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Heavy metals have the potential to interact and induce several stress responses in the plants; thus, effects of heavy metal stress
on DNA damages and total antioxidants level in Urtica dioica leaves and stems were investigated. The samples are sampled from
areas with different metal exposition. Metal content was analyzed by Inductively Coupled Plasma-Atomic Emission Spectrometer
(ICP-AES), for total antioxidants level assessment the Ferric-Reducing Antioxidant Power (FRAP) assay was used, and genomic
DNA isolation from frozen plant samples was performed to obtain DNA fingerprints of investigated plant. It was found that heavy
metal contents in stems generally changed synchronously with those in leaves of the plant, and extraneous metals led to imbalance
of mineral nutrient elements. DNA damages were investigated by Random Amplified Polymorphic DNA (RAPD) technique, and
the results demonstrated that the samples exposed to metals yielded a large number of new fragments (total 12) in comparison
with the control sample. This study showed that DNA stability is highly affected by metal pollution which was identified by RAPD
markers. Results suggested that heavy metal stress influences antioxidant status and also induces DNA damages in U. dioica which

may help to understand the mechanisms of metals genotoxicity.

1. Introduction

Metals constitute one of the major groups of genotoxic
environmental pollutants possessing serious threat to human
as well as environmental well-being. Heavy metal stress in all
living organisms often results in the production of reactive
oxygen species (ROS), which are relatively reactive compared
to molecular oxygen and thus potentially toxic [1, 2].

Tolerance to heavy metal stress has been correlated with
efficient antioxidative defense system, as shown by many
authors [2-4]. Among different present methods used to
assess the total antioxidant capacity of plants, one of them
is the Ferric-Reducing Antioxidant Power (FRAP) assay of
Benzie and Strain [5].

Heavy metals also induce several cellular stress responses
and damage to different cellular components such as mem-
branes, proteins, and DNA. Recently, advances in molecular
biology have led to the development of a number of selective

and sensitive assays for DNA analysis in ecogenotoxicology.
DNA-based techniques, like Random Amplified Polymor-
phic DNA (RAPD), is used to evaluate the variation at the
DNA level, and differences can clearly be shown when com-
paring DNA fingerprints from individuals exposed and/or
nonexposed to genotoxic agents [6-10].

Monitoring the pollution status of the environment using
plants is one of the main topics of environmental biogeo-
chemistry [11]. Although heavy metals are naturally present
in soils, contamination comes from different sources, mostly
industry (mainly nonferrous, iron and steel, and chemical
industries), waste incineration, agriculture (use of polluted
waters for irrigation, fertilizers, and phosphates, especially,
pesticides containing heavy metals), combustion of fossil
fuels, and traffic [12].

Nettle, (Urtica dioica, Urticaceae) was chosen as the
object of this study because it is a widespread plant in
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R. Macedonia, edible, used in medicinal purposes, and also
frequently used as a model plant in different studies [13-15].
The objective of the present study was to investigate; thus,
exposure to different metals can induce direct DNA damage
and significant changes in metal content in the plant and also
endogenous total antioxidants level.

2. Materials and Methods

2.1. Sampling Area. Plant samples from the industrialized
area were taken from 10-100 m around the lead and zinc
smelting plant “MHK Zletovo” in Veles area, while for uncon-
taminated controls, samples were taken from Pla¢kovica
Mountain, about 60km from the city of Veles (Figure1).
Leaves and stems from plants were analyzed. The plants were
identified and specimens are deposited at the Department
of Pharmacognosy, Faculty of Pharmacy, Skopje, Republic
of Macedonia. Element analysis, FRAP analysis, and DNA
extraction were performed.

2.2. Sample Preparation for Element Analysis. All plant sam-
ples, not rinsed, were air dried, milled in a nonmetal micro-
hammer, and stored in clean paper bags. 0.5 g was weighed
and placed into PTFE vessels with 5mL HNO; (69% Merck,
Tracepur) and 2 mL H,0, (30%, m/V; Merck); mixture was
digested by microwave (MARS CEM XP 1500) with two
steps procedure at 180°C. Digests were filtered on filter paper
(Munktell), quantitatively transferred in 25mL calibrated
flasks, diluted with demineralized water, and analyzed by
inductively coupled plasma-atomic emission spectrometer
(ICP-AES), Varian 715-ES, for selected metals. Standards of
selected metals were set by dilution of stock standards which
were prepared using analytical grade salts of metals (Merck
Multielement standard 1000 mg/L). Samples were analyzed in
triplicate. All results were calculated on a dry weight basis
(mgkg ™! dw).

2.3. FRAP Assay. The total antioxidant power of a freshly
prepared, cooled, and filtered infusion (5g of dry leaves or
stems/100 mL of boiling, distilled water) of each sample was
measured using the FRAP assay. In the FRAP assay, reduct-
ants (antioxidants) in the sample reduce Fe’*/tripyridyltri-
azine complex, present in stoichiometric excess, to the blue
colored ferrous form, with an increase in absorbance at
595nm. Samples were analyzed using microplate reader
(ChemWell) at 600 nm. The antioxidant status is expressed as
pmol FeSO, L', All values are means of triplicate analyses +
SD.

2.4. Genomic DNA Isolation. Frozen plant samples were used
for DNA isolation. 0.5 to 0.7 cm disks of leaf tissue were catted
with standard one-hole paper punch. Samples were kept on
ice, while the procedure was done. DNA extractions were
performed using REDExtract-N-Amp Plant PCR Kit (Sigma-
Aldrich) following the instructions of the manufacturer. Plant
disk was placed into a 1.5mL microcentrifuge tube with
100 uL extraction solution and incubated for 10 minutes at
95°C. 100 uL of dilution solution is added and vortexes.
Extract is stored at 2-8°C until use.
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F1GURE 1: City of Veles and Plackovica Mountain as sampling areas.

2.5. RAPD Amplification Methods. PCR reactions were per-
formed using REDExtract-N-Amp Plant PCR Kit (Sigma-
Aldrich). PCR reactions were performed in reaction mix-
tures of 20 uL containing 10 ng of genomic DNA, 0.4 uM
primer (Sigma-Aldrich), and 10 uL REDExtract-N-Amp PCR
reaction mix. The REDExtract-N-Amp PCR reaction mix is
a ready mix containing buffer, salts, dNTPs, and REDTaq
DNA polymerase. Sequences (5 — 3') from primer 1 to 7
(with 60-70% GC content) used are GGTGCGGGAA (P1);
GTTTCGCTCC (P2); GTAGACCCGT (P3); AAGAGCC-
CGT (P4); AACGCGCAAC (P5); CCCGTCAGCA (P6);
GGCACTGAGG (P7), respectively. Amplifications were per-
formed in a DNA thermocycler (Mastercycler personal,
Eppendorf) programmed for 5min at 95°C (initial dena-
turing step), 45 consecutive cycles each consisting of 1 min
at 95°C (denaturing), 1min at 36°C (annealing), 2 min at
72°C (extension), and followed by the last cycle for 5min
at 72°C (final extension step). Negative controls with water,
without any template DNA, were always included to monitor
for contamination. After amplification, electrophoresis of
RAPD reaction products was performed in 2% (w/v) agarose
(Agarose 1000; Invitrogen) using a TBE (Tris/borate/EDTA)
buffer system (1 x TBE = 90 mM tris base, 90 mM boric acid,
and 2mM EDTA). DNA bands were stained with ethidium
bromide for 10 minutes, visualized, and photographed under
UV light (Biometra). All amplifications were repeated twice
in order to confirm the reproducible amplification of scored
fragments. Only reproducible and clear amplification bands
were scored for the construction of the data matrix.

3. Results and Discussion

Veles area (around lead and smelting plant) was chosen as
an investigated area because it is an important source of
lead and zinc pollution in R. Macedonia, with estimated
lead emission of 83 tons per year according to the National
Environmental Action Plan (NEAP) [16], and there were
several investigations in the region of Veles for heavy metals
contents [17-20]. As shown in Table 1, varying amounts of
metal contents were noted not only for the heavy metals,
but also for essential metals. Levels of metals uptake and
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TaBLE 1: Elemental analysis of U. dioica sampled from two different areas (in mgkg™" dry mass).
Plant organ investigated Metals
Ca Cd Cu Mn Na Ni Pb Zn
Location (unpolluted area) Platkovica Mountain
U. dioica leaves Plackovica 23281 + 4 <LD" 6.73+0.06 4295+13 29.66+0.08 52.33+0.3 <LD 373+£01 1424+0.1

U. dioica leaves Veles

37725+5 734+0.04 11.3+0.03 6412.4+25 74.71+0.14

1381+£2.7 2.89+0.04 102.2+0.4 465.3 0.6

Location (polluted area) Veles

U. dioica stems Plackovica 9245 + 5 <LD"

U. dioica stems Veles

716 £0.06 3366 +1.4
17816 £16 6.67 £ 0.03 8.25+0.03 5036 +£1.2 24.63+0.05 86.95+ 0.8 <LD

15.16 £ 0.08 46.43+0.5 <LD <LD 22.27+£0.3

24.79+0.2 2295+13

*LD is limit of detection (0.0l mgkg™).

TABLE 2: Total antioxidants level in U. dioica sampled from two
different areas obtained with FRAP assay (in gmol FeSO, L™).

Plant organ investigated FRAP values
Location (unpolluted area) Plackovica

Mountain
U. dioica leaves Plackovica 48455+ 73
U. dioica leaves Veles 1849.6 + 2.5

Location (polluted area) Veles

U. dioica stems Plackovica 961 + 1.9
U. dioica stems Veles 640 + 1.1

accumulation by plants increased with increasing metal
concentration in environment.

Results for total antioxidants level in samples sampled
from two different areas obtain with FRAP assay are pre-
sented in Table 2.

RAPD profile generated by samples exposed to heavy
metals was different from those obtained using control DNA.
The RAPD profiles are presented in Figures 2 and 3. A sum-
mary of results obtained with the primer set used with control
and toxic metals exposed DNA samples is shown in Table 3.
Polymorphism (P, in %) was calculated as the following:

P =

[a+b

] - 100, @
c

where a is the number of new bands, detected in samples (dif-
ferent from the control), b is the number of disappeared bands
and c is the total number of scored bands. Polymorphism in
RAPD profiles included disappearance of a normal band and
appearance of a new band in comparison to the control.
Content 0of 102.2 mgkg ™" of Pb was observed in U. dioica
leaves in samples taken from the area around the lead and
zinc smelting plant. These results are corresponding to the
fact that most uptake of Pb has been demonstrated to be
through the leaves and fact that various authors [21, 22]
refer to U. dioica as a plant possess a high natural potential
for hyperaccumulation and hypertolerance of lead. U. dioica
stems from the same location showed also high Pb content
(24.79 mgkg™"). In contrast, in control plants sampled from
Platkovica Mountain, a content of 3.73 mgkg™' was mea-
sured in plant leaves, which is in the normal range for Pb in
plants, 0.1-10 mgkg™" dw, according to Kabata-Pendias and

Pendias [23], while generally, toxic concentrations of Pb are
defined as 30-300 mgkg ™" [24].

Also extremely high values are determined for Zn content
in U. dioica leaves from the Veles region. Zinc is an essential
element in all organisms and is not considered to be highly
phytotoxic, where toxicity limit for Zn (300-400 mgkg™")
depends on the plant species as well as on the growth stage
[23]. According to the above mentioned criteria, investigated
plants in this area are exposed to highly phytotoxic doses of
Pb and Zn.

This is valid also for Cd, which is very toxic metal and as
far as is known, Cd is not a constituent of any metabolically
important compound. Obtained values for Cd content (7.34
and 6.67 mgkg™") in U. dioica leaves and stems, respectively,
are also in the phytotoxic range. The normal limits of Cd con-
tent in plants are between 0.2-0.8 mg kg™, and toxic concen-
trations of Cd are in the range of 5-30 mgkg™"' [23, 24].

Although Cu is an essential micronutrient for plant
growth, it can be more toxic than nonessential Pb to biota
when extraneous Cu is present in soil environments. Plant
contents for Cu above 25mgkg™" are considered toxic to
plants [25]. According to this criterion, investigated regions
are not highly polluted by copper since its content in all plant
species did not exceed the upper limit.

Nickel as a heavy metal belongs to a group of essential
microelements to plants, animals, and humans, and its
amounts exceeding optimum values show a toxic effect. Ni
contents in plants range from 0.5 to 5 mgkg ™" dry weight and
the values exceeding these limits are reported as toxic [25];
so in respect of the fact that Ni-uptake relies upon plant spe-
cies and that some of plants show hyperaccumulation effects,
investigated plant do not belongs in this group.

The results above indicated that the investigated plant
contains large amounts of essential metals, and again plants
sampled from Veles area are rich in this metal compared with
control samples. The abundance of Mg, Ca, and Na in the
result of this analysis, was in agreement with previous find-
ings that these three elements represent the most abundant
metal constituents in plants [26, 27].

The ability of plants to increase antioxidative protection to
combat negative consequences of heavy metal stress appears
to be limited since many studies showed that exposure to
elevated concentrations of redox reactive metals resulted in
decreased and not in increased activities of antioxidative
enzymes. This fact is also valid for U. dioica, as shown in
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TaBLE 3: Changes in the RAPD profiles (the number of bands and molecular sizes—bp) related to metals exposition compared to control;
“+” appearance of DNA bands and/or “~” disappearance of DNA bands for all primers in the U. dioica plants.

Plant Primers
Primer1 Primer 2 Primer 3 Primer 4 Primer 5 Primer 6 Primer 7
U. dioica, Plackovica 0 2500 0 0 0 0 0
U. dioica, Veles (+) 3000 +)o0 (+) 2500; 2000; 1250 (+) 5000; 2500  (+) 5000; 4000; 3000  (+) 2000  (+) 3000; 2500
(=)0 () 2500 (=)0 (=)0 (=)0 (=)0 (=)0

1 2 M 1 2 M 1 2 M
1) (2) (3)
FIGURE 2: RAPD profiles of U. dioica sampled from two different areas obtained with different primers ((1) primer 1, (2) primer 2, and (3)
primer 3): (1) U. dioica Plackovica and (2) U. dioica Veles; M is DNA marker.

1 2 M 12 M 1 2 M
€8] @ ©)

@

FIGURE 3: RAPD profiles of U. dioica sampled from two different areas obtained with different primers ((1) primer 4, (2) primer 5, (3) primer
6, and (4) primer 7): (1) U. dioica Platkovica and (2) U. dioica Veles; M is DNA marker.
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studies of many authors [13, 28, 29]. As FRAP assay mea-
sures only nonenzymatic (reductants) antioxidants in the
sample, there is an interesting relationship among metal con-
tent and obtained FRAP value, valid for all investigated met-
als which are redox metals. Results obtained from FRAP assay
in this study show that heavy metals induces oxidative stress
in experimental model system which is evident from anti-
oxidant levels (in gmol FeSO, L"), as in all cases levels for
total antioxidant activity in samples exposed to metals are
lower than total antioxidant level in control sample. Anti-
oxidant systems and their significance for the acclimation
of plants to air pollution and climatic stresses have been
reviewed frequently with emphasis on the responses of leaves
[30-32]. Exposure to heavy metals also provoked responses
of antioxidative systems, but the direction of response is
dependent on the plant species, tissue analyzed, the metal
used for treatment, and also intensity of the metal stress [2,
33]. However, some common reaction patterns can be found,
for example, decreasing activities of antioxidative enzymes
after metal exposition. In most cases, exposure to heavy
metals, Cd and some others as Cu, Ni, and Zn, initially
resulted in a severe depletion of glutathione (GSH), which is
only one example. This is a common response to Cd caused by
an increased consumption of GSH for phytochelatin produc-
tion and their role in sequestering heavy metals which is
a mechanism that contributes to the protection from metal
toxicity in different plants and in some fungi as well [34].
In average, the samples exposed to metals in our study show
for 61.9% lower antioxidant activity from the control sample
(leaves) and 33.5% lower antioxidants level for the stems
(Table 2). Evident are higher values for total antioxidants in
plant leaves, which is in accordance with previously pub-
lished results [35] where leaves from the plants are noted as
plant organs richest with the antioxidants that prevent DNA
damages induced by heavy metal stress.

RAPD technique, as PCR-based technique, has been suc-
cessfully used to detect DNA damage and mutations in plants
induced by various types of toxic chemicals [8, 9, 36]. Each
fragment in RAPD is derived from a region of the genome
that contains two short segments in inverted orientation
on opposite strands that are complementary to the primer
and sufficiently close together for the amplification process
[37]. Polymorphism observed in RAPD profiles included
disappearance and/or appearance of bands in comparison
with control samples that were evaluated (Figures 2 and 3).

The RAPD profiles obtained exhibited bands between
1250 and 5000 bp in length. In a total of 14 bands scored,
13 were polymorphic (92.86%); we scored total 1 band with
primer 1; 1 with primer 2; 3 with primer 3; 2 with primer 4; 3
with primer 5; 1 with primer 6; 2 with primer 7; by means of
statistics there, is an average of 1.86 bands per primer (Table
3). Amplification with primer 1 and primer 6, yielded only one
fragment with each of the primers, and we find this primer
sequence not suitable for fingerprinting Urtica’s genome.

The samples exposed to metals yielded a large number
of new fragments (total 12) compared with only one disap-
peared fragment in the obtained RAPD profile. New RAPD
amplification products may be related to mutations (new
annealing events), large deletions (bringing to pre-existing

annealing site closer), and/or homologous recombination
(two sequences that match the sequences of primer) [7, 38].
The high number of new appeared bands that was observed
in samples exposed to metals suggests that long-term expo-
sition to metals in high doses probably cause mutations
on genomic level in U. dioica plants. These unique bands
clearly differentiated the samples exposed to heavy metal
stress and would act as a marker for assessment of environ-
mental exposition on metals.

Accordingly to the results, it may be noted that the nutri-
ent imbalance leads to DNA damages, mutations on genomic
level in case of U. dioica, and also effects plant antioxidative
defense system which contributed to the toxic effects in plants
exposed to the long-term high metal concentrations.

4. Conclusions

Heavy metal stress can decrease total antioxidants level and
induce DNA damage in U. dioica. The changes occurring in
plants RAPD profiles following exposition to heavy metals
can be successfully used as a sensitive tool for detecting metal-
induced DNA damage and showed potential as a reliable
assay for genotoxicity. The obtained results in this study sug-
gested that the mineral nutrient imbalance, DNA damages,
and decreased antioxidants levels were involved in the metal
toxicity in U. dioica which may help to understand the mech-
anisms of metals genotoxicity in plants.
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