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Abstract
Developing individualized prediction rules for disease risk and prognosis has played a key role in
modern medicine. When new genomic or biological markers become available to assist in risk
prediction, it is essential to assess the improvement in clinical usefulness of the new markers over
existing routine variables. Net reclassification improvement (NRI) has been proposed to assess
improvement in risk reclassification in the context of comparing two risk models and the concept
has been quickly adopted in medical journals. We propose both nonparametric and semiparametric
procedures for calculating NRI as a function of a future prediction time t with a censored failure
time outcome. The proposed methods accommodate covariate-dependent censoring, therefore
providing more robust and sometimes more efficient procedures compared with the existing
nonparametric-based estimators. Simulation results indicate that the proposed procedures perform
well in finite samples. We illustrate these procedures by evaluating a new risk model for
predicting the onset of cardiovascular disease.
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1 Introduction
Developing individualized prediction rules for disease risk and prognosis is fundamental for
successful disease prevention and treatment selection. For many diseases, risk prediction
models have been developed and incorporated into clinical practice guidelines. For example,
the Gail model was developed for predicting individual breast cancer risk (Gail et al. 1989)
and a risk calculator based on that model can be used to assist physicians making screening
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recommendations. For cardiovascular disease (CVD), prediction models such as the
Framingham Risk Score (FRS) are used for stratifying patients into different levels of risks.
However, much refinement is needed even for the best of these models because of their
limited discriminatory accuracy. For example, the Framingham model, largely based on
traditional clinical risk factors, has recognized limitations in its clinical utility (Hemann et
al. 2007). A considerable fraction of patients who experienced CVD events had none of the
identified risk factors, indicating a need to explore avenues beyond routine clinical measures
for more accurate prediction (Khot et al. 2003). This fuels much of the current search for
novel biologic markers and genetic factors that, when combined with routine clinical risk
factors, may provide accurate prediction at the individual level.

When new genomic or biological markers become available to assist in risk prediction, it is
essential to assess the clinical usefulness of these new markers compared to existing routine
markers. Careful evaluation of the incremental value is particularly crucial when markers are
either expensive or invasive to measure. To quantify the added clinical value of new markers
over a conventional risk scoring system for predicting disease risk, one may calculate the
difference in the prediction measures for the existing conventional model and the new
model, which includes information from the new markers. For example the difference in the
areas under the receiver operating characteristic curves (AUC of ROC) are often used to
quantify the improvement in discrimination attributable to added markers. Since a risk
model is often used to stratify patients into proper risk categories, statistical summaries that
depend on clinically meaningful risk thresholds may be more relevant (Cook 2007; Cui
2009; Lloyd-Jones 2010). As an alternative to measuring the difference between AUCs, net
reclassification improvement (NRI) has also been proposed to assess improvement in risk
reclassification in the context of comparing two risk models constructed with and without
novel markers (Pencina et al. 2008). Using “up” and “down” to denote changes in one or
more risk categories in the upward and downward directions, respectively, for a subject
between their baseline and augmented risk values, the NRI is defined as

Such a measure is appealing because it acknowledges both desirable risk reclassifications
(up for diseased and down for healthy subjects) and undesirable risk reclassifications (down
for diseased and up for healthy subjects). Due to its simplicity, NRI has been quickly
adopted in medical journals. However, compared with many other measures for incremental
values, the concept has not received much attention in the statistical literature.

Since a risk model is often used for predicting an individual's future outcome, it is essential
to incorporate the additional dimension of time when assessing the performance of a risk
model in a cohort study. For both deriving and evaluating risk models, prospective cohort
data is often used. In this setting a subject's health status at a future time t is sometimes
unknown due to loss of follow-up, termination of a study or the occurrence of a competing
risk event. Such censoring poses additional challenges compared with settings previously
examined in the literature which focus on incremental value calculation with a dichotomous
outcome. Currently there is limited development in methods to estimate the incremental
value of novel markers with censored failure time outcomes. Recently Pencina and
D'Agostino (2011) proposed a method for calculating time-dependent NRI, based on
nonparametric Kaplan–Meier (KM) estimators in order to account for censoring in cohort
data. The asymptotic properties of a similar estimator is studied in detail in Uno et al.
(2009). However, the validity of these estimators relies critically on the assumption that
censoring is independent of predictors used in the risk models. Furthermore, the
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nonparametric procedure considered in these estimators may potentially lead to efficiency
loss. A more flexible and more efficient estimating procedure is needed in practice.

In this manuscript, we propose quantitative procedures for calculating NRI as a function of a
future prediction time t with a censored failure time outcome. Compared with existing
nonparametric estimators, our procedures do not require the assumption that censoring is
independent of predictors, therefore the methods would be widely applicable to many
practical situations. We also consider procedures that aim to improve efficiency while
maintaining robustness. This manuscript is organized as follows. In Sect. 2, we specify
models and define NRI suitable for event time outcomes. In Sect. 3, we describe procedures
for estimating time-dependent NRI using data obtained from a prospective cohort study with
a failure time outcome. We comment on the theoretical properties of our proposed
estimators in Sect. 4. We then describe simulation studies to evaluate the performance of the
proposed estimators. The results are reported in Sect. 5. An application of our procedures for
comparing two CVD risk models is presented in Sect. 6. Concluding remarks are in Sect. 7.

2 Measures of risk stratification and reclassification
Consider the situation that a vector of predictor Y measured at baseline is used for predicting
the time to event outcome T. Risk models can be built using sub-vectors of Y. Let Y(1), a
function of Y, denote a vector of conventional predictor values in the existing model. Let
Y(2), also a function of Y, denote a vector of predictors used in the new model that contains
Y(1), but also new predictor values. Individual-level risk at a future time t can be derived as

, based on the conventional model, and , the corresponding
risk based on the new model, respectively. Since, in practice, risk categories are often
uncertain for many diseases, a more objective and flexible measure of improvement in risk
prediction would be based on P or Q in their original continuous scales. Therefore,
following the definition of Pencina and D'Agostino (2011), in this manuscript we focus on
the time-dependent continuous NRI, which is a more general definition that does not rely on
the existence of risk categories. In the time-dependent setting, we further denote an ‘event’
person at time t as those with , and a ‘nonevent’ person as T > t. Here, NRI(t) is equal
to the sum of ‘event NRI’ and ‘nonevent NRI’, which are defined as:

and

Since, NRIu,v(t) = event NRIu(t) + nonevent NRIv(t), it follows that
. In practice we may chose u and v

such that improvement in risk estimates is meaningful (Uno et al. 2009). Setting u = v = 0
gives the ‘continuous NRI’ considered in Pencina and D'Agostino (2011). For the ease of
presentation, in the sequel, we'll omit the subscript u and v from our notations and assume u
= v = 0, but note that our estimators can be constructed for any arbitrary u and v. In the next
section, we show how each component of NRI(t) can be estimated.

Zheng et al. Page 3

Lifetime Data Anal. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



3 Estimation
Suppose we have a cohort of N individuals from the targeted population followed
prospectively. Due to censoring, the observed data consist of N i.i.d copies of vector,

, where  for Ti and Ci denote
failure time and censoring time respectively. Yi are predictors from individual i measured at
time 0, including subset Yi(1) used in the existing model (model 1) and Yi(2) in the new
model (model 2) such that Yi(1) ∈ Yi(2). For illustration, we first assume that P and Q both
follow the conventional Cox regression models. Specifically, at time t, we assume

 and , where Λ0k
is the baseline cumulative hazard function, βk are unknown vector of parameters, for model

k = 1, 2, and , . It is important to note that these models
are most likely not correctly specified. Nevertheless under a mild regularity condition, the

standard maximum partial likelihood estimator  for βk converges to a constant vector, as n
→ ∞ (Hjort 1992). This provides theoretical ground for our asymptotic studies.

To estimate NRI(t), Pencina and D'Agostino (2011) first expressed the two key components
as

and

where B(θ) = Q(θ2) – P(θ1) and . To account for censoring, Pencina and
D'Agostino (2011) proposed to use the KM estimator to estimate the survival function using
data from all subjects for  and using subjects with B(θ) > 0 for estimation of

. We refer to the resulting estimator as the ‘KM estimator’ hereafter.

Uno et al. (2009) considered estimating NRI(t) based on an inverse-probability-of-censoring
weighted (IPW) estimator (hereafter referred to as the ‘IPW estimator’), with its key
components estimated as

(3.1)

(3.2)

where , , ,

 and  is the KM estimator of H(·) = P(C > ·).
Due to the equivalence between the KM estimator and the IPW estimator for marginal
survival functions under independent censoring (Satten and Datta 2001), the two estimators
are likely to have very similar robustness and efficiency. Both estimators are consistent
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under an independent censoring assumption regardless of the adequacy of the two fitted
models, P(θ1) and Q(θ2). This is particularly appealing for model comparisons.

One potential weakness of both estimators is that they can be biased if censoring is
dependent on a subset of Y(2). On the other hand, when model 2 is correctly specified, such
covariate-dependent censoring can be incorporated based on the model since C ⊥ T given

 or Q(θ2). This motivates us to propose a more robust alternative to the Uno et al.
(2009) estimator by estimating censoring probabilities given Y(2) via kernel smoothing over

Q(θ2). Let  and  where
Δi(θ) = I{Bi(θ) > 0}. To estimate NRI(t), we propose to modify equations (3.1) and (3.2) by
considering the following more robust IPW censoring weights

where ,

 and , K is a symmetric kernel

density function, with h = h(n) → 0 as the bandwidth. Note that  is simply the

subset of individuals with  and  is the set of all individuals. Consequently
we can then use these more robust kernel smoothing weights in the IPW estimator, to obtain
the ‘Smooth-IPW (S-IPW) estimators’,

(3.3)

(3.4)

This resulting estimator for NRI(t) is

The estimator can be shown to have the property of ‘double robustness’, i.e., it only requires
that the risk model Q is correctly specified or that the independent censoring assumption
holds.

Additionally, to improve upon the efficiency of the class of nonparametric estimators, we
propose considering a semiparametric estimator. Note that
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Therefore NRI(t) can be estimated semiparametrically as

with the ‘SEM’ estimators,

(3.5)

(3.6)

Under the correctly specified model Q(θ2), the semiparametric estimator accommodates a
covariate-dependent censoring situation and would be more efficient compared to the
Smooth-IPW estimator. In practice, to estimate NRI(t), if estimates from such a
semiparametric method agree well with those of the nonparametric methods, one may
choose to report results based on the semiparametric method for additional gain in
efficiency. To automatize the procedure, we suggest considering a combined estimator
(hereafter referred as the ‘combined estimator’), which takes the form

with  being a weight that is dependent on the aptness of the semiparametric model. For
example,  can be taken to be the p-value from a consistent test of the proportional hazards
assumption for a Cox regression model fit. Such an estimator provides a simple procedure
which is robust over a wide variety of situations. In numerical studies, we show that such a
combined estimator can be more efficient compared with the nonparametric estimators,
while maintaining the double robustness property.

We note that the proposed estimators can be easily generalized to NRI based on risk
categories. Consider a situation where individuals are classified as low, intermediate or high
risk: low risk if their risks are below r1, and high risk if their risks are above r2. The
reclassification accuracy of risk models in such a setting can be quantified with a 3-category

NRI of the form .

To estimate  and P(up|T > t), we may simply replace  with

 in Eqs. 3.3 and 3.4,

respectively. Similarly, to estimate  and P(down|T > t), one may replace 

with  in Eqs. 3.3 and 3.4.
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Similarly, one may obtain a semiparametric estimator of  by replacing 

with , or  in Eqs. 3.5 and 3.6.

4 Inference

To make inference about , we study the asymptotic properties of proposed

estimators. In the Appendix, we show that  is uniformly consistent for NRI(θ0, t),

where  with βk0 being the unique maximizer of the expected value of the
corresponding partial likelihood. Furthermore, we show that the process

 is asymptotically equivalent to a sum of i.i.d terms,

 where εi(t) is defined in the the Appendix. By a functional central limit

theorem of Pollard (1990), the process  converges weakly to a mean zero Gaussian

process in t. We also show that  is uniformly consistent for NRI(θ0, t), and that the

process  is asymptotically equivalent to a sum of i.i.d

terms  where ζi(t) is defined in the Appendix. Again, by a functional central

limit theorem, the process  converges weakly to a mean zero Gaussian process in t.

With weak convergence of both  and , it follows that the combined
estimator converges to a zero-mean process. Due to the variation in , the combined
estimators may not be a Gaussian process. We show in our simulation that to make
inference, resampling procedures such as a bootstrap method can provide a valid
approximation of the limit distribution. Specifically, at each of the bth bootstrap iterations,
with b = 1, . . . , B, we conduct a random sampling with replacement of the original dataset,

and fit our new and old risk models based on the sampled dataset, denoted as  and

. These estimates from the fitted models are then used to calculate  and

 based on the bootstrapped samples. This procedure will be repeated B times, and
confidence intervals can be constructed either based on the percentile method, or a normal
approximation where the standard error is calculated based on the empirical standard errors

of  and . The combined estimator can be
inferred similarly by repeatedly calculate the weights based on each bootstrap sample in

addition to  and .

In the absence of an independent validating set, often in practice the same dataset is used for
both fitting the model with several predictors and calculating a measure such as NRI(t).
Such an ‘apparent’ summary may potentially lead to the so-called ‘overfitting’ phenomenon,
i.e. estimates of model performance will tend to be more optimistic compared with the
corresponding estimates if the model were to applied to a new dataset. Several methods for
correcting the bias from apparent estimates can be considered. The 0.632 Bootstrap method
(Efron and Tibshirani 1997) has been shown to have better performance compared with a
simple cross-validated approach. The estimator was derived in our simulation as follows: we

first obtained a bootstrapped estimate  by sampling the data with replacement to
obtain the training set. The training set is used to estimate the model parameters

. The remaining subjects make up the validation set, and are used to calculate
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the various estimates of NRI using parameter values . This is repeated B

times and  is the mean across the repetitions. The 0.632 bootstrap estimate is,

where  is the estimate without using cross-validation. To construct a

confidence interval based on , we follow the suggestions given in Tian et al.
(2007) and Uno et al. (2007) by shifting the apparent error based confidence interval in the

amount of bias estimated as . Specifically, if [L, R] is the
confidence interval calculated based on the procedure described above, then the bias

corrected confidence interval is .

5 Simulation studies
To examine the performance of various NRI(t) estimators, we conducted simulation studies
under several different scenarios. Throughout we chose n = 500 and used 200 bootstrap
samples to calculate standard errors. Results for each setting were produced from 1,000
simulations. We calculated NRI(t), for t = 3 for comparing two risk models using the KM,
IPW, Smooth-IPW, SEM and the combined estimators described in Sect. 3. We fitted Cox
regression models to calculate risks for both the new and existing models using
corresponding predictors.

For the first setting presented in Table 1, two predictors Y1 and Y2 were simulated from a
multivariate normal distribution with mean (0, 0.5), σy1 = σy2 = 1 and a correlation ρ of
0.25. The relationship between survival time T and Y followed a proportional hazards model
with parameters β1 = log(3) and β2 equal to log(1.5). Censoring time was generated from a
U(0, a) distribution where a was chosen to produce approximately 40% censoring. Note that
in this setting, model Q is correctly specified and the independent censoring assumption is
correct. We took the baseline model to consist of Y1 and the new model to include both
predictors. As expected, all estimators shown in Table 1 provide unbiased estimates. The
bootstrap-based variance estimators perform well with coverage percentage close to the 95%
nominal level. Since the risk based on the new model is correctly specified, the
semiparametric method is the most efficient. Improvement in efficiency over the
nonparametric procedures is observed with our combined estimators.

Under this setting we also considered a null model where β2 = 0 i.e. there is no incremental
value of the new marker and NRI(t) = 0. We found that in this situation all estimators tend to
slightly over estimate NRI(t), and variance estimators based on the bootstrap estimators tend
to be conservative (see Table 2). We do not recommend calculating NRI(t) in the case when
the new marker does not independently predict outcome in a model with conventional
predictors. Note that all theoretical results in the Appendix are derived under the assumption
that β2 ≠ 0 and thus our proposed procedures are only valid under this assumption. In
practice, if the null setting is a likely possibility, estimation should be treated with care.

The second setting we considered was identical to the first setting, except that censoring
time was dependent on marker values. Here, censoring time,
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where U was generated from a Uniform(0, a) distribution where with a chosen to yield about
40% censoring, X was generated from a N(0, 1) distribution and B was generated from a
N(2·Y1, 1) distribution. Note that in this setting, model Q is correctly specified but the
independent censoring assumption is not correct. As seen in the results presented in Table 3,
the KM estimator yields biased estimators for both NRI(t) and its two key components. The
IPW estimator is biased for both  and NRI(t), whereas the smooth-IPW
estimator substantially alleviates such biases. However, we observed large variation in
nonparamatric estimators of NRI(t) as compared with the semiparametric and combined
estimators (Table 3).

The third setting we investigated considers the case where survival time depends on four
markers Yi, for i = 1, . . . , 4, but we only have access to the first two. In particular, Y comes
from a multivariate normal distribution with mean 0, and σij = 1 for i = j and 0.25 otherwise.
Survival time relates to the marker data through a model where the hazard function is
specified as λ(t|Y) = 0.1*{3Y1 + 1.5Y2 + 2Y3 + 2.5Y4 + exp(3Y1)}. Note that in this
setting, model Q is misspecified as depending only on Y1 and Y2. Censoring time in this
setting is generated the same as in the first setting, which does not dependent on T or Y.
Since the SEM estimator misspecified the relationship between T and Y as λ(t|Y) = λ0
exp(β1Y1 + β2Y2), it yields biased results. All other estimators are unbiased (Table 4).
Throughout the three settings we considered, the combined estimator remained unbiased and
more efficient than other nonparametric estimators.

To evaluate the procedures described above, we simulated 10 markers from a multivariate
normal distribution with mean 0, σYi = 1 and pairwise correlations equal to 0.25. The
number of parameters and sample size were chosen to mimic the setting of our data example
described in Sect. 6. We consider a Cox model for failure time, with hazard ratio parameters
for 10 markers specified as β = (log(2), log(.77), 0, log(1.81), 0, 0, 0, log(0.5), 0, log(1.2)).
The baseline model consists only of the first marker. To derive a new model based on the
information on all 10 markers, for each simulation, we first fit a model with all ten markers.
The expanded model consists of all markers that have non-zero β at an α = 0.05 level. We
found that in the case of estimating NRI, under our simulated scenario, the apparent
summaries are quite close to the true values in many cases. Since the bias is at the rate of g/
N, where g is the number of predictors under consideration for risk model building,
overfitting may be of more concern when large numbers of genetic markers are involved
with a relatively small sample size. In the situation there is a slight indication of overfitting,
the 0.632 bootstrap procedure appears to be adequate in correcting the bias (see Table 5).

6 Example
The Framingham risk model (FRM) has been used for population-wide CVD risk
assessment. The model was developed based on several common clinical risk factors,
including age, gender, total cholesterol level, high-density lipoprotein (HDL) cholesterol
level, smoking, systolic blood pressure and high blood pressure treatment (Wilson et al.
1998). To improve the predictive capacity of the FRM, a new risk model has been developed
recently using data from the Women's Health Study (Cook et al. 2006), based on variables in
the Framingham risk model and an inflammation marker, C-reactive protein (CRP). Prior to
adapting the new model in routine practice, it is important to quantify its prediction
performance, especially in comparison to that of FRM. We illustrate here how our proposed
procedures can be used to evaluate and compare the clinical utility of the two risk models
using an independent dataset from the Framingham Offspring Study (Kannel et al. 1979).

The Framingham Offspring Study was established in 1971 with 5,124 participants who were
monitored prospectively for epidemiological and genetic risk factors for CVD. We consider
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here 1,728 female participants who have CRP measurement and other clinical information at
the second exam and are free of CVD at the time of examination. The average age of this
subset was about 44 years (standard deviation = 10). The outcome we consider is the time
from exam date to first major CVD event including CVD-related death. During the followup
period 269 participants were observed to encounter at least one CVD event and the 10-year
event rate was about 4%. For illustration we chose t = 10 years as in Wilson et al. (1998).
For each individual, two risk scores were calculated: one based on the FRM (Model 1),
combining information on age, systolic blood pressure, smoking status, high-density
lipoprotein (HDL), total cholesterol, medication for hypertension; the other based on an
algorithm developed in Cook et al. (2006) (Model 2), with the addition of CRP
concentration. We use Cox models to specify the relation between the time-to-CVD events
and model scores (linear predictors from the models).

Both models are well calibrated based on calibration plots (not shown). For comparison, we
first give AUC results and use the bootstrap to obtain confidence intervals. The AUC for an
ROC curve at 10-years is 0.752 (95% CI: 0.721,0.783) for Model 1 and 0.758 (95% CI:
0.729,0.787) for Model 2. The difference between the two AUCs is not statistically
significant: 0.006 (95% CI: –0.033, 0.046). We now investigate whether the new models
reclassify patients in terms of their risks and CVD outcome at 10 years. We consider NRI
(10-years) for such an evaluation using the methods described in Sect. 3. Table 6 shows that
estimates from the three nonparametric models are quite consistent, all indicating that the
new model does not add significant improvement gauged by NRI. The semiparametric
model, however, does indicate a significant incremental value with NRI = 0.167 (SE =
0.067), and the combined estimator indicates a similar magnitude of improvement, though
not significant (NRI = 0.132, SE = 0.137). Note that since we considered a continuous NRI
with u = v = 0, the observed improvement at this magnitude may not be interpreted as
clinically substantial. Since different conclusions could be reached depending on which
estimation method is chosen, this analysis highlights the need to consider multiple robust
approaches for calculating NRI.

7 Discussion
NRI provides an alternative tool for evaluating risk prediction models (Pencina et al. 2008)
beyond the traditional ROC curve framework. The concept has continued to gain popularity
in the medical literature, yet its statistical properties have not been well studied to date in the
statistical literature, and existing methods for calculating NRI under the failure time
outcome setting are limited. In this manuscript, we provide a more thorough investigation of
a variety of estimation procedures. Our proposed nonparametric and semiparametric
estimators improve upon existing methods both in terms of robustness and efficiency under
a variety of practical situations. Such improvement is quite important, since we observe that
compared with other measures such as AUC, NRI estimates, in general, are not very stable
with substantial variations in the estimators we have considered. The proposed procedures
can be used for estimating both continuous NRI and NRI with pre-specified fixed categories.
As illustrated in the example, the choice of estimation method can lead to different
conclusions. In practice, the method chosen should depend on a number of important
considerations including the likelihood that the model has been correctly specified and that
the assumptions concerning censoring are correct. In addition, in situations where the new
marker may be expensive or difficult to ascertain, an approach which considers both the
risks and benefits of obtaining the marker should be considered in a decision-making
process. We recommend such measures to be used in practice with caution. A thorough
evaluation of a risk model should consider a wide spectrum of measures for assessing
discrimination and calibration, and NRI may be better served as one of the summary
measures to complement graphical displays of risk distributions(Gu and Pepe 2009). All
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analyses were performed in R. Code for implementing the proposed procedures is available
upon request.
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Appendix
Throughout, we assume that the joint density of (T, C, Y) is twice continuously
differentiable, Y are bounded, and 1 > P(T > t) > 0, 1 > P(C > t) > 0. The kernel function K
is a symmetric probability density function with compact support and bounded second

derivative. The bandwidth h → 0 such that nh4 → 0. In addition, the estimator  converges
to θ0k for k = 1, 2 as n → ∞ (Hjort 1992), where βk0 is the unique maximizer of the
expected value of the corresponding partial likelihood and Λk0 is the baseline cumulative
hazard for k = 1, 2. We denote the parameter space for θk by Ωk and assume that Ωk is a
compact set containing θ0k. Furthermore, we assume that β2 ≠ 0 and note that

 and  are the respective limits

of  and , for any given Y(2) and Y(1). The in-probability convergence of

 and  and P(θ01) are uniform in Y(2) and Y(1) due to the convergence

of .

Asymptotic Properties of 
From the same arguments as given in Cai et al. (2010) and Dabrowska (1997), it follows that

we have the uniform consistency of  to ,
where  and , for ι = 1 and •. It follows, using the law of numbers (Pollard
1990), that

This along with the convergence of  to θ0 implies that  is uniformly consistent for
NRI(θ0, t).

Throughout, we will use the fact that

 if either
C ⊥ T, Y(2) (model may be misspecified) or  i.e. the Cox model is
correctly specified though censoring may be such that C ⊥ T | Y(2) (double robustness). We

first write the i.i.d representation of  for any θ. Note that

. We first examine the initial component,
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where  and

. Let  and
. Then by the uniform consistency of the IPW weights, we have

Examining the numerator, 

where , and

. Note that

Using a Taylor series expansion, Lemma A.3 of Bilias et al. (1997) and the asymptotic

expansion for  given in Du and Akritas (2002),

where

Now by a change of variable,  and ,
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where . Similar

arguments can be used to obtain an asymptotic expansion for (3) as  and
therefore, the numerator,

. The same
arguments as given above can be used to obtain an asymptotic expansion for

 as 
where D(t)–, U–1i(t), U–2i(t), and U–3i(t) are defined similarly to D(t), U1i(t), U2i(t), and
U3i(t) with  replaced with T > t. Therefore,

.

Note that regardless of correct model specification,  where ψi
are i.i.d mean zero random variables by Lin and Wei (1989) and Uno et al. (2009). Using a

Taylor series approximation and the i.i.d representation of  for any

θ, we can write  as a sum of i.i.d terms, 
defined below.

where . By a functional central limit theorem of Pollard

(1990), the process  converges weakly to a mean zero Gaussian process in t.

Asymptotic Properties of 
Recall that we assume the Cox model is correctly specified and thus,

 and

. To derive asymptotic properties of  we
assume the same regularity conditions as in Andersen and Gill (1982). The uniform

consistency of  for Q(θ2, t, Y(2)) in t and Y(2) follows directly from the uniform

consistency of  and . It follows from the uniform law of large numbers (Pollard

1990) that  is uniformly consistent for NRI(θ0, t). Andersen and Gill (1982) show

that  is a normal random variable and  converges to a
Gaussian process. By the functional delta method it can be shown that

 converges to a zero mean Gaussian process in t and Y(2)
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(Zheng et al. 2008). Similar to the derivation for , it can be shown that the process

 is asymptotically equivalent to . In

particular, for a fixed θ,  where

. Thus,  where . Once again, using a

functional central limit theorem, this implies that  converges to a Gaussian process
with mean zero.
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Table 1

Simulation results under noninformative censoring and correctly specified new risk model with mean (mean of
bias (mean(bias)) and standard deviation (Std. Dev.) of the estimated parameters across simulations, the mean
of the standard error estimates calculated for each simulation using bootstrapping (mean(std error)), and
coverage of the 95 % bootstrap confidence interval based on the normal approximation

Method Pr(Pi − Qi > 0 ∣ T i ≤ t) Pr(Pi – Qi > 0|Ti > t) NRI (t)

True values 0.592 0.358 0.468

KM

Mean(Bias) 0.003 0.001 0.002

Std. Dev. 0.034 0.030 0.104

Mean(std error) 0.034 0.030 0.103

95 % bootstrap CI cov. 0.946 0.946 0.946

IPW

Mean(Bias) 0.002 0.002 –0.001

Std. Dev. 0.034 0.030 0.105

Mean(std error) 0.034 0.031 0.104

95 % bootstrap CI cov. 0.943 0.95 0.951

Smooth IPW

Mean(Bias) 0.001 0.003 –0.003

Std. Dev. 0.034 0.030 0.104

Mean(std error) 0.034 0.030 0.103

95 % bootstrap CI cov. 0.946 0.942 0.949

SEM

Mean(Bias) 0.001 0.003 –0.003

Std. Dev. 0.024 0.029 0.082

Mean(std error) 0.025 0.028 0.080

95 % bootstrap CI cov. 0.952 0.942 0.937

Combined

Mean(Bias) 0.002 0.003 –0.002

Std. Dev. 0.029 0.028 0.089

Mean(std error) 0.031 0.029 0.095

95 % bootstrap CI cov. 0.968 0.949 0.969

KM Kaplan–Meier estimator, IPW inverse probability weighted estimator, Smooth IPW smooth inverse probability weighted estimator, SEM
semiparametric estimator, Combined combined estimator, as defined in the text
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Table 2

Simulation results under noninformative censoring and correctly specified new risk model with mean of bias
(mean(Bias)) and standard deviation (Std. Dev.) of the estimated parameters across simulations, the mean of
the standard error estimates calculated for each simulation using bootstrapping (mean(std error)), and coverage
of the 95 % bootstrap confidence interval based on the normal approximation. Data is generated under the null
model that β2 = 0

Method Pr(Pi − Qi > 0 ∣ T i ≤ t) Pr(Pi – Qi > 0|Ti > t) NRI(t)

Null model: β2 = 0

True values 0.5 0.5 0

KM

Mean(Bias) 0.01 –0.02 0.061

Std. Dev. 0.034 0.026 0.091

Mean(std error) 0.043 0.033 0.118

95 % bootstrap CI cov. 0.996 0.971 0.98

IPW

Mean(Bias) 0.01 –0.019 0.058

Std. Dev. 0.034 0.026 0.092

Mean(std error) 0.044 0.033 0.119

95 % bootstrap CI cov. 0.996 0.972 0.981

Smooth IPW

Mean(Bias) 0.009 –0.019 0.055

Std. Dev. 0.034 0.026 0.092

Mean(std error) 0.044 0.033 0.118

95 % bootstrap CI cov. 0.996 0.972 0.981

SEM

Mean(Bias) 0.009 –0.019 0.057

Std. Dev. 0.023 0.025 0.067

Mean(std error) 0.029 0.031 0.081

95 % bootstrap CI cov. 0.99 0.967 0.957

Combined

Mean(Bias) 0.008 –0.019 0.055

Std. Dev. 0.029 0.025 0.077

Mean(std error) 0.039 0.032 0.104

95 % bootstrap CI cov. 0.997 0.971 0.977

KM Kaplan–Meier estimator, IPW inverse probability weighted estimator, Smooth IPW smooth inverse probability weighted estimator, SEM
semiparametric estimator, Combined combined estimator, as defined in the text
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Table 3

Simulation results under covariate-dependent censoring and correctly specified new risk model with mean of
bias (mean(Bias)) and standard deviation (Std. Dev.) of the estimated parameters across simulations, the mean
of the standard error estimates calculated for each simulation using bootstrapping (mean(std error)), and
coverage of the 95 % bootstrap confidence interval based on the normal approximation

Method Pr(Pi − Qi > 0 ∣ T i ≤ t) Pr(Pi – Qi > 0|Ti > t) NRI(t)

True values 0.611 0.45 0.322

KM

Mean(Bias) 0.067 –0.062 0.259

Std. Dev. 0.040 0.040 0.126

Mean(std error) 0.041 0.040 0.129

95 % bootstrap CI cov. 0.615 0.659 0.483

IPW

Mean(Bias) –0.024 0.005 –0.057

Std. Dev. 0.034 0.045 0.131

Mean(std error) 0.035 0.044 0.130

95 % bootstrap CI cov. 0.897 0.944 0.918

Smooth IPW

Mean(Bias) –0.013 0.007 –0.038

Std. Dev. 0.041 0.041 0.133

Mean(std error) 0.040 0.040 0.132

95 % bootstrap CI cov. 0.937 0.939 0.941

SEM

Mean(Bias) 0 –0.001 0.002

Std. Dev. 0.025 0.039 0.098

Mean(std error) 0.026 0.037 0.095

95 % bootstrap CI cov. 0.951 0.932 0.938

Combined

Mean(Bias) –0.006 0.002 –0.016

Std. Dev. 0.031 0.039 0.109

Mean(std error) 0.035 0.039 0.117

95 % bootstrap CI cov. 0.975 0.951 0.971

KM Kaplan–Meier estimator, IPW inverse probability weighted estimator, Smooth IPW smooth inverse probability weighted estimator, SEM
semiparametric estimator, Combined combined estimator, as defined in the text
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Table 4

Simulation results under noninformative censoring and misspecified new risk model with mean of bias
(mean(Bias)) and standard deviation (Std. Dev.) of the estimated parameters across simulations, the mean of
the standard error estimates calculated for each simulation using bootstrapping (mean(std error)),and coverage
of the 95 % bootstrap confidence interval based on the normal approximation

Method Pr(Pi − Qi > 0 ∣ T i ≤ t) Pr(Pi – Qi > 0|Ti > t) NRI (t)

True values 0.646 0.395 0.504

KM

Mean(Bias) 0.007 –0.002 0.016

Std. Dev. 0.072 0.023 0.160

Mean(std error) 0.074 0.024 0.164

95 % bootstrap CI cov. 0.94 0.945 0.947

IPW

Mean(Bias) 0.004 –0.001 0.008

Std. Dev. 0.072 0.023 0.160

Mean(std error) 0.074 0.024 0.165

95 % bootstrap CI cov. 0.945 0.942 0.95

Smooth IPW

Mean(Bias) 0.003 –0.001 0.007

Std. Dev. 0.072 0.023 0.160

Mean(std error) 0.074 0.024 0.164

95 % bootstrap CI cov. 0.943 0.946 0.95

SEM

Mean(Bias) –0.046 0.003 –0.099

Std. Dev. 0.022 0.022 0.068

Mean(std error) 0.022 0.023 0.068

95 % bootstrap CI cov. 0.448 0.943 0.682

Combined

Mean(Bias) –0.009 0.000 –0.020

Std. Dev. 0.057 0.022 0.128

Mean(std error) 0.062 0.023 0.139

95 % bootstrap CI cov. 0.970 0.947 0.976

KM Kaplan–Meier estimator, IPW inverse probability weighted estimator, Smooth IPW smooth inverse probability weighted estimator, SEM
semiparametric estimator, Combined combined estimator, as defined in the text
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Table 5

Simulation results comparing apparent estimates and the 0.632 bootstrap for correcting overfitting

Estimator Pr(Pi − Qi > 0 ∣ T i ≤ t) Pr(Pi – Qi > 0|Ti > t) NRI(t)

True values 0.684 0.275 0.817

Smooth IPW Apparent

    Mean(Bias) 0.000 0.004 –0.007

    Std. Dev. 0.036 0.028 0.108

    CI coverage 0.962 0.963 0.964

0.632 Bootstrap

    Mean(Bias) –0.008 0.008 –0.032

    Std. Dev. 0.034 0.027 0.102

    CI coverage 0.971 0.969 0.968

Bootstrapped SE

    Mean(std error) 0.039 0.030 0.114

SEM Apparent

    Mean(Bias) 0.003 –0.001 0.009

    Std. Dev. 0.023 0.025 0.072

    CI coverage 0.955 0.954 0.945

0.632 Bootstrap

    Mean(Bias) 0.005 –0.003 0.015

    Std. Dev. 0.022 0.024 0.072

    CI coverage 0.953 0.962 0.937

Bootstrapped SE

    Mean(std error) 0.024 0.025 0.071

Combined Apparent

    Mean(Bias) 0.001 0.001 0.001

    Std. Dev. 0.028 0.026 0.087

    CI coverage 0.982 0.969 0.975

0.632 Bootstrap

    Mean(Bias) –0.002 0.003 –0.008

    Std. Dev. 0.027 0.025 0.085

    CI coverage 0.989 0.975 0.983

Bootstrapped SE

    Mean(std error) 0.035 0.028 0.102

Smooth IPW smooth inverse probability weighted estimator, SEM semiparametric estimator, Combined combined estimator, as defined in the text
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Table 6

NRI estimates for two risk models for predicting 10-year CVD risk among women in the Framingham
offspring cohort

Method Pr(Pi − Qi > 0 ∣ T i ≤ t) Pr(Pi – Qi > 0|Ti > t) $NRI(t)

KM

    Est 0.483 0.508 –0.049

    SE 0.069 0.028 0.176

IPW

    Est 0.478 0.508 –0.059

    SE 0.070 0.028 0.178

Smooth IPW

    Est 0.480 0.508 –0.057

    SE 0.070 0.028 0.178

SEM

    Est 0.587 0.503 0.167

    SE 0.015 0.026 0.067

Combined

    Est 0.570 0.504 0.132

    SE 0.054 0.027 0.137

KM Kaplan–Meier estimator, IPW inverse probability weighted estimator, Smooth IPW smooth inverse probability weighted estimator, SEM
semiparametric estimator, Combined combined estimator, as defined in the text
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