Table 3. LC performance on different artificial datasets conditions.
Average degree | 4 | 8 | 12 | |||||||||
pinside | EQ | PD | IGP | CN | EQ | PD | IGP | CN | EQ | PD | IGP | CN |
0.9 | 0.118 | 0.319 * | 0.056 | 17.1 | 0.295 * | 0.839 * | 0.224 | 7.4 | 0.289 * | 0.616 * | 0.146 | 7.9 |
0.8 | 0.111 | 0.436 * | 0.096 | 16.8 | 0.148 | 0.452 * | 0.071 | 21.6 | 0.177 * | 0.586 * | 0.098 | 17.3 |
0.7 | 0.086 | 0.327 * | 0.046 | 14.0 | 0.088 | 0.152 * | 0.109 | 27.1 | 0.090 * | 0.557 * | 0.118 | 28.8 |
0.6 | 0.086 | 0.295 * | 0.069 | 16.1 | 0.078 | 0.260 * | 0.095 | 31.4 | 0.016 | 0.108 | 0.725 * | 14.4 |
0.5 | 0.087 | 0.284 * | 0.061 | 15.5 | 0.064 | 0.208 * | 0.095 | 33.7 | 0.004 | 0.114 | 0.901 * | 1.0 |
EQ: Extended Quality of modularity; IGP: In-Group-Proportion; PD: Partition Density; CN: Communities Number.
To avoid accidental influence of single artificial network, all types of evaluation values are average values of 10 networks in each condition.