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Abstract
Complex communities of bacteria, fungi, and viruses thrive on our skin. The composition of these
communities depends on skin characteristics, such as sebaceous gland concentration, moisture
content, and temperature, as well as on host genetics and exogenous environmental factors. Recent
metagenomic studies have uncovered a surprising diversity within these ecosystems and have
fostered a new view of commensal organisms as playing a much larger role in immune modulation
and epithelial health than previously expected. Understanding microbe-host interactions and
discovering the factors that drive microbial colonization will help us understand the pathogenesis
of skin diseases and develop new promicrobial and antimicrobial therapeutics.
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Introduction
Beginning with van Leeuwenhoek’s invention of the microscope in the 17th century, studies
have linked microbes to human disease by uncovering direct, one-to-one relationships
between pathogens and skin pathologies. Seminal discoveries include human papillomavirus
(HPV) as a cause of squamous cell cancer and Treponema pallidum as the cause of syphilis.
More recently, metagenomic advances have allowed us to examine not just one pathogen at
a time but thousands of different microbes simultaneously. With these techniques, scientists
have uncovered surprisingly diverse and complex microbial communities thriving on the
epithelial surfaces of every individual. These communities influence human physiology,
immunity, and disease in ways that we are now just beginning to appreciate.
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An estimated 1 million bacteria, with hundreds of distinct species, inhabit each square
centimeter of skin1. Many studies have suggested that microbes may contribute even to
noninfectious pathologies, such as atopic dermatitis, psoriasis, rosacea, and acne though
recent molecular studies are beginning to explain the complex relationship between host and
microorganism2–6. These studies have established a new paradigm for how microbes cause
disease, where not just pathogens but also imbalances in the commensal ecosystem cause
skin pathology. Whether this imbalance is primary or secondarily caused by changes in host
skin and immunity and how this imbalance potentiates epithelial dysfunction, immune
dysregulation, or overgrowth of pathogenic microbes are new questions on the research
frontier that will impact how we understand and treat skin diseases.

Recent reviews have comprehensively summarized the work to date on the skin
microbiome7–10. This review will briefly describe representative studies of the skin
microbiome but will focus primarily on the current gaps in research, relevant clinical
questions, and potential methods for addressing these questions.

What is metagenomics?
Historically, characterizing cutaneous microbes involved culturing skin swabs or biopsies.
However, less than 1% of bacterial species can be cultivated with standard lab conditions,
and many that do grow are competed out by faster-growing organisms11. Consequently,
easily cultivated bacteria or fungi, such as Staphylococcus or Malassezia species, were
overrepresented in early microbial surveys. Recent advances in DNA amplification and
sequencing technology can now bypass the culture steps and allow for more complete,
unbiased views of skin microbiota and their genetic content, collectively called the
“microbiome” (for glossary, see Table 1).

The culture-free, sequence-based method of analyzing any collection of microorganisms,
such as skin microbiota, can be referred to as "metagenomics"12. In analyzing bacterial
microbiomes, this method most often involves amplifying the 16S ribosomal RNA (16S
rRNA) gene by PCR directly from skin samples (Fig. 1A)13, 14. The 16S rRNA gene exists
in all bacteria and archaea but not in eukaryotes. It contains both conserved regions that
serve as binding sites for PCR primers and variable regions for taxonomic classification
after high-throughput sequencing of the PCR products (Fig. 1B)15, 16. Sequences that are
more than 97% identical can often be classified within one species. Within one species,
sequence variations are assumed to be due to intra-species strain variations. Also, the
number of sequences counted within one species represents the relative abundance of that
species in the original skin sample. Thus, this metagenomic approach gives a comprehensive
picture of the bacterial community by providing both identification and relative abundances
of all present species (Fig. 2).

The normal microbiome on human skin
In 2007, the National Institutes of Health (NIH) launched the Human Microbiome Project to
survey microbial content across 242 healthy adults, develop a reference catalog of microbial
genome sequences, and understand how specific habitats in the gut, genitourinary system,
and skin contribute to health and disease states14, 17–19. Recently, results from the Human
Microbiome Project were published that describe their metagenomic methods and the
publicly available databases of whole genome and 16S rRNA gene sequences18. This work
and other studies in the past decade have characterized the skin microbiome of healthy
volunteers and its variation across different spatial niches, individuals, and time (Table 2).

In utero, fetal skin is sterile, but minutes after birth, colonization begins to occur20–22.
Newborns are first homogenously colonized with a similar, low-diversity microbiome over
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all skin sites20, 22. As infants contact environmental microbiota and as different areas of the
skin develop distinct moisture, temperature, and glandular characteristics, individual skin
habitats arise with divergent, increasingly diverse microbiota22. These habitats then continue
to transform with puberty, aging, and environmental exposures23–27. Metagenomic studies
using 16S rRNA sequencing in adults show that the vast majority of skin bacteria as well as
gut flora fall into four phyla: Actinobacteria, Firmicutes, Bacteroidetes, and Proteobacteria,
but within these phyla exist thousands of distinct species1, 26, 28–37. A survey of the palm
microbiome, for instance, found 4,742 distinct species in 51 healthy subjects, with an
average of 158 species coexisting on a single palm26.

Surveys of microbiomes over 20 different skin sites show that similar habitats, such as the
axillae and the popliteal fossae, have similar microbial compositions (Fig. 3)31, 38. For
instance, in all individuals, Propionibacterium species dominate sebaceous areas like the
forehead, retroauricular crease, and back, while Staphylococcus and Corynebacterium
species dominate moist areas, such as the axillae (Fig. 3). Surprisingly, abundant Gram-
negative organisms, previously thought to colonize the skin rarely as gastrointestinal
contaminants, were found in the microbiomes of dry skin habitats, such as the forearm or
leg.

In addition to differing species compositions, each habitat also has its own characteristic
level of microbial diversity and temporal fluctuation. For example, antecubital fossae had
the highest variance in species composition between subjects, called beta diversity, but each
single antecubital fossa had less alpha diversity, or fewer unique species within one habitat
when compared to other sites19. Different skin sites also have different levels of temporal
variability. Partially occluded sites, such as the inguinal crease, had more stable bacterial
communities over time31, while dryer and more exposed skin sites, such as the palm, had
higher diversity and more temporal fluctuation38. Characterization of skin habitats by
indices such as alpha diversity, beta diversity, and temporal volatility provides information
about community structure and can be a quantitative method to follow changes in the skin
microbiome after antibiotics, pathogen arrival, and other perturbations.

Consistent with the idea of ecological niches, transplanting microbes from one habitat to
another, such as from the tongue to the forehead, caused only a transient presence of tongue
microbiota on the forehead with eventual return to a forehead microbiome38. Individual
genetics and environmental exposures also contribute to microbiome composition, as
contralateral habitats within an individual are more similar than the same habitat across
different individuals1, 31, 38. Additionally, within one species of bacteria, strain-level
genotypic differences exist in subsets of the populations, potentially correlating to the
genetic or immune characteristics of host individuals19.

Although metagenomics studies using 16S rRNA gene sequencing have revolutionized our
understanding of the healthy skin microbiome, many questions need to be addressed. A
recent study showed that the nares, antecubital fossa, volar forearm, and popliteal fossa of
children differ globally from the same sites in adults in terms of bacterial composition39

(Table 2). For example, S. aureus was more abundant in the nares of children, and this was
significantly correlated to S. aureus colonization at other skin sites39. Continued
investigation of skin microbiome composition in a variety of age and ethnic groups may
help elucidate why certain populations are more susceptible to certain pathologies and the
host or environmental factors that determine the composition of skin ecosystems.

In addition to the abundant Propionibacterium, Staphyloccocus, and Corynebacterium
species, most species in the skin microbiome each make up less than 1% of the total flora in
any particular habitat. These minority species are not well studied and many were not
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previously known to colonize the skin, but low abundance species could nonetheless be
linchpins of the skin ecosystem. Metagenomic studies of soil ecosystems have shown that
several low abundance fungal species are actually highly active in essential decomposition
processes40. Therefore, it is possible that low abundance skin microbes also exert large
influences over abundant species, such as S. epidermidis, or pathogenic species, such as S.
aureus. One way to detect relationships between pairs of species in a microbiome is to use
maximal information-based nonparametric exploration (MINE) statistics. This statistical tool
was recently developed and has been applied to a variety of large datasets, including the gut
microbiome41. Application of MINE to skin microbiome data could hint at which pairs of
bacterial species are functionally symbiotic or antagonistic and how disruptions in a few
species could change the ecosystem as a whole.

Another method to study low abundance species in the skin microbiome is
metatranscriptomics, which has been used to study soil microbiomes40, 42. All published
studies surveying skin microbiomes have used a DNA-centered, genomic approach. By
contrast, in metatranscriptomics, RNA, not DNA, is purified from a skin sample before
sequencing. Since the cell itself has already amplified the RNA, this approach can better
detect low abundance organisms. Additionally, transcriptome data capture metabolic activity
and can reveal whether a low abundance species contributes proportionally more to the
ecosystem. Furthermore, since RNA is much less stable than DNA, the meta-transcriptome
would only identify microorganisms that are alive, providing a more accurate snapshot in
time than metagenomics. However, one technical challenge to this approach is the limitation
on skin biopsy size compared to a soil sample, which makes isolating enough RNA more
difficult. Therefore, this metatranscriptomics approach may be more applicable when single-
molecule DNA sequencing can be performed in a more inexpensive, high-throughput
manner.

The microbiome in atopic dermatitis
One frequently studied disease using metagenomics is atopic dermatitis (AD). Although AD
is noninfectious, flares may relate to changes in cutaneous microbes. AD is a chronic,
relapsing disorder that affects approximately 15% of children in the United States. Many
hypotheses have been invoked for the pathogenesis of AD, including a deficiency in the
epithelial barrier protein filaggrin, colonization by S. aureus, and immune
hypersensitivity43–47. Empirically effective treatments for AD include antibiotics, steroids,
and dilute bleach baths48. These are thought to work by decreasing bacterial load and
inhibiting a dysfunctional, exuberant immune response to skin flora.

Using culture methods, S. aureus colonization and infection have been commonly associated
with AD49. Consistent with this, a metagenomic study showed that Staphylococcus species
increased from 35% to 90% of the microbiome during flares, but surprisingly, both S. aureus
and S. epidermidis increased50. Thus, microbiome data suggest that understanding how S.
aureus affects AD will require understanding S. aureus fluctuations as part of a larger,
complex ecosystem. S. epidermidis can produce molecules that selectively inhibit S.
aureus51, arguing that S. epidermidis may be antagonistic to S. aureus. However, in the gut,
pathogenic species can more easily colonize when closely related commensal species are
also abundant52, suggesting that Staphylococcus species may be mutualistic. Given the
differing data above, in the case of AD skin, it is still unclear whether S. aureus and S.
epidermidis mutually enhance each other's colonization or whether S. epidermidis increases
as an antagonistic response to an increasing S. aureus population. In addition to the obvious
changes in S. aureus and S. epidermidis abundance, many unrelated, non-staphylococcal
species also appear to change in abundance during an AD flare50. Future research should
examine whether a change in host skin first triggers changes in species composition, thus
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allowing for Staphylococcus overgrowth, or if Staphylococcus overgrowth is a primary
event that then forces other species to change in abundance.

These questions might be further investigated in mouse models of AD, such as the NC/Nga
mouse, which develops disease that is clinically and histologically similar to AD after
exposure to environmental aeroallergens53, 54. Importantly, understanding how S. aureus
relates to microbiome fluctuations as a whole may reveal novel treatments of AD flares such
as rebalancing and re-diversifying the skin microbiome rather than eliminating S. aureus or
bacterial burden on the skin. Lessons learned from AD might also inform our understanding
of other skin pathologies, such as psoriasis, acne, and chronic wounds, which may also be
related to microbiome imbalances.

Microbiome studies similar to those in AD have been performed in patients with
psoriasis5, 55, 56, chronic wounds57–59, or acne60 (Table 2). In chronic wounds, the
microbiome was found to be less diverse than that of healthy skin but no consensus
microbiome was found, even among wounds of the same etiology57–59, 61. In contrast, the
follicular microbiome in acne was more diverse than that of healthy follicles, which are
colonized almost exclusively by P. acnes60. And in psoriasis, there is a lack of consensus in
how and if the microbiome of psoriatic plaques differs from that of normal skin5, 55, 56.
Metagenomic studies with more detailed stratification based on patients’ clinical status and
treatment regimens may help elucidate the clinical significance of these findings.

Antibiotics and the microbiome
A major gap in our current understanding is how current therapies affect the microbiome.
Many dermatological treatments are bactericidal or immunosuppressive and may have
unexpected effects on the microbiome. In the gut, antibiotics were found to cause not only a
transient loss in bacterial diversity but also a long-term loss of microbiome members beyond
the direct antibiotic targets62–64. Even though vancomycin targets only Gram-positive
bacteria, Gram-negative populations were depleted after vancomycin treatment64. This
effect on off-target microbes likely occurs due to indirect relationships between bacterial
species that are forged through ecosystem-wide processes, such as metabolite exchange and
waste product removal65.

Furthermore, after cessation of antibiotic treatment and even after restoration of bacterial
density in the gut, the long-term changes in microbial community composition facilitate
colonization by pathogens, such as vancomycin-resistant Enterococcus, which then
potentiates bloodstream invasion66. Therefore, using bactericidal treatments like antibiotics
in AD or UV light in psoriasis may have wide-reaching, unknown effects on the microbiome
and disease recurrence. Currently, the data on probiotic treatments for skin diseases, such as
atopic dermatitis remain controversial. A meta-analysis of seven Cochrane and non-
Cochrane reviews showed no clear evidence that interventions such as probiotics, maternal
antigen avoidance, and different antigen-avoidance diets reduced the incidence of atopic
dermatitis67. Although pooled data showed a reduction in eczema incidence with exclusive
breastfeeding for at least six months and with maternal probiotic supplementation, these data
were based on small trials67. Additionally, these trials focused on the modulating the gut
microbiome to affect skin health. Future investigation into treatments for microbe-related
skin pathologies could be directed toward probiotic regimens that directly modulate the skin
microbiome.

Metagenomics to investigate cutaneous infections
Metagenomic studies have provided insights into AD, psoriasis, acne, and chronic wounds.
These diseases are noninfectious but can be influenced by shifts and imbalances in skin
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microbiota. Organisms that cause cutaneous infections can also be studied via
metagenomics, which could be particularly useful in those infections associated with a wide
range of clinical features and wide geographic and host variability. One such organism is
Staphylococcus aureus, a major source of hospital- and community-acquired infections. Its
manifestations range from asymptomatic nasal carriage to impetigo, enterotoxin-mediated
desquamation, severe necrotizing pneumonia, and septicemia. In addition to a wide range of
virulence and toxin-producing capabilities, S. aureus also exhibits variable antibiotic
susceptibility, including methicillin and vancomycin resistance. Its widespread
pathogenicity and increasing antibiotic resistance coupled with declining treatment options
makes S. aureus an important pathogen to study from a patient safety and public health
perspective68–71.

Thus far, 14 strains of S. aureus have been fully sequenced, with many more partially
sequenced72–77. Additionally, DNA microarrays have been developed for genome
comparisons between strains of S. aureus78–82. Studies using whole genome sequencing and
DNA microarrays show that virulence and antibiotic resistance are associated with both
host-specific and lineage-specific factors72, 80, 83 and are encoded in many different ways,
including point mutations or small inserts in certain genes, large mobile genetic elements
composed of many virulence genes that travel together78, 84, 85, and conjugative plasmids
from unrelated species, such as vancomycin-resistant Enterococcus (VRE)86.

The study of vancomycin-resistant S. aureus (VRSA) provides an example of how genomic
studies can characterize the emergence and epidemiology of antibiotic-resistant strains to
identify future therapeutic targets. Since its emergence, all VRSA isolates have been found
to be strains within the lineage CC5 and resistance seems to arise from acquisition of the
plasmid Tn1546 from VRE during the course of each infection rather than spread of VRSA
between individuals86–89. Recently, a comparative study of 12 whole VRSA genomes
revealed that CC5 strains have several genetic features not present in other S. aureus
lineages, which could promote acquisition of plasmids from other bacterial species while
also impairing host immune function90.

In addition to techniques using whole genomes, methods such as multi-locus sequence
typing (MLST)91 and spa typing92, 93 have been developed to analyze S. aureus
epidemiology across hundreds of samples that differ in clinical, geographic, or host
characteristics. Similar to the 16S rRNA metagenomic method described earlier, MLST and
spa typing rely on culture-free sample collection, then sequencing of specific regions that
exist in all S. aureus strains, and finally classification of strains based on strain-specific
alleles. Studies using these approaches have shown that although a large number of S.
aureus lineages are present worldwide, only ten predominate and among these, three
lineages are rarely associated with methicillin resistance94. Further advances in and more
widespread use of genomics to study pathogen epidemiology will continue to improve our
understanding of how genetic information in pathogens encode pathology and host
specificity. Similar studies outside of S. aureus have already shown strong associations
between the genotypes of Helicobacter pylori strains and host ethnicity and migratory
patterns95–97.

The microbiome in immune development
As a first line of defense against infection, the skin is both a physical and immunological
barrier. Along with the gut, the skin is one of the most heavily immune-surveyed sites in the
body. The immune system must not only distinguish between self and other but also perform
the more difficult task of distinguishing between beneficial and pathogenic microbes. Since
all microbes share similar molecular patterns of lipopolysaccharides and peptidoglycans, it
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has been a challenge to understand what exactly alerts the immune system to pathogenicity.
Evidence now suggests that both skin and gut microbiota play a crucial role in educating and
assisting the immune system.

Experiments in germ-free laboratory mice offered the first insights into how crucial
microbiota are to immune development. These mice exhibit defective development of gut-
associated lymphoid tissue and mesenteric lymph nodes, reduced epithelial expression of
immune molecules, and improper T cell differentiation98–102. Studies have also shown that
disturbances in gut microbiota contribute to diseases of immune dysregulation103–107.
Similarly, a recent study has shown that germ-free mice without commensal skin microbes
have abnormal cytokine production and cutaneous T cell populations108. These germ-free
mice could not mount an appropriate immune response against intradermal Leishmania
major infection; however, immunity could be rescued by allowing Staphyloccocus
epidermidis colonization on the skin of germ-free mice108. These results offer tantalizing
evidence that, like the gut, the skin has well-developed immune functions at both the
epithelial and associated immune tissue levels. Thus, many of the same principles and lines
of investigation in the gut microbiome can be applied to the skin microbiome.

Healthy skin barrier consists of both immune surveillance and epidermal keratinocytes,
which produce antimicrobial peptides (AMPs) that contribute to innate immunity (Fig.
4)109–111. Expression of these AMPs are upregulated by the presence of Propionibacterium
species and other Gram-positive bacteria112, 113. In addition to AMPs, sebocytes can
produce antimicrobial free fatty acids by hydrolyzing sebum triacylglycerides. This
triacylglyceride hydrolysis is also performed by commensal bacterial flora such as P. acnes
and S. epidermidis114, 115.

A large number of Gram-positive commensals, including Lactococcus, Streptococcus, and
Staphylococcus species, also produce bactericidal factors de novo116. Peptides called pheno-
soluble modulins (PSMs) are produced by S. epidermidis and have selective activity against
S. aureus, Group A Streptocooccus, and E. coli but not other S. epidermidis117.
Interestingly, S. aureus also produce PSMs, but these have minimal antimicrobial activity
and instead induce lysis of neutrophils while S. epidermidis PSMs have bacteria-killing
activity but no effect on neutrophils118, 119. Bacterially-produced AMPs do not just play a
minor role in innate immunity but are abundant on skin and, in nanomolar amounts, can
decrease the survival of pathogens on healthy human skin by 2–3 log fold119, 120.

Microbiota not only activate and assist innate immunity but also influence adaptive
immunity, although these interactions are more complex and less well understood. Studies in
the gut show that the commensal Bacterioides fragilis elicits anti-inflammatory cytokines,
primarily IL-10, and regulatory T cells121. Other studies on how gut microbiota might
modulate the immune system are reviewed elsewhere122, 123. How skin microbiota might
influence the innate and adaptive immune system should now be an area of active
investigation since so many autoimmune diseases—vitiligo, dermatomyositis, and lupus, to
name a few—manifest on the skin even if they are also systemic.

Cancer immunology and the microbiome
Malignancy has been hypothesized to result from a breakdown in immune surveillance and
from mutagenic and proliferative environments, such as chronic inflammation. Since the
skin microbiome is important for developing a well-functioning immune system and for
modulating inflammation, it may also protect against cancers. In support of this hypothesis,
studies have shown that workers, such as farmers and waste incinerator workers, who were
exposed heavily to environmental microbiota had lower cancer rates124–126.
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Cancer and inflammation are linked in multiple ways. Studies have shown that chronic
inflammation and tissue injury increases the risk for cancer, as in the relationship between
Helicobacter pylori infection and gastric cancer108, 127 or between burns and squamous cell
carcinoma128. On the other hand, acute inflammation can activate tumor necrosis factor and
IL-12-induced antitumor activity, as in the case of Coley's toxin causing sarcoma
regression129, 130. Commensal skin bacteria have been shown to both reduce inflammation
during wound healing131 and activate innate immunity and inflammatory cytokines132. This
begs the question, how do commensal bacteria affect skin inflammation and does this
contribute to or protect against malignancy?

Evidence has now been provided that certain microbial components actually do have
antitumor activity against bladder and colon cancers, at least in part by heightening
immunosurveillance133–136. Thus far, there are no published studies on how the microbiome
influences genesis and propagation of skin cancers. Global metagenomic assessments of
microbiome differences between tumor sites and healthy skin may help explain the different
propensities for cancer among individuals and skin habitats despite similar sun exposures
and may open the door for new therapeutics.

Conclusions
Metagenomics has revolutionized our views about the skin microbiome and its interactions
with the host epithelial and immune systems. Metagenomics has also yielded many new
questions about what factors drive the composition and fluctuations in skin ecosystems, how
changes in the microbiome contribute to disease, and how our medical interventions affect
the microbiome. For a wide variety of diseases that relate to perturbations in the epidermis
or the immune system, such as melanoma, graft-versus-host-disease, and autoimmune
diseases, studying the microbiome may provide a new perspective to pathogenic factors and
new therapeutic targets.
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Capsule summary

- Recent metagenomic studies have revealed that diverse and complex
microbial ecosystems inhabit the skin, collectively known as the skin
microbiome.

- This review summarizes recent studies characterizing the skin microbiome
and highlights current gaps in research.

- Understanding how the skin microbiome interacts with the host immune
system and with pathogens could pave the way to new antimicrobial and
promicrobial therapeutics for a wide array of diseases, including atopic
dermatitis, psoriasis, chronic wounds, and cancer.
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Figure 1. Metagenomics is a culture-free method to assess skin microbiota
(A) DNA is purified directly from a skin swab or biopsy. This DNA contains a mixture of
genomic DNA from skin and microbial cells. PCR is used to amplify all bacterial DNA with
primers that anneal to the conserved region of the 16S rRNA gene. Then, these PCR
amplicons are sequenced. Finally, sequences can phylogenetically classified to give the
species identities within the microbiome and sequences can be counted to give relative
abundances of each species. (B) An alignment of the 16S rRNA gene between S. aureus and
S. epidermidis downloaded from NCBI and aligned via Geneious (http://
www.geneious.com/). Blue lines show nucleotides that differ between the two species. Inset
shows an example of the specific sequence differences.
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Figure 2. Composition of a single metagenome
(A) Phylogenetic tree of an example metagenome downloaded from MG-RAST (data from
Fierer et al26). The number of sequences in the metagenome that correspond to each
phylogenetic category is listed. For example, 3790 sequences making up 62% of the
metagenome's sequences were found to be Actinobacteria by similarity to references
sequences. (B) Pie chart showing microbial composition within the same example
metagenome. Chart was generated using Krona on the MG-RAST website (http://
metagenomics.anl.gov/).
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Figure 3. Microbiome composition on normal human skin
Sebaceous (blue text), moist (orange text), and dry (green text) habitats are labeled
anatomically. Microbial composition differs among the habitats (pie charts at right). The
four major phyla are shown: Actinobacteria, Firmicutes, Proteobacteri, and Bacteroidetes.
Within these phyla, the three most abundant genera are also shown: Propionibacterium,
Corynebacterium, and Staphylococcus. Figure is compiled with data pooled from many
metagenomes, from Grice et al31. Figure is adapted from Figure 3 in Grice et al9 with
permission from Nature Publishing Group.
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Figure 4. The microbiome and skin immunology
Viruses, bacteria, and fungi (purple, red, or green dots) cover human skin and its
appendages. Keratinocytes produce antimicrobial peptides (AMPs). Sebocytes produce free
fatty acids (FFAs). Some commensal microbes also produce AMPs and FFAs, as well as
pheno-soluble modulins (PSMs). These molecules all inhibit pathogen colonization.
Commensal microbes may additionally inhibit pathogen growth by competition and
crowding on the skin surface. The microbiota also interact with immune cells to activate
them or modulate their production of pro- and anti-inflammatory cytokines. Backbone skin
diagram downloaded from Docstoc (www.docstoc.com).
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Table 1

Glossary

Term Definition

metagenomics culture-free, genomic analysis of microbes by direct extraction and cloning of DNA from a particular ecosystem, such as

the skin1–3

microbiome original definition: the "ecological community of commensal, symbiotic, and pathogenic microorganisms that literally

share our body space"4

common usage: aggregate gene content within a microbial ecosystem5

16S rRNA gene ribosomal gene conserved across bacteria with conserved regions used for PCR amplification and variable regions used

for taxonomic classification6

MINE maximal information-based nonparametric exploration

a group of statistical methods to find and characterize associations in large datasets with many variables7

metatranscriptomics culture-free analysis of total RNA (both mRNA and rRNA) isolated from a microbial ecosystem8

1.
References Handelsman J. Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 2004;68:669-85.

2.
Riesenfeld CS, Schloss PD , Handelsman J. Metagenomics: genomic analysis of microbial communities. Annu Rev Genet 2004;38:525-52.

3.
Handelsman J, Rondon MR, Brady SF, Clardy J , Goodman RM. Molecular biological access to the chemistry of unknown soil microbes: a new

frontier for natural products. Chem Biol 1998;5:R245-9.

4.
Lederberg J MA. 'Ome Sweet 'Omics - a genealogical treasury of words. Scientist 2001;15.

5.
A framework for human microbiome research. Nature 2012;486:215-21.

6.
Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R , Gordon JI. The human microbiome project. Nature 2007;449:804-10.

7.
Reshef DN, Reshef YA, Finucane HK, Grossman SR, McVean G, Turnbaugh PJ et al. Detecting novel associations in large data sets. Science

2011;334:1518-24.

8.
Urich T, Lanzen A, Qi J, Huson DH, Schleper C , Schuster SC. Simultaneous assessment of soil microbial community structure and function

through analysis of the meta-transcriptome. PLoS One 2008;3:e2527.
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