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Abstract
Multiple myeloma, a clonal plasma cell malignancy, has long provided a prototypic model to
study regulatory interactions between malignant cells and their microenvironment. Myeloma-
associated macrophages have historically received limited scrutiny but recent work points to
central and non-redundant roles in myeloma niche homeostasis. The evidence supports a paradigm
of complex, dynamic and often mutable interactions between macrophages and other cellular
constituents of the niche. We and others have shown that macrophages support myeloma cell
growth, viability and drug resistance through both contact-mediated and non-contact-mediated
mechanisms. These tumor-beneficial roles have evolved in opposition to, or in parallel with,
intrinsic pro-inflammatory and tumoricidal properties. Thus, simple blockade of protective ‘don't
eat me’ signals on the surface of myeloma cells leads to macrophage-mediated myeloma cell
killing. Macrophages also enhance the tumor-supportive role of mesenchymal stem/stromal cells
(MSCs) in the niche: importantly, this interaction is bidirectional, producing a distinct state of
macrophage polarization that we termed “MSC-educated macrophages”. The intriguing pattern of
cross-talk between macrophages, MSCs and tumor cells highlights the myeloma niche as a
dynamic multicellular structure. Targeted reprogramming of these interactions harbors significant
untapped therapeutic potential, particularly in the setting of minimal residual disease, the main
obstacle towards a cure.

Multiple myeloma and macrophages: a long-neglected link
Multiple myeloma, a malignant disorder of plasma cells, is the second most common
hematological malignancy with approximately 20,000 new diagnoses per year in the United
States [1,2]. Its premalignant phase, monoclonal gammopathy of undetermined significance
(MGUS), is common in the general population, affecting 4% of Caucasians over the age of
50 [3]. Dramatic changes in the therapeutic landscape in last 10-15 years have prolonged the
median survival from 3 years to 6 years or more [4], but the disease remains largely
incurable.
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Myeloma cells are dependent on microenvironmental interactions for their homeostasis
under steady-state conditions, as well as to evade stress, such as pharmacological agents
administered for therapy [5-7]. We and others have hypothesized that relapse following
effective antiproliferative therapy may reflect the persistence of residual tumor cells within
tumor-protective, drug-resistant niches in the bone marrow [8-13]. Whether minimal
residual disease consists of a distinct tumor cell subpopulation with enhanced self-renewal,
and whether this subpopulation is fully committed to the plasma cell lineage, are topics of
active investigation and intense debate at present [14,15]. Regardless of the precise identity
of the clonal component of minimal residual disease, macrophages are necessary for proper
niche orchestration and homeostasis (Figure 1). In this review article, we delineate
regulatory interactions between macrophages and other cellular constituents of the myeloma
niche and suggest potential therapeutic approaches to redirect these interactions against
myeloma tumor cells, particularly in the setting of minimal residual disease [16,17].

Macrophages in hematological malignancies: the more you look, the more
you find

Macrophages have emerged as important regulators of cancer-associated inflammation, the
seventh hallmark of cancer [18,19]. Although the mechanisms of tumor promotion by
tumor-associated macrophages (TAM) have been mostly established from study of solid
tumors [20], investigation into the role of tumor-associated macrophages in the evolution of
hematological malignancies has recently gained momentum. In lymphoma, increased
macrophage infiltration is associated with adverse prognosis, albeit with exceptions. This
association appears strongest in the case of Hodgkin's lymphoma [21-23] and more tenuous
in non-Hodgkin's lymphomas. Among lymphoma subtypes in the latter category, the
presence of large numbers of CD68+ macrophages has been associated with poor prognosis
in follicular lymphoma [24,25] but results have been variable in diffuse large cell lymphoma
(DLBCL) [26,27]. However, when appropriate markers were used to differentiate between
“classically-activated” (or M1-polarized macrophages) and “alternatively-activated” (or M2-
polarized macrophages) on DLBCL biopsies, a correlation between macrophage infiltration
and adverse outcome was again seen [28] (see below for definition of macrophage
polarization states).

In circulating (“liquid”) hematological malignancies, there is some evidence to suggest that
macrophages constitute important components of the tumor niche, or site of propagation of
clonogenic progenitors. “Proliferation centers” in chronic lymphocytic leukemia (CLL)
contain abundant numbers of macrophages and non-macrophage stromal elements [29].
While the significance of the presence of macrophages in these structures needs further
study, it is likely that these macrophages also contribute to the survival of clonogenic
malignant cells. It is interesting that macrophages in CLL proliferation centers are STAT1-
positive, resembling “classically-activated” macrophages. Recent evidence presented at the
2012 American Society of Hematology Meeting suggested that selective depletion of
macrophages from an animal model of polycythemia vera could ameliorate clinical
manifestations of disease such as spleen size and importantly, the hematocrit, a surrogate of
total red cell mass [30]. Therefore, even in “liquid” hematological malignancies,
macrophages are likely to have important roles in supporting clonogenic progenitors in the
tumor niche, whether located in the bone marrow or peripheral lymphoid organs.

Asimakopoulos et al. Page 2

Leuk Lymphoma. Author manuscript; available in PMC 2014 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Macrophage polarization in myeloma: nuances in concepts and
phenotypes

Macrophages are key components of the myeloid infiltrate of most tumors [20,31]. Tumor-
associated macrophages (TAMs) arise from in situ maturation of recruited circulating
monocytes [32]. Tumors, including myeloma, secrete monocyte-attractant chemokines, such
as CCL2 and MIP-1α, abundantly [33,34]. The notion that myeloma-associated
macrophages derive from recruited monocytes and not from bone marrow-resident
monocytic precursors is further supported by two facts: Firstly, extramedullary plasma cell
tumors (plasmacytomas) are rich in tumor-associated macrophages [35]. Secondly,
hematopoietic activity in myelomatous bone marrow is suppressed, partly due to the
cytostatic effects of cytokines such as TGFβ [36]. Once recruited to the microenvironment
of the nascent tumor, monocytes acquire a pro-inflammatory profile (“classically-activated”
or “M1-polarized”)[37]. In the case of myeloma, macrophage activation within the early
lesion may be multifactorial. Myeloma cells secrete inflammatory mediators that promote
macrophage activation [38-42]. Mere local tissue disruption from tumoral expansion may
elicit or augment innate and adaptive inflammatory responses. Consistently with the notion
that the myeloma microenvironment fosters “smoldering” inflammation, myeloma tumor
cells express, and respond to signaling from, a broad range of Toll-like receptors [39,43].
Toll-like receptors in the myeloma microenvironment may bind to exogenous ligands
carrying pathogen-associated molecular patterns (PAMPs) (components of bacteria and viral
pathogens) and/or endogenous ligands carrying danger-associated molecular patterns
(DAMPs), such as fibronectin, soluble hyaluronan, heat shock proteins, or endogenous
RNA, released in the context of tissue damage, extracellular matrix breakdown, cellular
stress, or cell death [43]. Activated oncogenes (particularly RAS homologues) or novel
oncogene products (e.g., fusion proteins) may directly elicit potent pro-inflammatory
responses [44,45]. Whatever the relevant signals, macrophage activation promotes the
synthesis and secretion of pro-inflammatory mediators such as TNFα, IL-1β, IL-6, IL-8 and
others [46]. These factors enhance malignant cell growth, protect from stress-inducing
stimuli and promote genetic instability and malignant clonal evolution [47]. As tumors
expand and progress, selective pressures incite macrophages to acquire characteristics of
“alternative activation” or “M2 polarization” [33,48]. M2 macrophages are better suited to
carry out tissue–remodeling, to aid local invasion, to promote angiogenesis and to
orchestrate a locally immunosuppressive microenvironment.

Although the recognition of macrophage plasticity has been of enormous value in
understanding macrophage-mediated modulation of the tumor microenvironment in line
with the evolving requirements of the growing tumor, the very concept of “polarization” has
led to oversimplification. It is important for M1 and M2 states to be understood as extremes
of a dynamic continuum rather than as mutually exclusive cell fates. Importantly,
“intermediate” states of macrophage activation may be better suited to the physiology of
specific tumor types compared to either of the extremes. Myeloma and activated-type
diffuse large B cell lymphoma are prime examples illustrating this principle. Both tumor
types are characterized by constitutive NFκB signaling that, in most cases, is non-cell
autonomous [49-51]. Macrophages in the immediate tumor microenvironment must be
capable of elaborating pro-inflammatory cytokines that elicit constitutive NFκB activity in
the tumor cell, particularly when this activity is not conferred by cell-autonomous mutations
[52,53]. This “intermediate” state of macrophage polarization may be distinct from
“tolerization” [54], because of the continued robust expression of inflammatory mediators
[55]. However, the pro-tumoral role of macrophage activation comes at the price of
enhanced cytolytic and tumoricidal activity that must be curbed to allow tumor progression
(Figure 1). Moreover, distinct states of macrophage polarization may not only be tumor
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stage-specific but also tumor site-specific. Macrophages in the expanding invasive rim of the
tumor secrete pro-inflammatory cytokines and tissue-remodeling enzymes to allow local
invasion as well as recruitment of subsequent waves of inflammatory cells [56]. By contrast,
the necrotic center of the tumor is likely to require the presence of M2 macrophages to
promote tissue remodeling and angiogenesis [57]. Thus, macrophages at different stages of
polarization may co-exist within the same myeloma lesion. Lastly, macrophage polarization
is not fixed but may be modulated therapeutically. Several investigators have used
therapeutic approaches to reprogram macrophage polarization to elicit strong tumoristatic or
tumoricidal effects. Work from the Sondel laboratory has shown that therapeutic activation
of macrophages results in effective anti-tumor activity, including in B cell malignancies, that
is particularly beneficial in cases where defects in adaptive immunity have arisen as the
result of therapy or the tumor pathophysiology per se [58-69] (see section on “therapeutic
implications”, below). Other investigators have also shown the feasibility and value of this
approach in hard-to-treat cancers, such as pancreatic carcinoma [70].

Macrophage activation in the myeloma niche: the central role of TPL2
kinase

In an early landmark study, Brian Durie highlighted the importance of macrophages as a
source of paracrine IL-6 in myeloma [71]. Depletion of macrophages from co-cultures with
myeloma cells dramatically reduced the growth rate of the latter, an effect simulated by IL-6
depletion. However, it was not clear why macrophages co-cultured with myeloma cells were
able to produce excess IL-6. The authors proposed a feedback loop between macrophages
and tumor cells in the myeloma niche. According to this model, stimulation of macrophages
either by myeloma cells or other components of the microenvironment led to production of
excess IL-6 by macrophages which, in turn, promoted myeloma growth and iterative waves
of macrophage activation.

These early findings were corroborated and expanded in recent work by our groups [8,55].
We showed that macrophages promoted growth and decreased apoptosis of myeloma cell
lines in combined cultures [55]. These tumor-beneficial effects of macrophages were
observed in co-cultures with myeloma cells of various genotypes. The growth-promoting
effect of macrophages was partially abrogated following treatment with an IL-6-neutralizing
antibody. Furthermore, we showed that CD14+ monocytic cells freshly explanted from
myeloma bone marrow expressed much higher amounts of IL-6 transcript compared to fresh
peripheral blood monocytes from normal donors or macrophages derived from normal
peripheral blood monocytes [55]. Mesenchymal stem/stromal cell (MSC)-educated
macrophages (MEM, see relevant section below) also expressed high amounts of IL-6
mRNA. Indeed, the inhibitory effect of neutralizing anti-IL-6 antibody was most
pronounced in three-way co-cultures of myeloma cells with macrophages and MSCs.

To begin to understand the mechanisms underlying these findings, we focused on TPL2
(Cot, MAP3K8), a serine/threonine kinase with central and non-redundant roles in
regulating innate immune responses and cytokine secretion in macrophages [72-75]. TPL2
modulates multiple signal transduction pathways and regulates several pro-inflammatory
(TNFα, IL-1β, IL-6, IL-12) and anti-inflammatory cytokines (IL-10, IL-1RA) [73,76-80].
The balance of pro- and anti-inflammatory activities of TPL2 is tissue- and context specific.
Our recently published data demonstrated constitutive activation of pro- and anti-
inflammatory, TPL2-dependent pathways in myeloma-associated monocytes/macrophages
[8]. Furthermore, we established a cell-autonomous effect of TPL2 activity on myeloma cell
growth that was attenuated in myeloma cells carrying activating MAPK pathway mutations.
Lastly, we observed that TPL2 was activated in myeloma tumor cells undergoing mitosis,
raising the possibility that TPL2 activity may be particularly important for regulation of
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dividing clonogenic progenitors. Our findings support a model in which TPL2 promotes
homeostasis of the myeloma niche by both cell-autonomous and non-autonomous
mechanisms (Figure 2). Interference with TPL2 activity may disrupt crucial cross-talk
between macrophages and tumor cells in the myeloma niche (see section on “therapeutic
implications” below).

Macrophages promote survival of myeloma cells through both contact-
mediated and non-contact mediated mechanisms

Work from the Yi laboratory established macrophages as an important component of the
myeloma microenvironment by showing that physical interactions between macrophages
and tumor cells activate signaling pathways that protect myeloma cells from apoptosis
induced by drug treatment [81]. These investigators generated macrophages by treating
monocytes with M-CSF followed by treatment with supernatant from cultured myeloma
cells to induce the tumor-associated macrophage phenotype. These macrophages were able
to prevent drug-induced apoptosis by inhibiting the caspase pathway, especially caspase 3
and PARP. Macrophage-mediated protection from apoptosis was observed with both
myeloma cell lines and primary myeloma cells and required direct cell-to-cell contact.
Interestingly, IL-6 did not appear to contribute to protection of myeloma cells against drug-
induced apoptosis. A subsequent study from the same laboratory established a mechanism
behind these observations [82]. They found that the interactions between PSGL-1 and
ICAM-1 on myeloma cells and E/P selectins and CD18 on macrophages, respectively,
allowed macrophages to protect myeloma cells from drug-induced apoptosis. The
interactions stimulated SRC, ERK1/2 kinases and c-MYC and suppressed drug-induced
caspase activation.

Contact-mediated support of myeloma cells by macrophages likely acts in concert with non-
contact mediated mechanisms. Indeed in our previous study [55], we showed that
macrophages protected myeloma cells from apoptosis even when physically separated in
transwell plates. Together with findings by the Yi group, our results suggest that
macrophages protect myeloma cells from apoptosis through both contact-mediated and non-
contact mediated mechanisms. The former may be more important in the setting of drug-
induced apoptosis.

Macrophages and osteoclasts belong to the same hematopoietic cell lineage and may support
myeloma cell survival and growth, as well as protect myeloma cells from drugs, through
common molecular mechanisms (e.g. production of pro-inflammatory cytokines and growth
factors [83]). This may suggest that while myeloma cells localized in focal lesions and close
to bone surface are protected by osteoclasts, myeloma cells that are localized within the
diffuse marrow may be similarly supported by macrophages. Osteoclasts and macrophages
may also use common pathways in the induction of angiogenesis in myeloma lesions (see
next section) [84].

A bone-resident subpopulation of macrophages has been recently described (osteal
macrophages, “OsteoMacs”) [85,86]. Osteal macrophages appear to be involved in bone
remodeling and local immunosurveillance. Their role in myeloma niche orchestration and
bone pathology merits further investigation and may be significant because they have been
shown to be capable to respond to inflammatory stimuli [87] and elaborate pro- and anti-
osteoclastogenic cytokines such as TNFα, IL-6, IL-1 and interferon-β. Moreover,
OsteoMacs may serve as a pool of osteoclast precursors within myeloma bone lytic lesions.
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Macrophages in myeloma angiogenesis and vasculogenesis
Myelomas are highly vascularized tumors and increased vascular density imparts a poor
prognosis [88]. Microvascular density in myeloma bone marrows was recently reported to
correlate with the prevalence of CD163+ macrophages [89]. Therefore, macrophages are
likely to be central orchestrators of the “angiogenic switch” in myeloma, similar to other
tumors [90]. Macrophages are likely to promote neoangiogenesis through both cytokine
secretion and physical contribution to the generation of a vascular network.

A major mechanism behind angiogenic induction by macrophages is through secretion of
vascular endothelial growth factor- A (VEGF-A) in poorly vascularized areas of tumors
[91]. A paracrine loop between myeloma cells and stroma ensures robust induction of
angiogenesis as myeloma lesions expand [92]: macrophages secrete VEGFs to promote
myeloma cell growth and angiogenesis, leading to further waves of myeloma cell-derived
secretion of VEGF-A and basic fibroblast growth factor (bFGF) that directly contributes to
angiogenesis but also induces stromal cells to secrete VEGF-C and –D that stimulate
myeloma cell growth through VEGFR-3 in a self-perpetuating loop [93]. Additionally,
activated macrophages synthesize nitric oxide, leading to vasodilation and enhanced
angiogenesis [94]. Lastly, the angiogenic factors secreted by macrophages stimulate mast
cell migration [95,96], and mast cells contribute to angiogenesis [97,98].

Intriguing observations from the Ribatti and Vacca groups have highlighted direct, structural
contributions of macrophages to the myeloma blood vessel network by “vasculogenic
mimicry” [99]. In a study by Scavelli et al. [100], they reported that bone marrow
macrophages from myeloma patients assumed a vascular endothelial cell-like phenotype
when activated with VEGF and basic fibroblast growth factor (bFGF). In contrast,
macrophages from healthy donors, non-active myeloma and monoclonal gammopathy of
unknown significance (MGUS) did not exhibit similar behavior. Importantly, the angiogenic
and vasculogenic properties of bone marrow macrophages in myeloma were inhibited
following treatment with the proteasome inhibitor, bortezomib, as well the bisphosphonate,
zolendronic acid [101].

Macrophages in the myeloma niche: friend or foe?
The literature presented above supports the hypothesis that macrophages are integral
components of the myeloma niche and support myeloma cell growth and viability under
both steady-state and stress conditions as well as promote niche angiogenesis and
vasculogenesis. However, recent work from the Weissman lab has shown that macrophages
also possess inherent tumoricidal potential that would be detrimental for malignant plasma
cells if the latter did not express protective “don't eat me” signals [102]. Indeed, myeloma
cells, both primary cells and lines established in culture, universally upregulate CD47, an
integrin-associated receptor protein. CD47 interacts with SIRPa on the surface of myeloma-
associated macrophages to deliver a potent anti-phagocytosis (“don't eat me”) signal [103].
Simple inhibition of this interaction by a CD47-blocking antibody elicits frank tumoricidal
responses by macrophages, resulting in tumor regression in xenotransplantation models,
including models utilizing human primary myeloma cell grafts into human fetal bone
implants [102]. Importantly, anti-CD47 antibody bound on myeloma cells did not induce
complement-mediated lysis or antibody-dependent cell-mediated cytotoxicity (ADCC).
These results demonstrate that macrophages in the myeloma niche display inherent anti-
tumor potential and simple perturbation of the balance between macrophage activation and
defenses put up by myeloma cells suffices to elicit macrophage-mediated tumor regression.
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MSC-educated macrophages: a novel subtype of the alternatively-activated
macrophage?

Bone marrow mesenchymal stem/stromal cells (MSCs) are thought to play major regulatory
roles in the myeloma microenvironment [5,7,13,104]. Myeloma cells receive key supportive
signals from MSCs [105-107], including MSC-derived cytokines that are important for
growth and survival of myeloma cells [108-111]. Moreover, cell adhesion is thought to be
another mechanism by which bone marrow MSCs support myeloma cell survival [112,113].

Macrophages induce MSCs to express IL-6, CCL5, and interferon gamma-induced
protein-10 (CXCL10) and to exhibit increased mobility in response to multiple soluble
factors produced by macrophages including IL-8, CCL2, and CCL5 [114]. Macrophage-
MSC cross-talk is bidirectional: the interaction results in a distinct state of macrophage
polarization that we have termed “MSC-activated macrophages” (MEM) [115]. MEMs bear
many phenotypic characteristics of M2 polarization, such as expression of the surface
marker CD206. However, the pattern of cytokine secretion by MEMs is unique: high IL-10,
low IL-12, low TNFα and high IL-6. Whereas high IL-10 and low IL-12 levels are
characteristic of the “alternatively-activated” M2 phenotype, the continued expression of
high levels of IL-6 sets MEMs apart from classical M2 macrophages, although there is some
recent evidence to suggest that IL-6 may have a role in M2 polarization [116]. With regard
to TNFα, it should be noted that low-level tonic stimulation of myeloma cells may be more
optimal for tumor propagation compared to acute or steep surges in availability of this
pleiotropic cytokine in the tumor microenvironment [117]. Moreover, TNFα signaling may
become pro-tumoral in the presence of RAS mutations, a frequent genetic alteration in
myeloma [118-120]. This MEM-specific cytokine profile was corroborated by the findings
of Zhang et al., who showed that MSC-conditioned medium induced higher expression of
IL-6 and IL-10 but lower level of TNFα in macrophages [121]. MSCs also modulated
cytokine release by macrophages in a study by Maggini et al. [122]. The pattern of cytokine
expression characteristic of MEMs renders this cell type particularly suitable for the support
of tumor cells in the myeloma niche.

MSCs modulate macrophage polarization in the niche but also they orchestrate monocyte
recruitment to sites of active tumor cell propagation. Thus, in follicular lymphoma, MSCs in
the niche upregulate CCL2 to recruit inflammatory monocytes [123]. Follicular lymphoma-
derived MSCs cooperate with macrophages to sustain malignant B cell growth, at the same
time as skewing macrophage polarization towards a pro-angiogenic and LPS-unresponsive
phenotype [123]. Similar results were recently confirmed in mouse models of lymphoma
[124,125]: interestingly, the ability of lymphoma-derived MSCs to promote lymphoma
growth was abolished in CCR2-null mice, demonstrating that MSC support of tumor cells
required the recruitment and presence of monocytes/macrophages. Control marrow-derived
MSCs acquired the tumor-promoting properties of lymphoma-derived MSCs when pre-
treated with TNFα [124]. Thus, bidirectional crosstalk between MSCs and macrophages
orchestrates a tumor-protective niche.

Macrophages in myeloma therapy: repolarization versus depletion
The last decade has witnessed the advent of several new therapies for multiple myeloma
[2,126]. In addition to cytotoxic chemotherapy, including high-dose chemotherapy followed
by autologous stem cell rescue (autologous transplant), proteasome inhibitors [127] and
thalidomide analogues (thalidomide, lenalidomide) are used [128,129]. These approaches
have prolonged survival for many myeloma patients. Myeloma therapies mainly act by
direct antiproliferative effect on tumor cells. “Immunomodulatory” activities have been
ascribed to thalidomide analogues based on in vitro observations [128], however the
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significance of the immunomodulatory effect in vivo is unclear, particularly as they are often
co-administered with potent immunosuppressive agents, primarily steroids [130,131]. It is
important to note however, that an inhibitory effect of thalidomide and its analogues on
TNFα production by LPS-stimulated monocytes was recognized early [132,133]. Compared
with thalidomide, inhibition of TNF〈 was 2000-fold more potent with lenalidomide and
20000-fold more potent with pomalidomide [134]. These observations suggest that
thalidomide analogues may directly modulate the activation/polarization status of myeloma-
associated monocytes/macrophages.

Despite the success of traditional and novel agents, myeloma remains virtually incurable.
Current therapies, including autologous transplantation, cannot eradicate the disease in most
patients and even after allogeneic transplantation, relapses are frequently seen [135]. We
hypothesize that the persistence of residual tumor cells nested within tumor-protective
niches constitutes a major mechanism for relapse and that macrophage-tumor cell
interactions are crucial determinants of the homeostasis of the myeloma niche. Therefore,
targeted approaches to redirect these interactions may overcome the limits of current
therapies and potentially lead to a cure.

Four possible approaches to therapeutically exploit macrophage activation and function in
the myeloma niche can be envisaged. First, reprogramming of macrophages to an overtly
activated phenotype through M1-polarizing signals (eg. CD40-agonistic antibody). Second,
interference with signaling pathways that promote shift to an “alternatively activated” M2
phenotype or activate anti-inflammatory responses, e.g., through IL-10 inhibition or TPL2
blockade. Third, inhibition of “don't eat me signals” on myeloma tumor cells (anti-CD47
antibody). Fourth, interference with monocyte recruitment to the niche (eg. through CCL2-
CCR2 axis inhibition) or selective depletion of tumor-associated macrophages.
Combinations of any of these approaches might have additive or synergistic effects.

Therapeutic repolarization of macrophages to an “unopposed” M1 phenotype has been
achieved following the administration of signals that directly and potently activate
intracellular pro-inflammatory pathways. Pioneering work from the Sondel group has
demonstrated that it is possible to repolarize macrophages through administration of a first,
or “priming” signal (CD40 ligation through an agonistic CD40 antibody) followed by a
second, or “triggering” signal that has typically consisted of a Toll-like receptor (TLR)
ligand [58-62,64,66-69]. Although in vitro assays have utilized lipopolysaccharide (LPS) for
TLR stimulation, concerns about the systemic toxicity of endotoxin-type agents have led to
exploration of CpG, a TLR9 ligand, as “triggering” signal. Indeed, the combination of CD40
ligation and CpG-mediated macrophage activation is cytostatic and cytocidal in vitro and
leads to tumor regression in vivo, through elaboration of factors such as NO, TNFα and
TRAIL [58]. More recently, the Vonderheide group has shown that administration of an
agonistic CD40 antibody together with chemotherapy led to meaningful clinical responses in
a particularly recalcitrant tumor, pancreatic carcinoma [70]. Although initially the
investigators hypothesized that the effect was lymphocyte-driven, dissection of the relevant
mechanisms in a genetically-engineered animal model demonstrated that the anti-tumor
effects were mediated entirely by activated macrophages. In B cell malignancies and other
cases where the malignant cells express CD40, there is a potential concern that CD40
stimulation may lead to (at least transient) tumor stimulation and growth. However, in a
model of CLL (a CD40-expressing malignancy), a modest effect on tumor cell proliferation
was overcome by macrophage-mediated tumoricidal activity following anti-CD40 antibody
administration [62]. Moreover, binding of CD40 antibody on the surface of CD40+ tumor
cells may kindle a primary tumoricidal effect through antibody-mediated cell cytotoxicity
(ADCC), acting in parallel with macrophage activation [58].
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Direct interference with immunosuppressive pathways may offer an alternative or
complementary approach to reprogram macrophages to an anti-tumor role. Disruption of
IL-10-dependent immunosuppressive pathways have been explored in cancer
immunotherapy [136]. Targeted inhibition of the IL-10 axis may be achieved through small
molecules targeting TPL2 kinase activity. Indeed, in a genetically-engineered model of
colonic carcinogenesis, genetic ablation of Tpl2 led to enhanced inflammation and tumor
promotion, predominantly through inhibition of IL-10 production coupled with defects in
regulatory T cell (Treg) generation [137]. Pharmacological TPL2 inhibitors have been under
continuous development for over a decade [138-144]. TPL2 has low homology to other
kinases and unique structural features in its ATP-binding loop that will likely allow the
design of highly specific inhibitors [75]. Moreover, Tpl2 activity is not inhibited by
staurosporine, a non-specific kinase inhibitor [145]. However, the lack of crystal structure
has hampered the pace of TPL2 inhibitor development. Several classes of compounds have
been shown to have good activity in kinase inhibition assays as well as in vivo activity, by
blocking TNFα responses to systemic LPS administration [146]. A natural compound,
luteolin, has recently been shown to inhibit TPL2 activity, albeit with a high IC50 [147].
Because Tpl2 nullizygosity is compatible with normal hematopoietic development and
function [148], therapeutic TPL2 blockade is likely to be well tolerated in patients with
hematological malignancies.

A third approach involves blocking of “don't eat me’ signals on the surface of tumor cells.
Anti-CD47 antibody-based approaches in particular have found applicability in several
tumor models and are fast moving to the clinic [103]. It is unlikely that anti-CD47-based
approaches will suffice as monotherapy, particularly in the setting of bulky disease.
However, CD47 blockade may be particularly attractive in the setting of minimal residual
disease, alone or in combination with antiproliferative therapies. Interestingly, cancer stem
cells appear to upregulate CD47 strongly, making anti-CD47 therapy particularly attractive
in those tumors where minimal residual disease may have stem-cell characteristics [149].

Lastly, therapeutic interference with monocyte recruitment or selective depletion of tumor-
infiltrating macrophages may delay tumor growth, e.g. through inhibition of angiogenesis, as
well as disrupt essential cross-talk with other constituents of the niche. Monocytes are
recruited to nascent tumors through their expression of CCR2, the receptor for the potent
monocyte chemo-attractant cytokine CCL2, produced by the tumor microenvironment [150].
Indeed, inflammatory monocytes in both mice and humans are CCR2+ and monocyte
migration through the CCR2-CCL2 axis is important for the generation of the metastatic
niche [151]. There are several CCR2 inhibitors in development (reviewed in [152]).
Although the main applications have so far focused on therapy of autoimmunity,
atherosclerosis and metabolic disease, CCR2-CCL2 axis inhibition is beginning to be
explored in the context of cancer. Clinical trials using anti-CCL2 antibodies, alone or in
combination with chemotherapy, have been conducted in solid tumors aiming at inhibition
of angiogenesis (www.clinicaltrials.gov). Robust expression of CCL2 by the rich vascular
network of myeloma bone marrow [153,154] underscores CCL2-CCR2 axis inhibition as a
particularly attractive therapeutic strategy in myeloma. Lastly, selective depletion of tumor-
infiltrating macrophages may be envisaged. Powerful proof-of-principle in favor of
therapeutic macrophage targeting was recently provided by the demonstration that
trabectedin, a novel marine-derived compound, exerted powerful anti-tumor effects through
depletion of monocytes/macrophages and associated collapse of tumor vascular networks
[155]. Trabectedin, or similar approaches, may hold great promise in macrophage-rich,
vascular tumors, such as myeloma.
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Conclusions
Recent and expanding investigations suggest that macrophages play a major, and hitherto
poorly appreciated, role in the development and propagation of hematological malignancies,
including multiple myeloma. Work from our laboratories and others, has provided insight
into the bidirectional interactions between macrophages and malignant plasma cells and
between macrophages and MSCs in the myeloma microenvironment. Taken together, these
mechanistic studies support the hypothesis that macrophages are central to the homeostasis
of the myeloma niche and therefore, therapeutic approaches that exploit these interactions
may hold the key for improved control and ultimately cure in patients with myeloma.
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Figure 1. Regulatory interactions between macrophages, mesenchymal stem/stromal cells
(MSCs) and malignant plasma cells in the myeloma niche
Macrophages directly support malignant plasma cells through contact-mediated interactions,
cytokine secretion and indirectly, through orchestration of the “angiogenic switch” and an
immunosuppressive environment conducive for tumor cell propagation. These tumor-
beneficial roles are balanced by inherent tumoricidal and phagocytic properties of activated
macrophages. Myeloma-associated macrophages also engage in bidirectional interactions
with mesenchymal stem/stromal cells (MSCs) and the latter, in turn, modulate the
polarization state of macrophages (“MSC-educated macrophages”, see text) as well as
provide direct support to tumor cells.
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Figure 2. TPL2 kinase regulates myeloma growth through tumor cell-autonomous and non-
autonomous mechanisms, the latter involving myeloma-associated macrophages
TPL2 is a key regulator of cytokine secretion by myeloma-associated macrophages. In
malignant plasma cells, TPL2 activates downstream MAP kinases in response to growth and
inflammatory signals. Targeted inhibition of TPL2 activity may disrupt crucial regulatory
cross-talk between macrophages and malignant cells in the myeloma niche.
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