that
post-translationally inhibits the MYC/MAX complex. The transcription factor complex
MYC/MAX in turn activates CCNB1 and ENO1 and represses WNT5A.Figure 1C
illustrates how belief propagation could set the internal “active state” of PAK2 based on the
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downstream evidence. In this example, it finds that the PAK2 kinase is inactivated using the
evidence downstream that suggests that MYC/MAX, a complex that is inhibited by PAK2,
is active because one of its known activated targets (CCNB1) is highly expressed while one
of its repressed targets (WNT5A) has lower expression. Note that even though ENO1 is an
activated target of the complex and it is not highly expressed, the model can explain away
this apparent discrepancy using the information that ENO1's promoter seems to be
epigenetically silenced and therefore the lower expression of ENO1 does not reflect on a
lower activity of the MYC/MAX transcription factor complex. The set of all inferred
quantities of gene-encoded features in a complex wiring diagram (right hand side of Figure
1C), which together form a quantitative state description of tumor cells that we refer to here
as the activitome. The integrated measure of the activitome not only represents expression
states of genes but multimeric protein complexes, gene family roles, and higher-level
cellular processes, which encapsulates both the molecular function and the information
transmission aspect of genes and proteins.

Activitome signatures reveal the signaling layer that interlink genomic perturabations and
transcriptional changes that characterize tumor subtypes

If activitome signatures provide an accurate view of tumor cell circuitry then one can ask if
they explain why observed genomic lesions are associated with concomitant transcriptional
changes. For example, basal breast cancers are often associated with TP53 mutations and are
also characterized by major transcriptional “hubs” involving transcription factors such as
FOXM1, MYC/MAX, and HIF1A. What is the regulatory logic that leads to alterations in
these major programs as a result of loss of TP53? If we can determine the network that
resolves this question then such a network may provide an accurate representation of the
cellular wiring of the tumor that can be used as a surrogate to identify potential targets.

One approach is to identify “linking genes” that connect observed genomic aberrations, such
as copy number gains/losses or mutations, to observed expression-based activities such as
the up-regulation of transcription factor hubs would be to adapt previously published heat-
diffusion approaches such as HotNet [4]. As an extension of the heat-diffusion approach, a
linking set of genes also can be identified by applying multiple input gene sets to identify
nodes that interconnect a set of “sources” (genomic perturbations) to a distinct set of
“targets” (transcription factors). One can then find essential paths that resolve the effect of
genomic alterations with phenotypic changes in the tumor state. Sub-networks can then be
identified that interconnect protein level activitome data to gene expression level data using
protein-protein interactions, predicted transcription factor to target connections, and curated
interactions from literature. Permutation-based analysis can then be used to gauge the
significance of the solutions.

As an example of this linking diffusion approach, the method was applied to the Cancer
Genome Atlas (TCGA) breast cancer dataset, which included patient tumor/matched-normal
samples for 533 patients, each with genomic sequencing data and microarray expression. To
find the significant pathway differences between Luminal and Basal cancer subtypes, we
performed a differential analysis between 99 Basal and 235 Luminal A samples. As a noise-
filtering step, we used MEMo [5] calls to get 117 genes with significant numbers of
amplification, deletion, methylation and mutation events. We then used a chi-square
proportions test to find the genomic perturbations that occur with significantly different
frequency between tumor subtypes. Significance Analysis of Microarrays [6] was used to
compare the differential expression between Basal and Luminal-A tumor subtypes. A test
network that included curated transcriptional, protein-level and complex interactions for
nearly 5,000 genes and abstract concepts, with roughly 100,000 interactions was used for the
analysis. The interlinking diffusion approach was run using the 12 differentially occurring
genomic perturbations as the first “source” set, and the 370 differentially transcribed
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transcription factors as the second or “target” set. 1000 random permutations of the
upstream sources were conducted while keeping the downstream set fixed to assess the
significance of the networks. A sub-network connecting 11 of the 12 genomic perturbations
to 336 of the 370 differentially expressed transcription factors, with 57 intermediate “linker”
nodes and 5238 network edges was found to be the most significant (Figure 2).

Clinical-Translational Advances
Without translational applicability, inferring gene activities with pathway knowledge would
be no more than an academic exercise. We describe how the inferences encoded in the
activitome can be used to predict patient outcomes.

Activitome-derived features predict patient outcomes more reliably than gene expression
Specific pathway components in an activitome signature can reveal important aspects of
tumor biology. For example, PARADIGM uncovered the FOXM1 transcription factor
network in ovarian serous cancers, published in Nature with the TCGA marker paper [7].
This indicated previously unknown crosstalk between proliferation and DNA damage repair
regulated by distinct isoforms of the FOXM1 transcription factor. This crosstalk may
explain in part why these tumor cells proliferate in response to DNA repair signals.

Evidence suggests activitomes may improve our ability to predict patient outocomes. When
PARADIGM was applied to the TCGA glioblastoma multiforme (GBM) dataset higher
accuracy predictors of overall survival in the patients could be obtained compared to those
using gene expression signatures [2]. This strongly suggests that the pathway-level
information provides biologically relevant clues about the intrinsic state of tumor cells.
Thus, using pathway-inferred levels to build activitome signatures shows promise for
predicting biomedical outcomes.

Activitome signatures provide clues about cellular targets
Gene expression signatures have been used to identify putative drug targets. Some examples
include the Connectivity-Map project pursued by the Golub lab at the Broad Institute, the
Ailun project by the Butte lab at Stanford [8], and the Disease Diagnostic Gene Expression
database by the Zhou lab at USC [9]. In the same way, activitome-based signatures can be
used to build predictive signatures. Activitomes provide potentially much richer information
because the pathway interactions can reveal cryptic signals such as active transcription
factors and signaling molecules that could go unnoticed by looking at gene expression alone.

The merit of using pathway-based signatures for prediction was tested in a proof-of-concept
demonstration in cell lines[1]. In this case, gene expression and copy number data on 50
breast cancer cell lines, half of which were of the basal (more aggressive) subtype and the
other half were of the luminal (less aggressive) subtype. PARADIGM was run on all of the
in vitro data and produced inferred pathway activity levels. A two-class (dichotomized)
Significance Analysis of Microarrays test[6] was used to produce an association score for
every feature in the SuperPathway. In this application, positive association scores reflect
higher activity in basal tumors while negative associations reflect higher activity in luminal
tumors. An activitome signature contrasting basal from luminal tumors was then constructed
as the vector of all association scores across the entire SuperPathway.

The activitome signature and SuperPathway together were used to identify significantly
large sub-networks that connect high-scoring pathway components to “druggable”
biomarkers. Sub-networks were created by retaining any interaction that connected two
features both of which had absolute association scores higher than the average absolute
association. Among the largest of the hubs in the resulting network were a central DNA
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damage hub with the second highest connectivity (55 regulatory interactions; 1% of the
network) and TP53 with the 14th highest connectivity (26 connections; 0.5% of the
network) The sub-network identified several pathways of interest including the FOXM1-
related network. Several genes upstream of FOXM1 are known targets of available drugs,
including PLK3, suggesting polo-kinase inhibitors may disrupt basal tumors. Indeed polo-
kinase inhibitors on the cell lines were found to sensitize basal cells to a higher degree
compared to luminal cells, consistent with the prediction encoded in the network.

Comparing activitome signatures reveals novel connections between mutations and drug
response in luminal breast cancers

Activitome signatures can be used to connect mutations, clinical outcoms, and other
“events” present in tumor samples. It is often of interest to know whether a particular
mutation is associated with elevated risk or the possibility of developing resistance to a
particular treatment option. Molecular signatures derived from such events can be used as
proxies to predict such tendencies. As an example, pathway-based activitome signatures
were used to analyze a set of patient tumors of the Luminal breast cancer subtype (both
Luminal A and Luminal B subtypes) [10]. In this study, clinical and genomic data on
samples were assessed from a neoadjuvant aromatase inhibitor (AI) clinical trial designed to
assess the responsiveness of samples to these estrogen-lowering agents [11]. PARADIGM
was used to build a predictive model for AI therapy and to develop links between gene
mutations and clinical outcomes. PARADIGM analysis revealed that multiple pathways are
affected by a phalanx of mutations including caspase/apoptosis, ErbB signalling, Akt/PI3K/
mTORsignalling, TP53/RB signalling and MAPK/JNK pathways. Several “hubs” such as
ESR1 and FOXA1 were activated cohort-wide while other hubs exhibited high but
differential changes in aromatase-inhibitor-resistant tumors including MYC, FOXM1 and
MYB.

A method called Differential Pathway Signature Correlation (DiPSC) was developed for this
study to compare signatures while accounting for the confounding that stems from sample
overlap. Mutations in different genes may cause disruptions in the same pathway, which
may lead to similar disruptions in the activitome. By comparing the vectors of activitome
signatures of different mutations and clinical outcomes intrinsic connections between these
events may be uncovered. DiPSC randomly splits the patient cohort in half. In each half, two
different activitome signatures are calculated from two distinct contrasts. A contrast
corresponds to the dichotomy defined by the presence versus the absence of a particular
“event,” such as a mutation or a clinical outcome. The event is used as a dichotomous
variable in a to two-sample SAM analysis to derive an activitome signature. The activitome
signatures computed from each disjoint half are compared to one another. This guarantees
that the comparison of the signatures is not polluted by any overlapping samples. The
procedure of randomly splitting the cohort, re-deriving the activitome signatures with SAM,
and comparing the signatures is repeated 1000 times. The final correlation is then computed
as a mean and standard deviation across the random trials.

DiPSC was applied to the 77 luminal samples using the PARADIGM-derived activitome
signatures to uncover phenomena that underlie the resistance of some cancers to aromatase
inhibitors. All pairs of associations were scored across all of the cohorts. An example of the
association of mutations to subtype is illustrated in the DiPSC (dipstick) shown in Figure 3,
which plots the correlation of all activitome signatures against the Luminal B vs Luminal A
activitome signature. From this visualization one can immediately see what patient groups
lead to common signatures. The analysis revealed for example that mutated MALAT1 (a
small non-coding RNA) had activitome signatures similar to TP53 mutations and are also
associated with both high Ki-67 and high preoperative endocrine prognostic index (PEPI)
scores that are indicators of resistance to drug treatment. Ki-67 is a prognostic indicator of
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proliferation in breast cancers. Because MALAT1 is mutated in only a handful of samples,
this precluded several analyses used to detect such relations because of the low samples size
whereas DiPSC was able to leverage the robustness of the pathway signatures to find a
significantly indicative pattern. On the other hand, PIK3CA, MLL3 and CDH1 do not enrich
for either Luminal subtype. ATR, and MAP2K4 are slightly enriched for Luminal A and
MAP3K1 mutations are overwhelmingly enriched for Luminal A. Thus, relating cancer
outcomes to those based on pathway-inferred signatures teased out novel connections not
available to standard approaches.

Conclusion: toward patient-specific models
Clearly activitome informatics tool development for clinical care is in an early stage of
development. The data-driven discovery approach requires pooling data from many patients
and data sources to build functional inferences. The challenge ahead of us is to develop
single sample predictors that can guide therapeutic decisions in individual cases. One can
imagine building a database of activitome signatures to represent all known cancer subtypes.
Each will span the range of possible genomic, epigenomic, and transcriptomic activities that
characterize all samples of a particular subtype. To identify a patient-specific model then
would require two conceptual steps: 1) From the database of subtype signatures identify the
most representative for a particular patient sample; and 2) Refine the model to best fit the
particular set of genomic, epigenomic, and proteomic changes observed in the patient's data.
The approach leverages on the statistical power of multiple samples to define the starting
subtype models but also encompasses the flexibility to adapt to a particular form of the
disease. Just as in gene expression-based models, activitome-based models will require the
careful acquisition of samples from well conducted clinical trials that are sufficiently
powered for the full suite of genomic and proteomic analysis pipeline executed at the
clinical grade testing level. While we are years from clinical utility, the pathway-based
approaches we describe provide the basis for a discussion on progress towards this goal and
underscore the value of the deeply collaborative environment provided by our rapidly
growing bioinformatics and computational biology discipline and many teams of clinicians
and genome and proteome centers that provide us with data to analyze.
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Figure 1. PARADIGM model for integrative data analysis
A. Factor graph model oriented around a single gene Hidden states in a tumor sample
(open ellipses) for genomic copies (G), epigenetic promoter state (E), mRNA transcripts (T),
peptide (P), and active protein (A). Regulation gene expression (open ellipses) include
transcriptional (RT), translational (RP), and post-translational (RA) control. Sample data
(filled circles, constrain gene states through factors (boxes). B. Toy example of a MYC/
MAX-associated pathway. Two transcription factors (MYC and MAX) form a complex
(MYC/MAX) that is inhibited by PAK2, a protein kinase. MYC/MAX activates two target
genes (CCNB1, ENO1) and inactivates a third (WNT5A). C. Single patient data converted
to inferred activities for toy pathway. Measurements and inferred levels are either higher
(red), lower (blue), or comparable (purple) to levels in matched normal. Belief propagation
infers the kinase is inactive based on inferred higher activity of MYC/MAX.
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Figure 2. HotLink Result for TCGA Breast Cancer
Rings of data depict different measurements about genes or proteins as higher activity (red)
or lower activity (blue) compared to normal controls. Pathway illustrates part of the HotLink
solution inferred from the TCGA basal and luminal breast tumors with various data
available through TCGA including (inner to outer): pathway levels inferred by
PARADIGM, Copy number alterations, RNA-Seq RSEM levels, and RPPA data. The
outermost ring depicts the patient subtypes. Segments display aggregated levels for samples
within each grouping defined by the breast cancer subtype (indicated in the outermost ring).
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Figure 3.
DiPSC(Dipstick) depicts correlations comparing mutations, and biomarkers along the
Luminal-A/Luminal B dichotomy.
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