Skip to main content
. 2013 Feb 23;14:64. doi: 10.1186/1471-2105-14-64

Table 4.

Performance of the classifiers on real gene expression data sets for the two class classification tasks

Data set Method λa # genes PA PA1 PA2 g-means AUC
Ivshina
PAM
0
22283
0.84
0.79
0.85
0.82
0.85
(ER)
GM-PAM
4.83
51
0.82
0.91
0.81
0.86
0.90
 
ALP
0
22283
0.84
0.82
0.84
0.83
0.86
 
GM-ALP
58.24
26
0.85
0.91
0.84
0.87
0.88
 
AHP
185.56
20
0.89
0.88
0.89
0.88
0.90
 
GM-AHP
69.58
115
0.89
0.88
0.89
0.89
0.91
Wang
PAM
3.71
14
0.61
0.60
0.62
0.61
0.62
 
GM-PAM
3.71
14
0.60
0.60
0.62
0.61
0.63
 
ALP
8.26
654
0.56
0.57
0.55
0.56
0.63
 
GM-ALP
8.26
654
0.56
0.56
0.56
0.56
0.63
 
AHP
21.95
135
0.56
0.56
0.56
0.56
0.65
 
GM-AHP
21.95
135
0.56
0.56
0.55
0.56
0.63
Korkola
PAM
0.19
7073
0.65
0.71
0.57
0.64
0.64
 
GM-PAM
0.19
7073
0.65
0.71
0.57
0.64
0.64
 
ALP
4.87
155
0.64
0.65
0.62
0.63
0.64
 
GM-ALP
4.87
155
0.69
0.74
0.62
0.67
0.69
 
AHP
0.76
1308
0.58
0.68
0.43
0.54
0.58
  GM-AHP 0.76 1308 0.62 0.71 0.48 0.58 0.60

The table reports the same information as Table 1; # genes is the number of active genes. Optimal thresholds were estimated with 5-fold CV and the accuracy measures with LOOCV; see text for details.

aFor AHP and GM-AHP only λθ was optimized while λγ was set to zero.