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Abstract
Designing an optimal HIV-1 vaccine faces the challenge of identifying antigens that induce a
broad immune capacity. One factor to control the breadth of T cell responses is the surface
morphology of a peptide-MHC complex. Here, we present an in silico protocol for predicting
peptide-MHC structure. A robust signature of a conformational transition was identified during
all-atom molecular dynamics, which results in a model with high accuracy. A large test set was
used in constructing our protocol and we went another step further using a blind test with a wild-
type peptide and two highly immunogenic mutants, which predicted substantial conformational
changes in both mutants. The center residues at position five of the analogs were configured to be
accessible to solvent, forming a prominent surface, while the residue of the wild-type peptide was
to point laterally towards the side of the binding cleft. We then experimentally determined the
structures of the blind test set, using high resolution of X-ray crystallography, which verified
predicted conformational changes. Our observation strongly supports a positive association of the
surface morphology of a peptide-MHC complex to its immunogenicity. Our study offers the
prospect of enhancing immunogenicity of vaccines by identifying MHC binding immunogens.

1. Introduction
The ability of human immunodeficiency virus-1 (HIV-1) to evade immune detection as well
as the presence of many circulating variants of the virus poses a significant challenge in the
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development of prophylactic vaccines (Gaschen et al., 2002). Numerous studies
demonstrated that the breadth of T cell responsiveness is more important than the magnitude
during HIV infections (Currier et al., 2011; Frahm et al., 2006; Frahm et al., 2004;
Geldmacher et al., 2007; Honeyborne et al., 2007; Rolland et al., 2008). In this context,
diverse T cell receptor (TCR) repertoires have been convincingly shown to be advantageous
in elimination of viral variants during infections of HIV-1 (Altfeld et al., 2001; Douek et al.,
2002), simian immunodeficiency virus (SIV) (Price et al., 2004), and hepatitis C virus
(HCV) (Douek et al., 2002; Meyer-Olson et al., 2004; Price et al., 2004). One of the
characteristics that might control diversity of the T cell repertoire is the surface morphology
of the peptide-major histocompatibility complex (pMHC). Typically, peptides of 8–10
amino acids long can fit well in the MHC molecule, and in such occasion, several
experiments have demonstrated that surface prominence is associated with the breath of T
cell responsiveness (La Gruta et al., 2008; Probst-Kepper et al., 2004; Stewart-Jones et al.,
2003; Turner et al., 2005). For example, the influenza MP peptide, which forms a flat,
featureless conformation in the peptide-binding cleft showed a highly conserved TCR usage
in most of human subjects (Stewart-Jones et al., 2003). A direct association between the
prominence of the peptide and the degree of TCR diversity has been demonstrated in an
influenza infection study in mice (La Gruta et al., 2008). The pMHC surface that is
structurally protruding has the potential to functionally engage more diverse TCR molecules
than would a flat pMHC surface (Stewart-Jones et al., 2003). In addition, many
immunodominant epitopes have been shown to be prominent from the center of the MHC
molecule (Liu et al.; Meijers et al., 2005). Therefore, a prominent morphology is
hypothesized to be related with optimal T cell responsiveness.

Accurately determining the structure of pMHC can help to predict robust T cell reactivity by
determining which peptides tend to be prominent from the binding cleft. In this manner, in-
silico prediction of pMHC conformation would be a valuable tool for vaccine design
because experimentally determining each structure for the thousands of candidates would be
excessively time consuming and costly. In parallel with recent remarkable advances in
computational methodology, in silico research on protein modeling has achieved a
significant success in obtaining the detailed information on folding including
thermodynamic and kinetic (Freddolino et al., 2010; Lindorff-Larsen et al., 2011; Piana et
al., 2012; Shaw et al., 2010). For instance, the free energy landscape along the reaction
coordinate has been accurately estimated from long-time simulation trajectories of repetitive
conformational transitions (Best and Hummer, 2005; Dellago et al., 1998; Piana et al.,
2012). Still, in more complex systems including pMHC, it is not an easy task to obtain “de
novo” structure prediction comparable to high-resolution X-ray crystallography, mainly due
to the difficulty of determining the energetically favored state out of a vast pool of local
minima (Floudas, 1999; Levinthal, 1969). Reports of the X-ray structures of many peptides
bound to MHC molecules reveal a common architecture of N- and C- terminal ends
anchoring to the binding pocket (Falk et al., 1991; Matsumura et al., 1992). However, the
central region of peptides highly varies allowing a fine control of TCR recognition (Collins
et al., 1994; Madden et al., 1993), which makes it difficult to predict the surface morphology
of bound peptides in high precision.

There have been many attempts to predict pMHC conformation, including docking
algorithms (Desmet et al., 1997; Leach, 1994), protein threading (Bui et al., 2006), all-atom
molecular dynamics (MD) simulations (Fagerberg et al., 2006), and hybrid approaches
between docking algorithms and MD simulations (Kish-Catalone et al., 2006). These efforts
have been less than perfectly successful to identify the correct structure, showing a
considerable variation in the degree of accuracy. Overall, the target structure was correctly
predicted when it was homologous to the structure of the model template. The outcome of
MD simulations was desirable simply because the ensemble of initial structures was
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sampled from the X-ray crystal structure itself. These limitations motivated us to develop a
robust identifier to predict the docking structure of pMHC molecules even when the target
conformation is different from that of the template.

Here we present an accurate computational tool that will help to predict robust TCR
reactivity by predicting which peptides are likely to be prominent from the peptide-binding
cleft. Our protocol started with preparing a starting configuration using homology modeling.
We then employed simulated annealing molecular dynamics simulations with the AMBER
force field to generate an ensemble of potential pMHC conformations. Lastly, we used all-
atom MD simulations with the AMBER force field to generate a minimized energy
structure. In particular, during the MD simulations, we monitored the simulation trajectory
to find conformational transitions. If there were transitions, we chose the most frequent of
the post-transition conformations as the final conformation used for prediction of the
structure. Our structure prediction was developed using a large test set of nonameric
peptides bound to the MHC class I molecule, HLA-A*0201. The prediction algorithm was
used to perform a blind prediction for three unknown pMHC structures. We then
experimentally determined the structures of the blind test set using high resolution of X-ray
crystallography.

2. Materials and methods
2.1. Simulated annealing protocol

The structure built by the MODELLER was first heated from 300K to 1500K during 80 ps
then equilibrated at 1500K during 80 ps. Thereafter, the system was cooled for 800 ps,
resulting in a temperature of 300K and cooled again for 40 ps to 283 K. Langevin dynamics
was performed using the sander module of the AMBER9 with a time step of 2 fs. The
SHAKE algorithm was implemented for proton covalent bonds and a cutoff distance of 10 Å
was introduced for Lennard-Jones interactions. Solvent effects were treated implicitly by
adapting the pairwise Generalized Born model as parameterized by Tsui and Case (Tsui and
Case, 2000).

We imposed two types of restraints. First, a 20 kcal/mol harmonic energy barrier was
assigned to each of the receptor atoms of the α1 and α2 domains to limit the motion of the
receptor. Second, the distances of the four hydrogen bonds between the peptide and the
receptor were maintained during the simulation as we found that these four hydrogen bonds
were conserved across all 18 complexes of our test set. The conserved ones are (i) OG1
atom of THR 143 and C-terminal oxygen of peptide, (ii) NE1 atom of TRP 147 and O atom
of peptide at position 8, (iii) OH atom of TYR 159 and O atom of peptide at position 1, and
(iv) OH atom of TYR 171 and N-terminal nitrogen of peptide. The simulated annealing
cycle was repeated by assigning random velocity to each atom of the p-MHC complex and
an ensemble of a total of 100 p-MHC conformations was obtained for each p-MHC
complex.

2.2. Molecular dynamics simulation
With an initial configuration obtained from the simulated annealing protocol, Langevin
dynamics simulations were performed at 283 K during 10 ns using the pmemd module of the
AMBER9. The parm99 force field parameters were used with the pairwise Generalized Born
implicit solvent model as parameterized by Tsui and Case (Tsui and Case, 2000). Prior to
the dynamics run, the receptor was relaxed by steepest descent energy minimization,
followed by conjugate gradient energy minimization. The same restraints that were used in
the simulated annealing protocol were implemented. All bonds involving hydrogen atoms
were constrained using the SHAKE algorithm. A nonbonded cutoff distance of 12 Å and a
time step of 2 fs were used.
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2.3. X-ray crystallization data collection
The X-ray crystal data have been deposited in the PDB with accession codes 3V5D, 3V5H,
and 3V5K. The X-ray crystal data were collected at Southeast Regional Collaborative
Access Team (SER-CAT) 22-ID and 22-BM beamlines at the Advanced Photon Source,
Argonne National Laboratory. Peptide/HLA-A*0201 complexes were made by folding in
vitro as described in Ref. 51. Briefly, A2.1 heavy chains (amino acids 1–275) and beta-2-
microglobulin were produced as inclusion bodies. Synthesized peptides were added to the
folding buffer by rapid dilution. Protein folded over the course of 36–48 hrs at 10°C, was
concentrated and then purified by gel filtration chromatography. Complete removal of salts
is critical to crystallization so the gel filtration buffer was exchanged into 25 MES pH 6.5.
Crystallization of pMHC (15–20mg/ml) occurred at 10–16% PEG 8000 (Fluka) 25mM MES
pH6.5 by hanging drop, vapor diffusion. The best crystals were obtained by microseeding.
Single plate-like crystals of various thickness were harvested from the drops and transferred
to artificial mother liquor and then rapidly transferred to a similar solution supplemented
with 10% glycerol for cryoprotection. Crystals were plunged into liquid nitrogen and stored
until used for data collection. Diffraction data were collected at APS beamlines 22-ID for
the KVAELVWFL or 22-BM for the KVAELVHFL and KVAEIVHFL.

2.4. X-ray crystallization structure solution and refinement
The highest resolution data for the wild-type structure were very mosaic and difficult to
index. These data were processed using XDS (Kabsch, 2010). The data for the two analogs
were processed with HKL2000(Otwinowski and Minor, 1997). Data were further scaled and
a subset of data tagged for cross-validation using Rfree (Brunger, 1992) in CCP4 program
suite (Winn et al.). The phases were determined by molecular replacement using Phaser
(McCoy et al., 2007) using one copy of the heavy chain and beta-2-microglobulin from an
unrelated A*0201 structure 1EEZ without a bound peptide and with an average temperature
factor. After first fitting of the correct peptide in coot (Emsley et al., 2010), the structure was
refined with autoBuster (http://www.globalphasing.com/buster/manual/autobuster/manual/
index.html) using local non-crystallographic symmetry restraints (autoncs), TLS refinement
with the peptide-binding domain and peptide as one unit, the a3 domain (amino acids 184–
275) and beta-2-microglobulin as two other units. Since there are two copies of the complex
in the asymmetric unit, this generates 6 TLS domains. After a few rounds of refinement and
manual intervention with coot, water molecules were added with arp-warp (Lazmin et al.,
2001). The ARP/WARP suite for automated construction and refinement of protein models
and well-defined glycerol molecules were added to the model and refined using autoBuster
with the WAT option.

3. Results
3.1. Test set selection

In developing the protocol, we used a test set of 18 X-ray structures (Borbulevych et al.,
2005; Buslepp et al., 2001; Kuhns et al., 1999; Lee et al., 2004; Martinez-Hackert et al.,
2006; Sharma et al., 2001; Webb et al., 2004) of the nonameric peptides bound to the MHC
class I molecule HLA-A*0201, in the Protein Data Bank (see Table 1). The test set consisted
of 9 HIV peptides, 8 tumor-associated peptides, and 1 synthetic peptide. Comparison of the
bound receptors showed the backbone atom root mean square deviation (RMSD) differences
of 0.80 (± 0.31) Å on average with the largest displacement, 1.22 Å (Figure 1A). Binding of
different peptides to the receptor, HLA-A*0201, does not induce significant conformational
changes of the pocket, which provides a basis for a rigid approximation of the MHC
molecule in our simulations. The bound configurations of the 18 peptides were compared
and most of the peptide backbones were similar to each other except one, 2V2X, which is
notably different (Figure 1B). Our test set exhibits substantial variations in the side chain
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directions, leading to a versatile surface configuration of the pMHC complexes (Figure 2).
The binding specificity of peptide-HLA-A*0201 interactions within the test set was
analyzed using LIGPLOT (Wallace et al., 1995). The data clearly identified four conserved
hydrogen bonds across all of the 18 pMHC complexes (Figure 1C). We utilized the
concurrence of the hydrogen bonds to restrict the distances among the peptide and receptor
atoms during our simulations.

3.2. Homology modeling
We built homology-based models using three different software programs: MODELLER
(Marti-Renom et al., 2000; Sali and Blundell, 1993), ROSETTA (Chivian and Baker, 2006;
Raman et al., 2009), and PRIME (McRobb et al.; Yoo and Medina-Franco), with the same
template choice of pMHC complex 2V2W. Each model structure obtained was
superimposed to its crystal structure, and all-atom root mean square deviation (RMSD)
between the predicted and experimental peptide conformations was calculated. Here we
reported all-atom RMSD by including all atoms of backbone and side-chain residues,
excluding hydrogen atoms. We found that the MODELLER generally performed best; the
mean of all-atom RMSD (excluding hydrogens) was 1.54(± 0.37) Å from MODELLER,
3.11(± 0.22) Å from ROSETTA, and 3.10(± 0.19) Å from PRIME, respectively (Table 1).
Figure 2 shows the superposition of the predicted peptide conformations from MODELLER
with the actual conformations from the X-ray crystal structures. Not too surprisingly, all of
the homology models showed strong dependence on the level of similarity between the
target and template structures. When the template had a peptide backbone configuration
similar to the test peptide configuration, MODELLER did very well. However, it was a
much more challenging problem when the target peptide structure deviated from the
template peptide structure. For peptide 2V2X, the modeling programs failed to predict the
correct backbone conformation, resulting in the all-atom RMSD of 2.36 Å (MODELLER).

Furthermore and more importantly, MODELLER failed to choose the optimal template
when it was given a set of template options that included the correct peptide backbone. For
each peptide, we used four or five different templates, which were the representatives of the
ensemble obtained through the simulated annealing runs. The prediction by the
MODELLER was highly dependent on each initial template. The all-atom RMSD between
the template structure and the X-ray structure was significantly correlated with that between
the prediction and the X-ray structure (correlation coefficient=0.99 and F=2884.9 and
p<0.001). Moreover, when the MODELLER used multiple templates, we observed that it
was not guaranteed to select the correct template. For the 2V2X, the MODELLER failed to
choose the template with the smallest all-atom RMSD to the X-ray structure (1.3 Å)
although that was one of the five templates we used. Instead, the MODELLER predicted the
conformation, which deviates from the X-ray with the all-atom RMSD of 2.07 Å. We
concluded that employing multiple templates was not able to fix the template dependence of
the MODELLER. Therefore, standard homology modeling approaches are not sufficient to
generate high quality models for pMHC complexes.

3.3. Simulated annealing using all-atom molecular dynamics simulations
We next took a comprehensive approach to overcome the limitations of homology modeling
by employing all-atom molecular dynamics simulations with the AMBER force field. We
generated an ensemble of peptide conformations by adopting a simulated annealing scheme
which is one of the effective methods that are able to overcome energy barriers and explore
conformational space (Frenkel and Smit, 2002). Each pMHC complex, which was initially
configured by the MODELLER, was heated up to 1500K and then slowly cooled down to
room temperature, thereby guiding the complex to an energy minimized structure. The entire
procedure was optimized using the trials of several different annealing schemes. For
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example, when the complex was heated up to 800K, conformational changes in side chains
were predominant, while heating the complex to 1500K permitted motions of not only side
chains, but also of the backbone of the peptide. A linear cooling schedule was found to be
more effective than an exponentially decreasing temperature, especially, when the initial
starting configuration was not similar to the correct one.

An ensemble of 100 simulated annealed structures was then analyzed using clustering
algorithms to correctly select the most abundant configuration from the ensemble. Several
algorithms including Bayesian, hierarchical, k-means, and self-organizing maps (SOM)
(Shao et al., 2007) were tested along with the centroid structure of the ensemble. We used
pairwise all-atom RMSD values among 100 simulated annealed structures for each
clustering method and chose the conformation which was closest to the centroid of the major
cluster. When we compared the conformation selected by each clustering method, the
Bayesian method slightly performed better than others: The all-atom RMSD between the
predicted and the X-ray, averaged over 17 complexes, was 1.63(± 0.37) Å for Bayesian,
1.69(± 0.40) Å for hierarchical, 1.70(± 0.39) Å for k-means, 1.68(± 0.35) Å for SOM, and
1.71(± 0.40) Å for the centroid, respectively. Figure 2 compares the respective X-ray crystal
structures with the conformations predicted by the process using MODELLER, followed by
simulated annealing trials and choosing the final model by grouping using Bayesian
statistics. Surprisingly, the predictions based on simulated annealing followed by Bayesian
clustering were comparable to those of the MODELLER (Table 1). The most abundant
configuration within the ensemble generated by the simulated annealing does not necessarily
represent the correct configuration. The backbone of the major configuration within the
2V2X ensemble was incorrectly predicted, as it was from MODELLER’s prediction. Only
10% of the ensemble of structures from simulated annealing had the correct backbone
topology based on the crystal structure. Results indicated that the simulated annealing was
able to sample a broad range of configurations including backbone rotations of bound
peptides. However, the most abundant structure within the ensemble was not consistent with
the X-ray crystal structure when the starting backbone configuration of the simulated
annealing was not consistent with that of the X-ray crystal structure.

3.4. Detecting conformational transitions for designating the correct structure
We sought out an alternative method for designating the correct structure within the
ensemble. We chose four pMHC complexes out of the test set consisting of 2V2X whose
backbone structure is incorrectly predicted by the MODELLER and 1S8D, 1I7U, and 1EEY
whose backbone structures are correctly predicted by the MODELLER. For each of 100
structures generated by the simulated annealing for each of four complexes, we performed a
10 ns all-atom MD simulation. For each run of 10 ns at room temperature, we sampled every
2 ps and collected 5000 conformations. Then the RMSD trajectory was measured by
comparing these 5000 peptide structures with the X-ray crystal structure and asked if a
conformational transition occurred by flagging when the change in the all-atom RMSD was
greater than 20% of the initial RMSD to the X-ray structure. Using the 20% as a cut-off,
allowed us to focus only on major changes rather than minor motions of the side chains. The
additional 10 ns MD simulations of the 100 conformations of the 2V2X complex resulted in
a total of 20 conformational transitions out of 100 runs. Out of 20 transitions, we found that
19 cases made a sharp transition towards the structure closest to the X-ray crystal and the
most prevalent conformation of the post-transition structures showed the all-atom RMSD of
1.37 Å to the X-ray structure. Figure 3A displays a representative case of the transitions. For
the 1S8D complex, which is the most accurately built model by the MODELLER, we
observed a total of six transitions out of 100 MD simulation runs, and all of those were
verified as ones transitioning towards back the structure closest to the X-ray structure
(Figure 3A). Likewise, the complex 1I7U and 1EEY showed 5 and 3 transitions,
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respectively and all of those were towards each major conformer of the simulated annealing,
which was closest to each X-ray structure (Figure 3A). Table 2 compares the all-atom
RMSDs to the X-ray structure by the MODELLER and the MD simulations for the four
complexes. When the MODELLER performs poorly, as in 2V2X, mainly due to the
deviation of the target from the template, the signature of the transition in the MD
simulations improved the level of prediction significantly. On the other hand, when the
MODELLER’s prediction was acceptable, the signature of the transition was slightly worse
but comparable to the MODELLER’s prediction. Our observation suggests that the signature
of the conformational transition provides a way to fix the template dependence of the
MODELLER.

3.5. Blind test and confirmation by X-ray crystallography
With our optimized protocol, which was summarized in Figure 3B, we predicted the
conformations three nonameric peptides consisting of a tumor-associated wild peptide,
KVAELVHFL and two heteroclitic analogs, KVAEIVHFL and KVAELVWFL, restricted
by the HLA-A*0201. Our goal was to examine whether our method correctly predicts
structures in the absence of any prior information. Following our protocol, 100 structures for
each of the three complexes were generated by the simulated annealing method which
started from the configuration of the MODELLER’s prediction. Then an additional 10 ns
all-atom MD simulation for each of 100 structures was performed and the RMSD trajectory
was measured. Here the three structures were unknown, the RMSD values were measured
by comparing with the configuration predicted by the MODELLER. The MD simulations
identified four and two transitions for the KVAELVHFL and the KVAELVWF out of 100
runs for each complex, respectively. Post-transitional conformations were then collected and
the most prevalent conformation was designated as our final prediction. For the peptide,
KVAEIVHFL, we did not observe any conformational transitions in the ensemble of 100
conformers and the most frequent of those was selected as a final prediction. Our structural
prediction indicated significant differences in the surface morphology among the wild-type
peptide and the mutants; for the wild-type peptide, the leucine at position 5 was pointing
laterally towards a helix on the receptor, holding a flat surface (Figure 4). On the other hand,
the same P5 leucine of the analog, KVAELVWFL, was predicted to point directly towards
the T cell receptor, holding a prominent surface (Figure 4). The isoleucine of the analog,
KVAEIVHFL, was also predicted to be configured towards the T cell receptor, resulting in a
protruding surface (Figure 4). Our prediction of this significant conformational change from
the flat surface to the prominent surface by a single amino acid substitution is particularly
notable given that the substitution of leucine to isoleucine at position 5 could be expected to
be very subtle because the two amino acids are isosteric.

The crystal structures for the three peptides from the blind test, the wild-type peptide,
KVAELVHFL, and the two heteroclitic peptides, KVAEIVHFL and KVAELVWFL each
bound to HLA-A0201, were determined to 2.0 Å, 1.63 Å, and 2.31 Å resolutions,
respectively (Table 3). Interestingly, the crystal structure of the wild peptide is unique when
compared to crystal structures of other peptides bound to MHC because the electron density
suggested a relatively small set of structures by the peptide and not just a single one (Figure
5 and Figure 6). Most often, the structures either show one conformation or missing density
suggesting many potential conformations. Two paths of KVAELVHFL peptide could be
interpreted with confidence and were modeled in the final structure. The main difference
between the two paths was two inverted orientations for the P5-P6 peptide bond carbonyl,
which were common in both asymmetric units as shown in Figure 5 and Figure 6. Both X-
ray crystals confirmed the computational prediction that the center residue, leucine, is
configured to point laterally towards the receptor, forming a flat surface with the all-atom
RMSDs of 2.04 Å and 1.99 Å to the predicted structure, respectively.
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The crystals for the two mutants were also very similar to our predicted structures. For the
analog, KVAEIVHFL, the substitution of leucine to isoleucine at P5 caused a large change
in structure (Figure 5 and Figure 6): The isoleucine at P5 points directly towards the T cell
receptor, holding a prominent configuration, in consistent with our model prediction (all-
atom RMSD equals 1.63 Å). Similarly, the X-ray crystal of the KVAELVWFL confirmed a
predicted change such that the P5 leucine is accessible to solvent, resulting in an
astonishingly similar structure to our prediction with an all-atom RMSD of 1.19 Å. On the
other hand, the level of prediction by the MODELLER was not desirable; the central region
of the wild-type peptide was configured to point towards the T cell receptor resulting in the
all-atom RMSD of 2.40 Å (Figure 7). The predictions by the MODELLER for the two
mutants, KVAEIVHFL and KVAELVWFL, showed the all-atom RMSDs of 1.58 Å and
2.57 Å to the X-ray structures, respectively. When the MODELLER’s prediction was
accurate, for KVAEIVHFL, we did not observe any conformational transition. On the
contrary, when the MODELLER’s predictions were poor, both for KVAELVHFL and
KVAELVWFL, the signature of conformational transition considerably improved the
accuracy of prediction.

4. Discussion
We performed structure prediction of nonameric peptides bound to the class I HLA allele
A*0201, using a protocol consisting of three steps (see Figure 3B). The first step of
homology modeling chose the initial guess relatively close to the X-ray structure when the
template used in the homology modeling was similar with the X-ray structure. In the second
step of the simulated annealing, we generated an ensemble of peptide conformations.
Although the configuration close to the X-ray structure was present within the ensemble, the
most abundant configuration within the ensemble did not necessarily represent the correct
configuration. The backbone of the major configuration within the 2V2X ensemble was
incorrectly predicted, as it was from MODELLER’s prediction. A post-hoc analysis showed
that only 10% of the ensemble of structures from simulated annealing had the correct
backbone morphology of the crystal structure. One way of designating the correct structure
within the ensemble would be calculating the free energy of each configuration and find the
configuration of minimum free energy (Frenkel and Smit, 2002; Jarzynski, 1997; Kirkwood,
1935; Park et al., 2003; Torrie and Valleau, 1974). However the calculation is out of reach,
since it requires a very long time simulation for each local minimum to obtain a precise
estimate on the entropy contribution. The third step of our protocol, monitoring
conformational transitions provided a way to overcome this difficulty because we can
directly obtain the information about free energy differences between the conformations, not
necessarily calculating the absolute free energy value itself. Indeed, information on free
energy differences is enough for us to designate the most energetically favored structure.

The main hypothesis for the signature of transition is that the transition rate from a
metastable, local energy minimum conformation to the energetically favored conformation
is greater than the reverse transition rate. For instance, in a simple two-state model as
illustrated in Figure 8, the forward and backward transition rates are proportional to exp(−Ff/
T) and exp(−Fb/T), respectively. Here Ff(Fb) is the free energy barrier of forward
(backward) transition and T is the temperature of the system. Thus, the ratio between two
rates becomes exp[−(Ff − Fb)/T], which is greater than 1, implying that the forward
transition toward the energetically favored conformation is more frequent than the backward
transition. We reason that since simulated annealing did not always reliably predict the
correct structure, it must sample suboptimal conformations around the initial starting
configuration more frequently, not having a chance to sample the optimal conformation
most frequently. Additional equilibration of the 10 ns MD simulations for each
conformation of the ensemble provides opportunities of transitions among configurations.
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Because energy barriers of the transitions toward the energetically favored state are smaller
than those of the backward transitions, transitions toward the correct structure likely
outnumber those out of the correct structure. Therefore, choosing the most abundant of the
post-transition conformations is presumed to be the best criteria for predicting
thermodynamically favorable configurations. Our approach has some distinctive advantages.
First, the longer additional MD simulation time we have, the more accurate transition rates
we obtain (Best and Hummer, 2005; Dellago et al., 1998; Piana et al., 2012), and thus the
prediction of the energetically favored configuration should become more accurate. Second,
we do not apply any approximation except the choice of force field. Thus, as long as the
force field is sufficiently good enough, our method guarantees a fine outcome.

Our protocol successfully predicted the conformations of a wild peptide, KVAELVHFL and
two heteroclitic analogs, KVAEIVHFL and KVAELVWFL, restricted by the HLA-A*0201.
This set of peptides was selected because i) we did not know the crystal structures of the
complexes and ii) the two analogs were known as significantly more immunogenic than the
wild-type peptide; a single amino acid substitution from the wild-type peptide had been
reported to result in the increase of the antigenic sensitivity of T cells up to 107 fold (Tangri
et al., 2001). We hypothesized that that increase in immunogenicity would be associated
with a substantial change in the surface morphology of the complex. Indeed, our protocol
predicted that the substitution causes a large change such that the isoleucine at P5 of
KVAEIVHFL points directly towards the T cell receptor, holding a prominent conformation
as well (Figure 5). As hypothesized, the more immunogenic mutants KVAELVWFL and
KVAEIVHFL shared the characteristic of having a protruding central residue, which
potentially contributed to enhanced antigenic sensitivity presumably by facilitating
recruitment of diverse T cells. Our observation showed a positive association among
immunogenicity and the degree of prominence of the peptide bound to MHC molecule.
Additional supporting evidence was proto-oncogene HER-2/neu-derived peptide
IISAVVGIL (1QR1) from our test set. This peptide had been shown to be poorly recognized
by cytotoxic T cells, resulting in the failure of elimination of tumors (Kuhns et al., 1999). As
shown in Figure 2, the surface morphology of the peptide 1QR1 was relatively flat and
featureless. Collectively, our observation supports the hypothesis that the surface
morphology of the pMHC complex is one of the confounding factors determining
immunogenicity of each pMHC complex.

We have demonstrated that our prediction protocol could be a powerful tool for designating
MHC binding immunogens. By identifying a robust criterion for selecting the best from the
ensemble of candidate conformations, we devised an accurate prediction protocol of
identifying highly immunogenic peptides. Our method provides key information of each
antigen on its ability to recruit diverse T cell population by characterizing the surface
morphology of the HIV-1 peptide and MHC complex. This efficient protocol can be used to
prioritize vaccine candidates by addressing the quality of vaccine-induced T cell responses
in terms of their ability to recognize diverse circulating HIV-1 strains and suppress viral
escapes. Our protocol also has a potential for being applied to screening antigens to optimize
vaccines for other pathogenic infections and cancer where the breadth of T cell responses is
pivotal for the outcome of the diseases.
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• The structure of the peptide-MHC complex is important for the breadth of T
cells.

• We perform molecular dynamics simulations for the peptide-MHC complex.

• We probe conformational transitions, achieving high prediction accuracy.

• We report three novel peptide-MHC structures showing conformational
differences.
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Figure 1.
Test set comparison. A. Superimposed 18 binding pockets of the MHC class molecule HLA-
A*0201, obtained by X-ray crystallography. Each pocket represents the bound conformation
to each of 18 peptides. The receptor residues within 5 Å from the bound peptide are
considered only. B. Superimposed conformations of the 18 epitope backbones restricted by
HLA-A*0201, obtained by X-ray crystallography. The peptide 2V2X is represented by
white and the other 17 peptides are represented by blue. C. Four conserved hydrogen bonds
between the peptide backbone and the receptor side chain.
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Figure 2.
Test set prediction. Superposition of the bound conformations of the antigenic peptides
obtained from the X-ray crystal structures (cyan) with the MHC removed, the homology
modeled peptides from MODELLER (orange), and the most frequent conformation obtained
from simulation annealing trials (red).
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Figure 3.
Conformational transition. MD simulations reveal conformational transitions towards the
correct configuration. A. The RMSD trajectories of the 2V2X, 1S8D, 1I7U, and 1EEY
ligands during each run of the 10 ns MD simulation. Conformations of the pre- and post-
transition (red) are compared to the x-ray structure (cyan). B. Summary of our prediction
protocol.
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Figure 4.
Blind set prediction. A blind test confirms that this procedure correctly predicts structures
not in the training ensemble. Comparisons of the predicted conformations by the MD
simulations (red) to the X-ray structure (cyan) for the wild peptide (KVAELVHFL) and the
two heteroclitic analogs, KVAEIVHFL and KVAELVWFL. The center residue of each
peptide is marked by an arrow.
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Figure 5.
The x-ray structures of the pMHC in the blind test set. A. The electron density around the
wild peptide (KVAELVHFL) and two mutants (KVAEIVHFL and KVAELVWFL), bound
to HLA-A*0201. The asymmetric unit of the crystals contains two copies of pMHC
complexes. The electron density for the first copy is shown here and the electron density for
the peptide in the second copy is shown in Figure 6. B. Crystallographic models of the three
peptides bound to HLA-A*0201. The overlay of the two configurations for the wild peptide
is in blue and cyan.
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Figure 6.
The x-ray structure of the blind test set. The asymmetric unit of the crystals contains two
copies of the pMHC complexes. The electron density for the first copy is shown in Figure
5A, the density for the second copy is shown here.
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Figure 7.
Blind Test. Comparisons of the predicted conformations by the MODELLER (orange) to the
X-ray structure (cyan) for the wild peptide (KVAELVHFL) and the two heteroclitic analogs,
KVAEIVHFL and KVAELVWFL.
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Figure 8.
Two state model. Two-state model with the energy barrier of the forward transition, Ff and
that of the backward transition, Fb.
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Table 1

The test set of peptides restricted by MHC class I molecule HLA-A*0201. We used pMHC complex 2V2W
(sequence SLYNTVATL) as a common template for homology modeling. The PDB code, amino acid
sequence, the all-atom RMSD between X-ray structure and predicted one by the homology modeling
(MODELLER), and the all-atom RMSD between X-ray structure and the most abundant conformation
obtained from simulated annealing trials.

PDB code Sequence
All-Atom RMSD (Å) to X-ray

Homology modeling Simulated annealing

1I7U ALWGFVPVL 1.65 2.12

1QR1 IISAVVGIL 1.35 1.45

1EEY ILSALVGIV 1.36 1.33

1EEZ ILSALVGIL 1.53 1.51

1S9W SLLMWITQC 1.87 2.02

1S9X SLLMWITQA 1.92 2.04

1S9Y SLLMWITQS 1.74 2.26

1TVB ITDQVPFSV 2.01 1.62

1TVH IMDQVPFSV 1.87 1.87

2V2X SLFNTVATL 2.36 2.18

1S8D SLANTVATL 1.02 1.11

1T1W SLFNTIAVL 1.20 1.26

1T1X SLYLTVATL 1.28 1.38

1T1Y SLYNVVATL 1.33 1.42

1T1Z ALYNTAAAL 1.18 1.42

1T20 SLYNTIATL 1.35 1.45

2C7U SLFNTIAVL 1.13 1.19

Average 1.54 1.63

Standard Deviation 0.37 0.37
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Table 2

The RMSD of 2V2X, 1S8D, 1I7U, and 1EEY between the X-ray structure and the predicted one by the
homology modeling or by the MD simulations.

RMSD (Å) to X-ray

MODELLER MD Simulations

2V2X 2.36 1.37

1S8D 1.02 1.11

1I7U 1.66 1.95

1EEY 1.39 1.49
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Table 3

The statistics of X-ray crystallographic data.

KVAELVHFL KVAEIVHFL KVAELVWFL

Data Processing

Space Group p21 p21 p21

Cell Dimensions 63.2, 90.49, 79.97 62.80, 87.60, 79.80 62.80, 87.10, 79.70

Angles (°) 90.00, 90.06, 90.00 90.00, 89.96, 90.00 90.00, 90.04, 90.00

Molecules/AU 2 2 2

Resolution (Å) 50.0–2.00 (2.11–2.0) 50.0 – 1.63 (1.66–1.63) 30.0–2.3 (2.38–2.30)

Rmerge (%) 0.12 (0.41) 0.049 (0.36) 0.079 (0.29)

<I/s> 11.3 (4.3) 22.0 (3.2) 13.5 (4.3)

Unique Reflections 60582 106085 35327

Average Redundancy 7.1 (6.5) 3.7 (3.1) 3.9 (4.0)

mosaicity 0.2–0.4 0.4–0.6 0.4–0.6

Completeness (%) 0.99 (0.95) 0.97 (0.72) 0.94 (0.99)

Processing software XDS HKL2000 HKL2000

Refinement

Resolution Range (Å) 40.0–2.0 (2.05–2.00) 16.43–1.63 (1.67–1.63) 30.0–2.3 (2.38–2.30)

Average B-factor (Å2) 25.4 29.6 38.6

Number of Reflections 60,433 (4247) 105,970 (5285) 35,266 (1754)

Rfac 0.23 (0.22) 0.19 (0.22) 0.19 (0.20)

Rfree 0.26 (0.25) 0.21 (0.26) 0.23 (0.27)

Number of non-H atoms 6401 6332 6332

Ramachandran

Residues in most favored regions 711 729 732

Residues in additional allowed regions 22 22 24

Residues in generously allowed regions 0 0 0

Residues in disallowed regions 0 0 0

ESU based on Luzzati Plot 0.32 0.21 0.31

RMSD bond lengths 0.01 0.01 0.01

RMSD bond angles 1.05 1.00 1.07

Refinement Program autoBuster autoBuster autoBuster
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