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Abstract
Cancer invasion is one of the hallmarks of cancer and a prerequisite for cancer metastasis.
However, the invasive process is very complex, depending on multiple correlated intrinsic and
environmental factors, and thus is difficult to study experimentally in a fully controlled way.
Therefore, there is an increased demand for interdisciplinary integrated approaches combining
laboratory experiments with multiscale in silico modeling. In this review, we will summarize
current computational techniques applicable to model cancer invasion in silico, with a special
focus on a class of individual-cell-based models developed in our laboratories. We also discuss
their integration with traditional and novel in vitro experimentation, including new invasion assays
whose design was inspired by computational modeling.
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Cancer invasion is one of the hallmarks of cancer (Hanahan and Weinberg, 2000) and a
prerequisite for cancer metastasis, so it is a critical step in tumor progression. However,
many aspects of this invasive process and certain features of the invading cells are still not
fully understood. How is tumor invasion actually initiated? Is this an individual or collective
enterprise? What kind of genetic/epigenetic and/or phenotypic changes are required of the
cell to become invasive? Is the tumor microenvironment (mE) merely a barrier that need to
be crossed or an active player in the invasion process?

Solid tumors are generally considered as invasive once they start penetrating the
surrounding extracellular matrix (ECM) and the multiple layers of mesenchyme. Typically,
we can recognize two forms of tumor cell invasion into the surrounding stromal tissue.
Tumor cells can either outgrow the normal tissue and stromal cell layers expanding as a bulk
mass of cells, or they can intermingle with stromal cells forming migrating cell cohorts. The
former case is similar to the growth of subcutaneously implanted tumors that form compact
spherical multicellular clusters embedded in soft tissue. The latter case is often characterized
by a finger-like morphology (similar in shape to a “crab” from which the word “cancer” was
derived) and has been correlated with harsher mEs to which cells with only certain
phenotypes can adjust and progress. However, tumor invasiveness cannot be solely
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attributed to tumor cell growth ability or migratory potential. Computational models
developed in our laboratories (Anderson, 2005; Anderson et al., 2009; Quaranta et al., 2008;
Rejniak, 2005) indicated that cancer invasion is an emerging property of collective cell
response to environmental cues. Similarly, our experimental data acquired by a novel in
vitro invasion assay showed that development of irregular margins in a cancer tissue
depends on both the microenvironmental conditions and cellular heterogeneity within the
growing cell population (Kam et al., 2009). It has also been shown experimentally by others
that invasiveness is context-dependent, i.e., the invasive capabilities of certain cell lines
grown in one environment can be completely inverted when these cells are exposed to
different environmental conditions (Kenny and Bissell, 2003; Nelson and Bissell, 2005;
Paszek et al., 2005).

How can cancer cell invasion be studied? Ideally one would like to know how changes in
cell phenotype, alterations in the cells immediate environment as well as how modifications
to cell-cell interactions impact tumor invasiveness in vivo. However, in animal models any
induced change, whether by cell mutations or in tumor mE, may be compensated by other
(sometimes multiple) factors that make the overall experiment difficult to both control and
interpret. in vitro experiments allow for better control of individual factors, but the
complexity of in vivo environment is impossible to reconstruct. To be able to include in a
controlled fashion in one experiment multiple processes, such as cell metabolism, cell-cell
adhesion, intercellular signaling, remodeling of the cell mE, along with the intra-tumoral
heterogeneity, a more interdisciplinary approach, combining laboratory experiments with
multiscale in silico modeling is not only required but essential (Anderson and Quaranta,
2008; Sanga et al., 2007). In silico models, especially individual-cell-based models, can
bridge these two experimental extremes since they can integrate measurements from
different in vitro experiments, reconstruct certain aspects of in vivo environments and allow
for a systematic analysis of the influence of individual as well as combined factors on
overall tumor behavior. Although, the laboratory experiments are necessary for both
computational models parameterization and validation of simulated results.

In this review, we summarize current approaches to model cancer invasion in silico, with a
special focus on a class of individual-cell-based models developed in our laboratories. We
also discuss their integration with traditional and novel in vitro experiments, including new
assays whose design was inspired by computational modeling.

1. In silico modeling of tumor invasion
A key advantage of in silico computational models is their natural ability to handle multiple
dynamic interacting variables, such as numerous cell types or various environmental factors.
A typical way to investigate how individual components of a system contribute to the
emerging properties of the whole is via systematic manipulation of these variables and the
parameters that control them within dynamic computational simulations. This is similar to
experimental approaches in which the importance and influence of a certain gene or protein
is assessed by over-expressing it or knocking-out and comparing the animal or cell with
wild-type animals or the healthy parental cell line. However, in computer simulations every
parameter can be altered over a broad spectrum of possible values, and multiple parameters
can be varied simultaneously, which is often difficult, if not impossible, to achieve
experimentally in an accurate controlled fashion. Therefore, computational modeling
enables one to track the behavior of a whole multicellular system as well as each of the
individual components of the system simultaneously in time and space, allowing one to
determine the relative importance and contribution of each factor in achieving the final
simulated result. Fundamentally, this allows such models to generate experimentally testable
predictions and hypotheses. Moreover, one can also apply various analytical and statistical
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tools to analyze the multicellular system and its sensitivity to parameter perturbations.
Another advantage of computational models is that they naturally integrate multiple traits
that define an individual cellular phenotype. Understanding how these traits act in symphony
to produce the phenotype is experimentally tricky, but computationally clear.

Several different computational models of tumor growth and invasion have been developed
and can be broadly divided into two classes (Fig.1): continuous models representing tumors
as densities of cells and individual-cell-based (agent-based) models in which each cell is
treated as a separate entity (agent). The latter can be subdivided into nuclei-centered models
and deformable cell models depending on how much cell structural detail is incorporated
into the model. We briefly describe all three approaches below, but the interested reader is
encouraged to consult the following reviews for further details (Anderson et al., 2007a;
Araujo and McElwain, 2004; Byrne and Drasdo, 2009; Lowengrub et al., 2010; Preziosi,
2003; Rejniak and Anderson, 2011; Rejniak and McCawley, 2010; Rejniak et al., 2010b).

1.1. Individual nuclei-centered models
In this class of models, individual cells are represented in space by their nuclei and equipped
with a set of cell characteristic features that may include cell age, its current phenotypic
state, acquired mutations and individually regulated cell cycle. Cells are located in a
computational domain that represents either the culture condition or the stromal tissue
surrounding the growing tumor. In the latter case several environmental factors may be
incorporated in the model, such as metabolic gradients, various stromal cells, and the
heterogeneous structure of the ECM. Each cell can respond to these environmental cues by
changing its metabolic state, direction of cell movement, or actively remodeling the
surrounding ECM. All cell-cell and cell-ECM interactions are defined locally between
individual cells and the overall tumor behavior is an emergent property of the collective
behavior of many individual cells. In terms of the scale of the experimental in vitro systems
(multicellular clusters of the size up to a few centimeters) there is an obvious fit with nuclei-
centered approaches, since these models can handle up to a few million individual cells.
Therefore not only are they capable of representing in vitro systems, but also in vivo and
even potentially clinically relevant size tumors. All agent-based models have an added
advantage as they can connect directly with the in vitro experimental assays at the level of
an individual cell. This is particularly useful if we are interested in accounting for
heterogeneity across the cellular populations. Examples of this class of models include: grid-
based (Fig.1a) (Aubert et al., 2008; Dormann and Deutsch, 2002; Enderling et al., 2009;
Kim et al., 2009; Zhang et al., 2009) and lattice-free models (Fig.1b) (Drasdo et al., 2007;
Galle et al., 2005; Norton et al., 2010).

1.2. Individual deformable cell models
In this class of models, each cell is an entity characterized by a deformable shape and
volume (or area) that can vary in time depending on the cell state (growing, dividing, dying,
migrating), interactions with other cells (cell packing due to adhesion) and the cell mE
(deformation due to obstacles or ECM fibers alignment). Since individual cells do not need
to be identical, i.e. each cell may have a slightly different area and/or membrane surface, this
modeling technique captures the natural morphological heterogeneity between cells that in
turn allows for a more natural representation of the variation in local cell-cell and cell-ECM
interactions. In addition, each individual cell can be equipped with various cell membrane
receptors that may be used to define cell cycle, determine underlying cell life processes and
intracellular pathways, or physical interactions with other cells and the mE. The variable cell
morphology also enables one to distinguish between cytoplasmic and membrane-related
events allowing for a more realistic comparison between the simulated and experimental
data, from both in vitro cultures and ex vivo tissue slices (especially using fluorescent,
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immunohistochemical and histological staining). Examples of this class of models include:
grid-based (Fig.1c) (Bauer et al., 2009; Shirinifard et al., 2009) and lattice-free models (Fig.
1d) (Dillon et al., 2008; Schaller and Meyer-Hermann, 2005)

1.3. Continuous (population) models
In this class of models, tumors are represented as populations (densities, concentrations) of
identical indistinguishable cells whose properties (doubling time, death rate, movement
speed) are defined as averages for the whole cell population (Fig.1e). These models are by
definition deterministic and whilst it is possible to include several cell subpopulations (such
as proliferating, quiescent, necrotic, or dead cells), the number of various cell phenotypes
must be specified apriori since each subpopulation needs to be handled by a separately
defined equation. The advantage of continuous models is in their ability to reproduce
clinical size tumors, thus these models can provide a more global view of developing tumors
and tumor treatment, and show the potential to match some image-based clinical data. They
are also more amenable to analytical investigation which can often highlight key underlying
mechanisms. Examples of recently published models in this class can be found in (Bellomo,
2008; Hinow et al., 2009; Lowengrub et al., 2010; Macklin et al., 2009; Painter et al., 2010;
Szeto et al., 2009)

1.4. Specific examples of in silico invasion modeling
To illustrate how computational models can be applied to study tumor cell invasion we
describe here in more detail two distinct agent-based approaches, the hybrid discrete-
continuous (HDC) model and the immersed boundary model of a cell (IBCell) model, both
developed in our laboratories.

The HDC model of tumor invasion couples a continuum deterministic model of
microenvironmental variables (based on a system of reaction-diffusion equations) and a
discrete cellular automata-like model of individual tumor cell migration and interaction
(based on a biased random-walk model, see (Anderson, 2005) for more details). This model
operates at the cell-to-tissue scale and is therefore ideal for examining the tumor mE
interactions. It is broadly based on the growth of a generic three-dimensional solid tumor,
but, we only consider a one-cell diameter thick two-dimensional slice through it. Translation
to 3-D is straightforward (Fig.2c), though somewhat computationally intensive. An
important aspect of the HDC model is that individual cells are defined via collection of
phenotypic traits including proliferation, death, cell-cell adhesion, mutation, and production/
degradation of mE specific components which determines how a cell behaves and interacts
with other cells and its mE. The mE consists of concentrations of ECM, oxygen and matrix
degrading enzymes. Cells migrate, proliferate, die and potentially mutate depending on their
phenotype and the mE. If a cell does mutate during division it is randomly assigned a
different phenotype from a predefined pool. The role of mE in aiding or inhibiting tumor
progression was one of the key questions we wanted investigate with the HDC model. By
considering different mE conditions (uniform ECM, grainy ECM and high/low oxygen) we
were able to show that in difficult or harsh mEs the tumor morphology that emerged was
distinctly different, being more fingered and asymmetric (Fig.2a). More importantly these
fingered tumors were composed of fewer more aggressive phenotypes, defined in terms of
low cell-cell adhesion, short proliferation age, and high migration coefficients. These results
led to a theoretical publication in Cell (Anderson et al., 2006) and development of multiple
modeling approaches to further investigate these results (Anderson et al., 2009; Anderson et
al., 2007a; Anderson et al., 2007b; Quaranta et al., 2008).

The IBCell model is capable of capturing the morphology of fully deformable cells,
especially during their individual or collective migration and growth (Fig.2e,f). Each cell is
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modeled as an elastic membrane enclosing the gel-like cytoplasm and cell cytoskeleton, and
can be equipped with various cell membrane receptors. These receptors are used to
determine which cell life process will be initiated based on local cues sensed by the host cell
from other cells and cell mE. For example, the cell will start growing if it senses (through
their membrane receptors) that there is enough free space in its vicinity to expand. Similarly,
the cell remains viable as long as it senses (via its receptors) that there are sufficient levels
of growth factors or nutrients around its membrane. The cell can move up the gradients of
chemo- or hapto-attractants, using its membrane receptors to determine the chemical
concentrations in its mE. Since all cells are deformable, the numbers of their membrane
receptors exposed to a certain cues may be different in each cell leading to a natural cell-to-
cell heterogeneity in cell response. This in turn influences the collective behavior of cell
clones or cohorts. This model has been used to investigate how tumor cell competition for
space and nutrients, which depends on cell intrinsic metabolic properties, may result in
different tumor cluster morphologies, with distinct growth and invasion dynamics. Using
this model we have shown that natural cell-to-cell variability in cell shape, cell membrane
surface area and the number of cell membrane receptors can result in the formation of
invasive cell cohorts in mEs depleted from nutrients, whereas in rich environments cell
collective behavior is more homogeneous despite the individual cell variability (Anderson et
al., 2009; Quaranta et al., 2008; Rejniak, 2005; Rejniak, 2007)

Computational models give an opportunity to test the outcomes of experiments in which
multiple parameters (corresponding to cellular features or environmental conditions) can be
varied simultaneously and over a wide range of values, that is often impossible to do
experimentally. However, one can ask whether computational outcomes represent biological
reality or are simply results specific to a particular choice of model parameter set. One way
to address this issue is to design laboratory experiments to verify computational results.
Another way is to develop different computational models based on different mathematical
assumptions to address the same problem and compare their simulations results in order to
dissect both similarities and differences between them. We used this approach in (Anderson
et al., 2009) to investigate the formation of cell invasive cohorts as a result of interactions
between individual cells and their immediate mE. In this study we applied three different
computational models (both HDC and IBCell are discussed above, and the evolutionary
hybrid cellular automata model, EHCA, which is not) to simulate growth and movement of a
cluster of tumor cells by systematically varying two model parameters: the rate of nutrient
consumption by an individual cell and the oxygen threshold below which a cell is
considered to be in a hypoxic state. The models were based on different mathematical
frameworks, but all three pointed to a correlation between tumor cell competition for space
and nutrients and finger-like morphologies of tumor tissue in a nutrient-poor environment, in
contrast to round tumor tissue margins in nutrient-rich surroundings. Since the same result
naturally emerged from each model one can conclude that we have found a model-
independent mechanism that should be biologically relevant and therefore worth pursuing
experimentally.

2. In vitro assays for cancer invasion modeling
In mathematical models of cancer invasion, regardless of how complex or how simple the
model is, the variables that drive it need to faithfully represent various biological processes,
and thus need to be properly parameterized. The real potential of in silico modeling is in its
ability to tailor a model on a per patient basis and therefore ideally we want to obtain all
model parameters from individual human tumor samples to predict patient specific
outcomes. However, access to patient pathology samples that show spatial progression of
tumor invasion over more than two time points is extremely limited. It is far easier to use
cell culture systems to provide continuous quantitative data over extended periods of time
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that describe the dynamic response of individual cells to various extrinsic conditions such as
nutrient deprived mEs. Furthermore, the parameters from in vitro experiments can be
measured under more controlled conditions than in the in vivo setting. This is particularly
important for both computational model parameterization and validation, and the individual-
cell-based models discussed above are ideal counterparts for in vitro assays as they focus
mostly, but not exclusively, on cellular phenotypes such as cellular proliferation or death
rates, cell metabolism and/or motility. Numerous in vitro experimental tools are available to
gather parameters at various modeling scales, from single-cell unidirectional movement, to
multi-cellular clonal growth, to population dynamics in a 3D culture. Here we briefly review
a selection of in vitro assays commonly used to collect basic cellular traits which are related
to cancer invasion, and compare the more traditional invasion assays with several new
assays driven by in silico modeling (Table 1).

2.1. Proliferation
Proliferation rate in vitro is determined by measuring cell number increase in a finite space
such as a culture plate. Numerous methods have been developed to measure the proliferation
rate ranging from manual counting, using hemocytometer, to automated high throughput
measurement. The most popular method used is to measure the metabolic activity
representing the quantity of live cells by using colorimetric reaction (Cory et al., 1991;
Scudiero et al., 1988), or luminescence (Crouch et al., 1993). Other methods to assess the
quantity of living cells include the direct measurement of ATP or nucleic acid contents for
live cell titrating. All of these methods provide an efficient measure of the live cell
population size, however, more information regarding the spatial and temporal aspects of
division is often required for in silico modeling. In addition to traditional microscopic assay
using BrdU or proliferation-specific antigens (i.e. Ki-67 or PCNA, (Leonardi et al., 1992;
Scholzen and Gerdes, 2000)), many experimentalists also use fluorescent molecules
designed to be internalized by live cells and dead cells selectively such that proliferating
subpopulations are easily visible (i.e., calcein-AM vs. ethidium homodimer). In addition to
these standard assays, there have been efforts to monitor cell proliferation and adhesion
using label-free technology (Xi et al., 2008). These label-free cellular assay tools enable
more physiological and quantitative analysis of cell proliferation and cytotoxicity as well as
providing live cell data instead of end-point readouts.

The counterpart of proliferation, cell death rate, can also be measured directly. Instead of
measuring the net proliferation rate or the simple cytotoxicity, the apoptotic active
programmed cell death is quantified by flow cytometry (Nicoletti et al., 1991; Vermes et al.,
1995) or microscopy (Gavrieli et al., 1992; van Engeland et al., 1998). The flow cytometry-
based assay allows for large numbers of cell to be counted and therefore fits well with in
silico models focused on population dynamics whereas microscopy provides more detailed
spatial and temporal information of cell death in fewer cells.

2.2. Motility
Cell migration on ECM is one of the critical intrinsic cell characteristics which enable
cancer cells to escape their initial location and invade into new areas. There is clearly a
significant difference between cell migration on a 2D surface and in a 3D matrix as well as
between migration in vitro and in vivo. Nevertheless, the relative motility of cells from 2D
in vitro systems still provides useful quantification of the intrinsic potential of cells to move
along an ECM matrix and is widely used to provide parameters for in silico modeling. The
methods generally used for in vitro motility measurements are the (1) Boyden chamber
assay, (2) in vitro wound-healing assay, and (3) live cell tracking under a microscope – ideal
for monitoring individual cell movement.
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The Boyden chamber is a filter device which divides cell culture space into an upper and
lower compartment and the filter has many pores through which cells can pass (Boyden,
1962; Shaw, 2005). This is a highly quantitative and efficient way to measure migration
toward a more favorable environmental cue, such as serum. Due to its simplicity and
efficiency it has turned into the most popular migration/invasion assay platform. However,
whilst this method represents the quantity of motile cells very well, it provides no
information about migration speed, direction and cell morphological dynamics during the
migration process.

To assess the migration speed and other metrics relating to motility, the in vitro wound-
healing assay and the live cell imaging assay are the most commonly utilized tools.
Although the live cell imaging requires a specially equipped microscope, with a
compartment controlled for CO2 concentration, temperature and humidity, it has the great
advantage of providing dynamic information on cell migration speed and direction. A
disadvantage of this method is that mostly unbiased migration can be assessed and the
effects of cell-cell contact are often ignored. The unbiased movement does give some
limited information about the intrinsic amoeboid motility, whereas the wound healing assay
can provide additional information about the contribution of cell-cell interactions, cell
polarization, as well as proliferation (Liang et al., 2007; Nobes and Hall, 1999). However,
despite the advantages, there is an inherent lack of reproducibility for this assay, in
generating the wound by scratching, which limits its application. As an alternative approach,
the circular wound-healing assay (CWA) (Frey et al., 2004; Kam et al., 2008; Watanabe et
al., 1995) was designed, and also developed commercially in a similar format. This assay
consists of a reproducible circular cell-free area in the center of the plate and is used to
measure the rate at which this space closes.

The 2D motility assay has an innate limitation because it relies on the amoeboid movement
on a culture plate which is not the same as migration in a tissue. Recently, a number of in
vitro and in vivo methods have been developed which focus on illuminating the various
mechanisms of motility in a 3D environment (Condeelis and Segall, 2003; Demou and
McIntire, 2002; Friedl, 2004; Voytik-Harbin et al., 2001). The majority of these assays are
performed using 3D microscopy and fluorescent markers as well as specially designed 3D
matrix structures. Recent advances in microscopy using confocal laser scanning microscope
and multiphoton excitation microscope enabled the dynamic 3D imaging. Confocal
backscatter/reflection microscopy (Hartmann et al., 2006; Voytik-Harbin et al., 2001) has an
advantage in 3D ECM monitoring whereas the conventional confocal microscopy holds
general advantages in 3D cell imaging. Multiphoton microscopy is one of the most
prominent tools to obtain high resolution images from living biospecimen such as thick
tissues in vivo as well as artificial 3D matrices in vitro. Since cell migration in the 3D matrix
requires active remodeling of the ECM environment by cells, 3D migration analysis implies
the more complex tumor invasion mechanisms than simple 2D motility assays. For example,
the tracking of cell-ECM interactions in 3D assays provided an insight to formulate a
multistep cancer invasion theory involving both individual and collective migration forms
(Friedl and Wolf, 2009; Wolf et al., 2007).

2.3. ECM modulation
The generation and degradation of ECM is one of the most important environmental factors
facilitating or limiting cell invasion. The expression level of ECM proteins facilitating cell
migration is generally measured biochemically. ECM degradation activity can be predicted
by measuring ECM-digesting enzymes such as matrix metalloproteinase (MMP) production
which can be measured by immunochemical procedures. However, the majority of MMP or
other digesting enzymes require the activation cascades and more quantitative enzymatic
assyas are required for the discrimiatation between zymogens and active enzymes. The
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MMP activity measurement in vitro is achieved by using natural protein substrates or by
using synthetic peptide substrate (Lombard et al., 2005). Particularly, the fluorescence
liberation from fluophore-conjugated ECM upon the digestion turned to a useful tool to
detect local MMP activity around cells migrate and invade in a 3D matrix In addition to the
total activity averaged. Similarly, the matrix layer degradation by invadopodia is also used
to measure the ECM digesting enzyme(s) linked to individual cells (Enderling et al., 2008;
Linder, 2007) The 3D cell tracking technique also can be applied to monitor the ECM
dynamics in the cancer invasion process (Condeelis and Segall, 2003; Friedl, 2004; Wolf et
al., 2007).

2.4. Invasion
Cancer cell motility in vitro, often referred to as cancer invasiveness index, is an essential
factor in cancer invasion. However, it is only a necessary, but not a sufficient factor because
the invasion process requires additional processes such as penetration through normal
epithelial layer or ECM barrier. Although there has been significant advance in 3D cell
tracking in the ECM matrix, most traditional invasion studies still rely on the traditional
invasion assays such as the Boyden-chamber based assay in which an ECM gel (i.e.
Matrigel™) barrier is built on a filter dividing an upper and lower chamber (Shaw, 2005).
This Boyden-chamber technique focuses on the intrinsic invasion potential of cancer cells in
culture and is often combined with the migration assay to compare the invasiveness between
different cell lines. However, it also faces the same limitations as in the motility assay to
provide viable parameters for in silico models.

The circular invasion assay (CIA, Fig.2g) is a novel assay that has been designed to
overcome the limitations of traditional methods and is an ideal platform for integrated
modeling as it provides cell-scale quantification of invasiveness (Kam et al., 2008). It is
based on CWA with the major difference that there is an ECM gel overlay mimicking the
physical barrier that cancer would normally encounter. It can be used to quantify the relative
invasiveness of a tumor cell line in a variety of ‘controlled conditions’, which mimic real
tumor mEs (i.e., growth factor availability). By using live cell imaging it can also provide
information regarding single cell migration and cell-cell interactions during the invasion
process. Therefore it could serve as an experimental tool for investigating individual vs.
collective cancer cell invasion modes (Friedl and Wolf, 2008; Wolf et al., 2007). Similarly
to the Boyden chamber-based assay, CIA data can be paired with CWA to distinguish the
relative invasiveness from relative motility. Recently, an alternative approach called the nest
expansion assay (NEA, Fig.2d) (Kam et al., 2009) was developed as a multi-parametric
invasion assay, which enables a better morphological link to tumor cell growth and
migration in the HDC and IBCell computational models. The NEA is similar to the CIA but
it produces outward tumor invasion and is thus closer to cellular progression in the in vitro
invasion process. One advantage of this new method is quantification of the leading margin
shape variation using fractal-lacunarity measurements (Plotnick et al., 1996; Smith et al.,
1996). Even though cell invasion under ECM gel layer is MMP-dependent however, both
CIA and NEA still have the amoeboid movement limitation that all wound-healing assay-
based approaches have.

A 3D implementation of the migration and proliferation assays has the potential to be a great
invasion assay as it would be highly comparable to the true in vivo processes occurring
during invasion and be modulated by factors such as the composition and rigidity of the
ECM used. 3D spheroid cultures embedded in ECM are also a useful model system for
certain types of cancers (Haass et al., 2008; Lin and Chang, 2008; Stein et al., 2007;
Wiercinska et al., 2010). However, even with these assays more technical improvements are
required to utilize them for in silico modeling because of limitations in the uniform
application and quantification of invasiveness. The image analysis tools currently used in 2D
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assays could be developed to apply to 3D data and therefore aid in achieving a more uniform
and reproducible metrics, e.g. the fractal/lacunarity measurement.

3. Integration of in silico and in vitro modeling
Most in silico models have been developed and parameterized using preexisting data
reported in the literature. Often this data was collected from different tumors grown in
different experimental conditions, using various cell lines or different animal breeds that,
when combined, may not correspond to any single real tumor type. In addition, critical
information on the role of cell-cell interactions and microenvironmental cues on local
invasion of tumor cells may also be lost. This is in part due the fact that a complete (or even
significant) set of parameters and processes that truly represent real tumors are rarely
published by any single lab. This is partially due to the fact that standard assays have
generally been developed to quantify one specific aspect of the invasion process (i.e., either
proliferation or migration, or ECM degradation), which makes it difficult to tease apart the
multifactorial interactions that drive true invasive outcomes. It is desirable to measure a full
set of parameters that will inform mathematical models, however in some cases in may be
difficult (e.g. cell-cell interaction can be difficult to quantify). Certain computational
techniques have been developed to integrate individually measured traits in order to dissect
ranges of parameters leading to the same cellular behavior (we used this approach to
investigate phenotypical changes in breast cell mutants (Rejniak and Anderson, 2011;
Rejniak et al., 2010a; Rejniak et al., 2010b)). However, close collaboration between
experimentalists and modelers can lead to the development of novel assays influenced by in
silico approaches and to novel computational tools than can integrate them.

Since in silico models by definition lack any experimental error, are cheap, accurate and,
generally, fast they can provide a rapid means to systematically test the influence of
individual and multiple cellular features under a spectrum of environmental conditions on
the final multicellular morphologies. However, such computational results need to be
verified by laboratory experiments, and if such results are inconsistent with the experimental
data then the in silico models need to be modified to achieve consistency. This iterative loop
between experiments and theory should ultimately converge on a model that is both
validated and predictive and, in our experience, can lead to both experiments and model
developments that would never have been considered independently. Thus, there is a real
need for new experimental assays designed to meet requirements of computational models
and whilst both in silico and in vitro approaches to tumor invasion have been useful in
isolation, we believe that their true potential can be realized only upon integration. When
both experimental and computational results can be compared in a quantitative way, and
used to inform and improve both research approaches we will be directly positioned to make
new discoveries not just in cancer invasion but in cancer progression in general. We admit
this is not going to be an easy process, however, in our laboratories we have already began
this process. By developing together both the computational techniques allowing for
integration of various experimental measurements, and in vitro assays inspired by and
tailored to the requirements of in silico modeling. In the following paragraphs we shall
briefly discuss a couple of examples where we have developed such approaches either
experimental assays that were inspired by theoretical models or theoretical tools that were
applied to experimental assays.

In order to investigate the emergence of multicellular morphologies when cell sensitivity to
microenvironmental hypoxia levels and cell metabolic rates were varied (Anderson et al.,
2009; Anderson et al., 2007b) we compared 3 different in silico models. Our simulations
indicated that cancer invasion may be a consequence of competition for adaptation between
distinct cancer cell phenotypes driven by a tumor microenvironment with scarce resources.
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These dynamics appeared to be primarily driven by differential proliferation induced by low
nutrient conditions, although other factors, such as matrix protein-digesting proteases or
cell-cell interactions may also contribute to the observed morphological changes. If tumor
invasion is in fact an emergent property of cancer cell populations adapting to selective
microenvironmental pressure then this poses a difficult experimental challenge. Since
traditional invasion assays were not suitable to address this challenge, novel experimental
assays (i.e. NEA and CIA, discussed above) were developed (Kam et al., 2008; Kam et al.,
2009). They were specifically designed to recapitulate the in silico simulation by providing
high reproducibility and quantitative analysis of morphological variation as well as
accommodation for microenvironment modulation. They also allow us to monitor cell scale
variation during the invasive process. We are currently in the process of applying these
assays in a systematic study of resource-driven tumor cell competition that leads to the
emergence of an invasive subpopulation. The limited time but detailed cellular scale data of
NEA is better suited to the IBCell model, which is driven by cell-cell interactions (via cell
receptor dynamics), using cell viability, cell location, orientation and colony morphology
whereas the HDC model, which spans both larger spatial and temporal scales, is better
suited to the CIA model as it incorporates the spatial distribution of different clones over
time and overall tumor morphology.

One of the important aspects of model integration is quantitative comparison between
experimental and simulated data. Typically, the in silico model can be fine-tuned to fit the
experimental data, such as growth or death curves, by adjusting the model parameters.
However, a more challenging issue is to compare both kinds of results spatially, such as
multicellular or clonal morphologies, and distributions of certain cell phenotypes. We have
used the fractal dimension as one potentially useful measurement of surface irregularity (a
“fingering” morphology) in the NEA assay (Kam et al., 2009).

It is worth noting that many in silico models consider cancer invasion as the outcome of
both cell-cell and cell-matrix interactions, and these interactions may be cooperative and/or
competitive, more accurate quantification of such interactions needs to be developed.
Ultimately this boils down to new cell-scale measures that may need to be established, such
as fingering dimension (e.g. length and width), balance between cell proliferation and death
at the “finger tips”, or structure lacunarity. However, these cell-scale approaches will require
development of higher throughput and higher content image analysis algorithms in order to
be fully realized.

4. Conclusions and perspectives
In this review we have presented a range of in silico and in vitro modeling approaches of
cancer invasion. We focused on some of our own techniques that attempt to integrate in
silico and in vitro modeling in order to more accurately investigate cell-to-cell and cell-to-
mE interactions that lead to tumor cell invasion. Specifically, for the in silico models we
considered both the HDC and IBCell models and for the in vitro we considered NEA, CIA
and CWA assays. We discussed the importance of developing an integrated approach,
allowing models to drive experimentation and experiments to drive model development in a
more natural manner and how this often results in both approaches taking a path that would
not have been taken otherwise.

Rather than summarizing what we have already discussed, it is worth reminding ourselves
that cancer is truly a complex multiscale system where changes at the genetic scale
propagate through, proteins, pathways, cells, tissues, organs and eventually lead to cancer
that can be fatal. These multiple scales feed back on one another but the pivotal scale is the
cell scale. The cell-centric view of cancer invasion is where both of the in vitro and in silico
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models shine and really where we have the best chance of understanding some of the key
dynamics of the invasion process. However, cells are defined by a diversity of traits (such
cell metabolism, migration, death, and cell-cell adhesion, to name a few) most of which are
technically impossible to measure simultaneously in a single experiment. The natural ability
of mathematical models to integrate multiple interacting variables, and predict how these
variables change both temporary and spatially, means that we can potentially overcome
these experimental limitations. By using high throughput simulations with systematically
varied multiple parameters, in silico models can inspect the multi-dimensional parameter
space and determine parameter ranges that lead to the desired biologically-relevant results,
and those that lead to the outcomes that have not been observed neither in experiments nor
in patients’ samples. This in turn will determine how separate experimental measurements,
acquired from different in vitro experiments, can be integrated in order to reproduce the
observed experiments.

It is our perspective that in silico models will become integrated into the fabric of modern
cancer research just as in vitro and in vivo models are today, in silico models will be in the
future. The iterated dialogue between theory and experiment has already led us to a deeper
understanding of the importance of heterogeneity, morphology and interactions with the
microenvironment in tumor growth. We firmly believe this dialogue will continue to provide
ripe rewards for the cancer research enterprise and whole-heartedly encourage you to join us
in this fascinating conversation.
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Fig. 1.
Schematic illustrating different computational models of invasive cell cohorts. a) Cellular
automata model in which each cell occupies a single grid site; b) Cell-centered grid-free
model in which each cell is defined as a points (nucleus); c) Cellular Potts model in which
each cell is composed of several grid sites defining cell shape and area; d) IBCell model in
which each cell consists of a deformable elastic membrane filled with gel-like cytoplasm; e)
Continuous models in which each region represents mass (population, density) of cells of
the same type.
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Fig. 2.
The formation of microinvasions observed in vivo (center) can be investigated by both in
vitro (b,d,g) an in silico (a,c,e,f) muticellular assays that allow to research interactions
between individual cells, as well as interactions between tumor cells and their mE. Figure a)
reprinted from [Anderson & Quaranta, 2008; Fig.5]; b) from Y. Kam [unpublished]; c) from
[Quaranta et al., 2008; Fig.5]; d) from [Kam et al., 2009; Fig.4a]; e) from [Rejniak, 2007 ];
f) from [Quaranta et al., 2008; Fig.3]; g) from [Kam et al., 2009; Fig.4c]; h) from M.C.
Lloyd, Moffitt Analytic Microscopy Core [unpublished]; with permissions.
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Table 1

Examples of in vitro assays applicable for integration with in silico model

Proliferation Assays

Direct cell number counting

      Manual counting using Hemocytometer

      Flow Cytometry

Metabolic Activity Measurement

      Colorimetric assay of Tetrazolium dye (i.e. MTT, MTS, GTS)

      Luminescence assay

Nucleic acid detection

Microscopic detection (i.e. BrdU, Ki-67, PCNA)

Label-free cellular assays

Aopotosis Assays

Microscopic Assay (i.e. TUNEL)

Biochemical Assay (i.e. Caspase-3)

Flow Cytometry (i.e. Annexin V)

Motility Assays

Boyden chamber-based Assay

Wound-healing Assay (CWA)

Live cell imaging

3D Assays

Invasion Assays

Boyden chamber-based Assay

Wound-healing-based assay (CIA and NEA)

3D Assays
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