Table 4.
Performance of the classifiers on real gene expression data sets for the two class classification tasks
| Data set | Method | λ∗a | # genes | PA | PA1 | PA2 | g-means | AUC |
|---|---|---|---|---|---|---|---|---|
| Ivshina |
PAM |
0 |
22283 |
0.84 |
0.79 |
0.85 |
0.82 |
0.85 |
| (ER) |
GM-PAM |
4.83 |
51 |
0.82 |
0.91 |
0.81 |
0.86 |
0.90 |
| |
ALP |
0 |
22283 |
0.84 |
0.82 |
0.84 |
0.83 |
0.86 |
| |
GM-ALP |
58.24 |
26 |
0.85 |
0.91 |
0.84 |
0.87 |
0.88 |
| |
AHP |
185.56 |
20 |
0.89 |
0.88 |
0.89 |
0.88 |
0.90 |
| |
GM-AHP |
69.58 |
115 |
0.89 |
0.88 |
0.89 |
0.89 |
0.91 |
| Wang |
PAM |
3.71 |
14 |
0.61 |
0.60 |
0.62 |
0.61 |
0.62 |
| |
GM-PAM |
3.71 |
14 |
0.60 |
0.60 |
0.62 |
0.61 |
0.63 |
| |
ALP |
8.26 |
654 |
0.56 |
0.57 |
0.55 |
0.56 |
0.63 |
| |
GM-ALP |
8.26 |
654 |
0.56 |
0.56 |
0.56 |
0.56 |
0.63 |
| |
AHP |
21.95 |
135 |
0.56 |
0.56 |
0.56 |
0.56 |
0.65 |
| |
GM-AHP |
21.95 |
135 |
0.56 |
0.56 |
0.55 |
0.56 |
0.63 |
| Korkola |
PAM |
0.19 |
7073 |
0.65 |
0.71 |
0.57 |
0.64 |
0.64 |
| |
GM-PAM |
0.19 |
7073 |
0.65 |
0.71 |
0.57 |
0.64 |
0.64 |
| |
ALP |
4.87 |
155 |
0.64 |
0.65 |
0.62 |
0.63 |
0.64 |
| |
GM-ALP |
4.87 |
155 |
0.69 |
0.74 |
0.62 |
0.67 |
0.69 |
| |
AHP |
0.76 |
1308 |
0.58 |
0.68 |
0.43 |
0.54 |
0.58 |
| GM-AHP | 0.76 | 1308 | 0.62 | 0.71 | 0.48 | 0.58 | 0.60 |
The table reports the same information as Table 1; # genes is the number of active genes. Optimal thresholds were estimated with 5-fold CV and the accuracy measures with LOOCV; see text for details.
aFor AHP and GM-AHP only λθ was optimized while λγ was set to zero.