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Background. The Cancer Genome Atlas (TCGA)
project is a large-scale effort with the goal of identifying
novel molecular aberrations in glioblastoma (GBM).
Methods. Here, we describe an in-depth analysis of gene
expression data and copy number aberration (CNA) data
to classify GBMs into prognostic groups to determine
correlates of subtypes that may be biologically significant.
Results. To identify predictive survival models, we
searched TCGA in 173 patients and identified 42 probe
sets (P¼ .0005) that could be used to divide the tumor
samples into 3 groups and showed a significantly (P¼
.0006) improved overall survival. Kaplan-Meier plots
showed that the median survival of group 3 was markedly
longer (127 weeks) than that of groups 1 and 2 (47 and
52 weeks, respectively). We then validated the 42 probe
sets to stratify the patients according to survival in other
public GBM gene expression datasets (eg, GSE4290
dataset). An overall analysis of the gene expression and
copy number aberration using a multivariate Cox regres-
sion model showed that the 42 probe sets had a significant
(P , .018) prognostic value independent of other variables.
Conclusions. By integrating multidimensional genomic
data from TCGA, we identified a specific survival model
in a new prognostic group of GBM and suggest that molec-
ular stratification of patients with GBM into homogeneous
subgroups may provide opportunities for the development
of new treatment modalities.
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G
lioblastomas (GBMs) are aggressive brain
tumors for which there are few prognostic
markers and predictors of therapeutic re-

sponse.1–3 Although clinical and pathological subtype
study of GBM has been increasing in recent years,4–6

identification of the prognostication and targeting of
treatment has been increasing only recently. Gene ex-
pression studies have identified several distinct GBM
subtypes based on an intrinsic gene list that differentiate
GBMs into 4 separate groups: proneural, neural,
classical and mesenchymal.1,7 The proneural class was
described as the concomitant overexpressing the p53
and IDH1 mutation. This subtype was significantly
younger. The neural subtype did not show significantly
higher or lower rates of mutations. This normal-like sub-
group was characterized by the expression of several
gene types of the brain’s noncancerous nerve cells, or
neurons. The classical subtype expresses abnormally
high levels of epidermal growth factor receptor (EGFR)
and EGFR vIII mutation, whereas TP53 is not mutated
in this classical GBM tumors. The mesenchymal
subtype was reflected by the most frequent mutations
in the NF1 tumor suppressor gene and an epithelial-to-
mesenchymal transition (EMT). However, there was
no association of GBM subtype with a trend toward
longer survival among patients with a signature.
Although several etiologic factors have been established
as important events for each subtype of GBM, these
subtype analyses show no favorable patient outcomes
and overall survivals were not even favorable for
neural and proneural subtypes.7 Because subtypes and
clinical correlations have been commonly used,
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questions remain as to whether these groups are clinical-
ly relevant. Thus, studies have been needed to associate
prognostic and etiologic importance with clinical fea-
tures, such as disease subtype, and clinical outcome.

In this study, we systematically evaluated the biolog-
ically interesting features of these molecular subtypes
and their relationship with GBM survivorship from
The Cancer Genome Atlas (TCGA)4 and validated our
results using other independent glioma datasets (eg,
GSE4290 dataset8). Finally, we related our results to dis-
tinct patterns of EMT activation in different subtypes
and characterized their prognostic effects. Therefore,
the expression of the genes in this study clearly revealed
the evidence that elucidates their functional significance
between the molecular environments. Our findings also
have important implications for glioma biology and
heterogeneity and possible therapeutic intervention for
patients with GBM.

Materials and Method

Sample Description

We used public TCGA (http://cancergenome.nih.gov/)
data repositories as our primary source of samples. To
analyze the data generated by TCGA, we directly accessed
the input data (gene expression of the Genechip Human
Genome HT-HG-U133A of TCGA and CNA of Agilent
Human Genome CGH Microarray 244A). In total, 254
tumors having clinical data (date of download: September
2009) were profiled for class discovery and survival
analysis. Survival was defined as the time interval from
surgery until the date of death. For validation, we used
REMBRANDT (http://caintegrator-info.nci.nih.gov/
rembrandt) (HG-U133plus 2.0 of GSE4290).

Statistics for Classification

The CEL files were reprocessed using the R statistical
computing platform and packages from Biconductor
bioinformatics software project,9 and a robust multiar-
ray average intensity on a log-squared scale was generat-
ed for each probe set. We identified genes that were
differentially expressed between the 2 classes with use
of a random-variance t test.10 This method is incorporat-
ed into BRB-ArrayTools, version 3.1.11 Genes were con-
sidered to have statistically significant differences in
expression if P , .001. We performed hierarchical
clustering based on the most variably expressed genes
using the Euclidean distance as the similarity metric
and the complete linkage method as the between-cluster
distance metric. To build an aggregate CGH profile
based on the frequency of a particular copy number
aberration segment in the population of samples, we
directly accessed the dataset (CNA of Agilent Human
Genome CGH Microarray 244A) from the TCGA data-
base and imported the normalized data into the Nexus
4.0 copy number analysis program (BioDiscovery Inc.,
El Segundo, CA), and CNA regions were called using
BioDiscovery’s rank segmentation algorithm.12

IPA and Multivariate Analysis

We analyzed the gene ontology, canonical pathways,
and functional networks with use of tools from the
Ingenuity Pathways Analysis tools (Ingenuity Systems,
Mountain View, CA). In addition, we used Fisher’s
exact test to determine the significance of the frequen-
cy differences. Kaplan-Meier survival analysis was
performed to estimate the survival distributions and
the log-rank test to assess the statistical significance
of the differences between the stratified survival
groups using GraphPad Prism (version 5, GraphPad
Software Inc., San Diego, CA).13 Logistic regression
using SPSS software, version 11.0 (SPSS, Chicago,
IL), was applied for multivariate analysis of significant
variables for predicting overall survival patterns.14 The
differences between covariates were tested using
log-rank analyses. The joint effect of different covari-
ates was assessed using multivariate Cox’s regression.
Differences were considered to be statistically signifi-
cant when P , .05.

Results

A Model Building Phase Using TCGA Dataset

Of the 173 patients with GBM in the TCGA dataset, 142
were considered to be short-term survivors (,2 years)
and 31 were considered to be long-term survivors (≥2
years). We first sought to find probe sets that are differ-
entially expressed in 2 groups. Genes with an expression
ratio that differed by a factor of at least 1.5-fold were se-
lected (8015 gene features). We generated 42 probe sets
by applying the 2-sample t test (P ¼ .0005) (Table 1).
Hierarchical clustering analysis of the expression data
from the 173 patients samples revealed 3 distinctive
types of gene expression patterns (Fig. 1A). Of note,
17 GBMs could tightly group on the basis of these ex-
pression patterns, whereas the remaining GBMs had
wide variations, which led us to classify them in a
second group. The 42 probe sets indicated a significantly
improved overall survival (P ¼ .0006 by log-rank test).
Kaplan-Meier plots and log-rank survival analyses
(Fig. 1B) showed that the median overall survival time
of group 3 was markedly longer (127 weeks) than that
of groups 1 and 2 (47 and 52 weeks, respectively; ie,
the molecular differences between groups 1 and 2 and
group 3 were associated with differences in clinical out-
comes) (Supplementary Table S1).

Validation Models Using GSE4290 and the TCGA
Second Batch Dataset

To establish the reproducibility of the 42 probe sets, we
assessed the generality of the 42 probe sets’ expression
signatures with other independent public GBM gene
expression datasets (eg, GSE4290 dataset15). In the
GSE4290 dataset (67 short-term survivors and 19 long-
term survivors) (Supplementary Table S2), the
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expression levels of the 42 probe sets were highly consis-
tent with the TCGA dataset (Fig. 1C and D). The diffe-
rence between the groups was significant, with group 3
having the longest survival times (P ¼ .007, log-rank
test). Of interest, in the GSE4290 datasets for astrocyto-
mas (II and III) and oligodendrogliomas (II and III), no

correlations were identified with the 42 probe sets
(Supplementary Fig. S1 and Table S3). It is posssible
that these tumors do not have the more aggressive
group 1 or group 2 classifications and all could be
classified as group 3. Thus, we clustered the astrocyto-
mas and oligodendrogliomas with the GBMs to see

Table 1. Forty-two probe sets and their frequency difference between 2 survivor populations in TCGA dataset

Gene Symbol Description Frequency difference by CAN
(Group 3 – Group 1 and 2)

Gain (%) Loss (%)

DEPDC6 DEP domain containing 6 34.87 20.95

RPRM reprimo, TP53 dependent G2 arrest mediator candidate 21.97 0

NET1 neuroepithelial cell transforming gene 1 18.09 272.04

NET1 neuroepithelial cell transforming gene 1 – –

WAC WW domain containing adaptor with coiled-coil 24.34 279.61

March8 membrane-associated ring finger (C3HC4) 8 6.25 282.89

AI054381 Transcribed locus – –

REPS2 RALBP1 associated Eps domain containing 2 21.32 11.84

ZNF609 zinc finger protein 609 4.28 27.89

KLF13 Kruppel-like factor 13 0 19.41

IL8 interleukin 8 4.28 6.25

ADM adrenomedullin 20.66 44.74

PDPN podoplanin 0.33 4.61

IGFBP2 insulin-like growth factor binding protein 2, 36 kDa 22.63 21.32

MDK midkine (neurite growth-promoting factor 2) 5.59 12.17

TIMP1 TIMP metallopeptidase inhibitor 1 0 5.59

EFEMP2 EGF-containing fibulin-like extracellular matrix protein 2 24.93 1.97

EFEMP2 EGF-containing fibulin-like extracellular matrix protein 2 – –

ACOX2 acyl-Coenzyme A oxidase 2, branched chain 23.29 9.87

TAGLN2 transgelin 2 2.63 0

SLC43A3 solute carrier family 43, member 3 21.32 5.26

LGALS8 lectin, galactoside-binding, soluble, 8 (galectin 8) 21.64 21.97

LGALS8 lectin, galactoside-binding, soluble, 8 (galectin 8) – –

DYNLT3 dynein, light chain, Tctex-type 3 20.66 11.84

KIAA0323 KIAA0323 20.66 216.78

TFRC transferrin receptor (p90, CD71) 25.92 0.99

KIAA0495 KIAA0495 23.95 12.5

FBXO17 F-box protein 17 228.29 14.8

TMEM22 transmembrane protein 22 0.99 –3.95

LOC390940 similar to R28379_1 – –

MT1E metallothionein 1E 19.74 –9.21

DCTD dCMP deaminase 3.62 14.14

FLJ11286 hypothetical protein FLJ11286 – –

C13orf18 chromosome 13 open reading frame 18 20.66 15.79

C13orf18 chromosome 13 open reading frame 18 – –

HOMER1 homer homolog 1 (Drosophila) 24.61 3.62

FAM3C family with sequence similarity 3, member C 261.51 20.66

CASP3 caspase 3, apoptosis-related cysteine peptidase 3.62 13.49

NSUN5 NOL1/NOP2/Sun domain family, member 5 270.22 20.66

NSUN5 NOL1/NOP2/Sun domain family, member 5 – –

PDLIM3 PDZ and LIM domain 3 3.62 13.49

MT1M metallothionein 1M 19.74 29.21
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whether the lower grade gliomas cluster with group 3
(Supplementary Fig. S2). The comparisons showed that
they are closer to group 3 than the other groups, suggest-
ing that the 42 probe set signature was specific for lower
grade gliomas and group 3 GBMs.

Since our initial analysis (173 samples), TCGA data
set has expanded; thus, we validated our model by ana-
lyzing a second batch of 100 patients. Twenty-three pa-
tients were classified as long-term survivors (≥2 years),
and the remaining 77 as short-term survivors (,2
years). It showed a similar clustering pattern, and the dif-
ference between the groups was significant (P ¼ .036,
log-rank test), confirming that the 42 probe sets could
be used to segregate 3 distinctive types of gene expres-
sion patterns with use of a supervised hierarchical clus-
tering (Fig. 2A and B, and Supplementary Table S4).

To compare our signatures with data on previously
described GBM subtypes, we assessed the expression
levels of the 42 probe sets with 2 GBM datasets.1,7

It appears that the expression signatures highly re-
semble proneural subtype observed in Phillips et al

(Supplementary Fig. S3). However, there are 20 grade
III gliomas of 30 patient samples in proneural
subtype,1 not all of which are grade IV glioblastoma,
showing that the 42 probe sets may have association of
GBM subtype with a trend toward longer survival
among patients. In this comparison, IL-8 was missed
in the 42 probesets. On the other hand, the analysis of
the TCGA data into biologically based subtypes was
not prognostic.7 Although HOMER1 showed opposite
expression into proneural, the expression signatures of
the 42 probe sets are similar to proneural subtype ob-
served in Verhaak et al (Supplementary Fig. S4A).
Most (168 of 173) samples in the set are also part of
the article by Verhaak et al. We used the data from
our set to make the table for the 168 samples
(Supplementary Fig. S4B). Group 3 is enriched for pro-
neural, although not all of the proneural, but groups 1
and 2 are a mixture of the other Verhaak subtypes,
suggesting that the group classification to identify survival-
based subtypes could be different but similar with charac-
teristics from the previously published subtypes.

Fig. 1. Hierarchical clustering analysis. (A) Thirty-one patients with GBM in the TCGA dataset were classified as long-term survivors (≥2

years), and the remaining 142 were classified as short-term survivors (,2 years). Forty-two probe sets were generated using a 2-sample

t-test (P ¼ .0005) between the 2 survivor populations. The 42 probe sets are presented using hierarchical clustering in matrix format,

where rows represent individual genes and columns represent each tissue. Each cell in the matrix represents the expression level of a

gene in an individual tissue. Red and green cells reflect high and low expression levels, respectively. Each blue bar represents a ≥2-year

survival among the patients with GBM. (B) Kaplan-Meier plot of overall survival among patients with GBM who were grouped on the

basis of expression of the 42 probe sets. The difference between the groups was significant, with group 3 having the longest survival

times (P ¼ .0006, log-rank test). (C) Hierarchical clustering analysis was applied to gene expression data from the GSE4290 dataset

based on the 42 probe sets. Nineteen patients with GBM were classified as long-term survivors (≥2 years), and the remaining 67 were

classified as short-term survivors (,2 years). (D) Kaplan-Meier plot of overall survival among patients with GBM in the GSE4290 dataset

who were grouped together on the basis of expression of the 42 probe sets.
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In addition, to gain an integrated view of the biolog-
ical insights into the differential expression of this
probe set, we categorized the 42 survival-related
probe sets according to the gene ontology (GO) data-
base and analyzed the probe sets using the Ingenuity
Pathways knowledge database (Fig. 2C and D). An
initial analysis of the GO database revealed significant
down-regulation of the genes involved in apoptosis
(20.6%; P , .0000034), cellular movement (10.3%;
P , .0005), and inflammatory disorder (24.1%;
P , .011). In network analysis based on predeter-
mined knowledge about individually modeled relation-
ships between genes, we identified 2 highly significant,
overlapping networks in the dataset. The top-scoring
network built around NFkB, P38, ERK, JNK, and
IL-17 displayed high-level functions in cell death and
inflammatory response and included several interact-
ing genes, such as IL-8 and TIMP1. This analysis
also identified a highly interconnected network of
aberrations with p53 pathway and suggested that
these pathways might have important roles in long-
term survival in group 3. In biologic pathway analysis,
we found that the IL-17 canonical pathway was
significantly associated with the molecular pathway
(P , .0084). This analysis identified a highly

interconnected network of aberrations, including
NFkB, p38, ERK, JNK, IL-13, and IL-17, with the
down-regulated probes in group 3,16 and an
interconnection between TP53 and the up-regulated
probes in group 3, which suggests that these intercon-
nections might have important roles in long-term sur-
vival among patients in group 3.

We next used 5 statistical methods to determine
whether gene expression patterns could predict the
signature-based survival patterns in the 3 groups of
patients with GBM: linear discriminator analysis,
support vector machines, nearest centroid, nearest
neighbor, and compound covariate predictor.17 Again,
we identified the 42 probes using the 5 different algo-
rithms. These genes were combined to form a series of
classifiers that estimate the probability that a specific
tumor belongs to a subgroup. To validate the statistical
methods used in this study, the number of genes in the
classifiers was optimized to minimize classification
errors during the leave-one-out cross-validation of the
tumors.11 Hierarchical clustering analyses with all
5 models showed consistent prediction patterns. These
results showed that the GBM groups with the same sur-
vival rate could be identified by a 42 probe set expression
signature (Supplementary Fig. S5).

Fig. 2. Hierarchical clustering analysis of the second batch of TCGA dataset. (A) The data are presented in matrix format, in which rows

represent individual genes and columns represent each tissue. (B) Kaplan-Meier plot of overall survival among patients with GBM in the

second batch of TCGA data grouped on the basis of gene expression profiling. (C) Deposition of the 42 probe sets into the Ingenuity

knowledge database. Eighteen genes (green color) down-regulated in group 3 were mapped to highly significant networks of the NFkB,

P38, ERK, JNK, and IL-17 signaling pathways. (D) Seven genes (red color) up-regulated in group 3 were mapped to p53 signaling

pathways. Genes not included in the 42 probe sets are shown in white.
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Genomic Aberrations Using CNA Analysis

We performed a parallel CNA analysis of the Agilent
244K oligonucleotide array data on 170 matched
GBM tumors (140 from short-term survivors and 30
from long-term survivors) (Supplementary Table S5).
The CNA profiles showed well-correlated frequencies
of several known chromosomal alterations, such as
Chr7 gain and Chr10 loss (Fig. 3A and B).6,18 This anal-
ysis revealed 2 distinctive CNA profiles, one for groups 1
and 2 and a markedly different one for group 3 (Fig. 3C
and D). Among the 42 probe sets, DEPDC6, NET1,
WAC, MARCH8, ADM, FBXO17, FAM3C, and
NSUN5 had .25% frequency difference in their CNA
profiles, and these genes were associated with the sur-
vival characteristics in each group. Furthermore, most
of the amplified and overexpressed genes (NET1,
DEPDC6, and WAC) and deleted and down-regulated
genes (ADM, FBXO17, FAM3C, and NSUN5) were
found in group 3. Of interest, there was a strong correla-
tion between the frequency differences defined by CNA
and the gene expression predictors in each survival
group (Table 1). Because frequent deletions and muta-
tions of the PTEN lipid phosphatase tumor suppressor
and deletion of the CDKN2A/B locus are a prominent
signature in human GBM,19 we compared associations
between survival and the status of Chr7 gain and

Chr10 loss and the codeletion of PTEN and
CDKN2A/2B. A survival analysis of the CNA data
showed that the median survival in a group of patients
with no Chr10 loss and no Chr7 gain was longer (70
weeks) than that in the other groups of patients with
Chr10 loss and Chr7 gain (49 weeks) (Fig. 3E). The dif-
ference between the groups was significant (P ¼ .0036,
log-rank test). In addition, results divided patients into
either a longer-term survival group (median, 106
weeks), those without codeletion of CDKN2A/2B and
PTEN, or a shorter-term survival group (median, 53
weeks), those with codeletion of CDKN2A/2B and
PTEN. The difference between groups was statistically
significant (P¼ .0034, log-rank test) (Fig. 3F).

EMT-Associated Changes

To explore the biology underlying the subgroup, we
compared each group with several potentially relevant
mesenchymal-associated genes.20 A molecular program
of epithelial-mesenchymal transition (EMT) is frequent-
ly seen in malignant tumor with a highly invasive pheno-
type.21 On the basis of this information, we first
investigated the expression of EMT-related genes in
each group and generated 29 probe sets (15 genes) by ap-
plying the 2-sample t test (P ¼ .05). As shown in Fig. 4

Fig. 3. Genome-wide profile of representative TCGA GBM tumors; 30 were classified as long-term survivors (≥2 years) and the remaining

140 as short-term survivors (,2 years). (A) Genome-wide overview of CGH array data that graphically depicts changes in copy number for

short-term survivors. On the x-axis, the numbers are organized along the whole chromosomes, and the y-axis depicts frequency of CNA.

Green represents gain, and red represents loss. (B) Genome-wide overview of CGH array data for long-term survivors. (C) A genome-wide

overview of the CGH array data that graphically depicts changes in copy number for groups 1 and 2 (upper panel) and group 3 (lower

panel). On the x-axis, the numbers are organized along the 22 chromosomes, and the y-axis depicts the frequency of CNA. Green

represents gain, and red represents loss. (D) Differences in the CNA profiles between groups 1 and 2 and group 3. Green represents

gain differences, and red represents loss differences between 2 groups. The arrow indicates regions that are differentially altered

between groups 1 and 2 and group 3 (P , .05; frequency .25%). (E) Kaplan-Meier plot of overall survival among patients with GBM

grouped on the basis of Chr7 gain and Chr10 loss. F, Kaplan-Meier plot of overall survival among patients with GBM who were

grouped on the basis of codeletion of PTEN and CDKN2A/2B.
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and Supplementary Fig. S6, the expression of various
mesenchymal type genes was decreased in group 3, in-
cluding CD44, FN1, FGF1, MSN, SERPINB1,
MMP2, MMP9, and COL1A1. CD44, which is highly
overexpresssed in glioblastoma and induced tumor
cell growth,22 was significantly increased in group 1.
Conversely, MMP2 and MMP9 were relatively over-
expressed in group 2. Of interest, the differential expres-
sion of epithelial type genes, such as CDH1 and KRT18,
was not found among these 3 groups. These results
showed that the coexpression of these mesenchymal-
associated genes suggest the presence of a molecular
program of EMT in group 1 and 2.

Statistical Modeling Using Multivariate Cox Analysis

On the basis of the independent gene expression signa-
tures, we identified patients with clinical information
and CGH data and observed a significant association
with overall survival in group 3. On the other hand,
group 3 only had 17 samples, not all of which had sur-
vival times .2 years. Of the long-term survivors (≥2
years), 10 (58.8%) were classified in group 3. Many of
the GBMs in groups 1 and 2 had overall survival .2
years (21 of 156). We sought to find probe sets that
are differentially expressed between the groups 1 and 2
long-term survival patients and the group 3 long-term
survival patients and generated 1088 probe sets by ap-
plying the 2-sample t test (P ¼ .0005). Hierarchical
clustering analysis of the expression data from the 31
long-term survivors showed distinctive difference in
gene expression patterns (Supplementary Fig. S7),

suggesting the difference in survival between the
groups 1 and 2 long-term survival patients and the
group 3 long-term survival patients.

The 42 probe molecular signature and CNA data
were the dominant characteristics that permitted
the stratification of individuals into long-term and
short-term survival groups (Fig. 5). Younger age
appeared to be correlated with group 3. Eight younger
age survivors, 3 intermediate age survivors, and 2
older age survivors were in group 3 (four survivors
were not accessed). Although 50% of group 3 were
younger age survivors, the median survival was not re-
markable (Supplementary Fig. S8), not similar to either
no codeletion of CDKN2A/B + PTEN or no Chr7
gain + No Chr10 loss cases. To identify the factors
that were most associated with long-term survival in pa-
tients with GBM, we applied a logistic regression model
for multivariate Cox hazards models 23 of the signatures
with the known clinical parameters (age and sex) and
molecular signature parameters (42 probe set, no Chr7
gain + no Chr10 loss, and codeletion of PTEN and
CDKN2A/2B) (Table 2). All 9 covariates were included
in the multivariate analysis, and we added the P values
for those showing significance in multivariate analysis.
Although that the difference was significant in univariate
analysis with codeletion of CDNK2A/B + PTEN and
Chr7 gain + Chr10 loss, we found that the 42 probe mo-
lecular signature gave additional information that was
not captured by the other 2 significant covariates in pre-
dicting long-term survival (P , .018). A subset of
samples in the TCGA dataset showed a glioma-CpG
Island Methylator Phenotype (G-CIMP) phenotype and

Fig. 4. Tumor subgroups are distinguished by the differential expression of various mesenchymal type genes. Horizontal bars denote mean

values. Mesenchymal genes enriched in group 1 and group 2. Significant difference was detected by t test. *P , .05, and **P , .001,

compared with the group 3 using GraphPad Prism (version 5, GraphPad Software Inc., San Diego, CA).
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enriched for IDH1 mutations.24 We classified these 2
markers in the expression group (Fig. 5). The G-CIMP
tumors represent 88% (15 of 17) of all group 3 and
86% (6 of 7) of IDH1 mutations. It appears that the
G-CIMP tumors with IDH1 mutations had similar char-
acteristics in group 3.

Discussion

Because each tumor type possesses an enormous degree
of heterogeneity,25,26 different therapies depending on
patients’ underlying biology have been challenging. In
defining and categorizing the subtype in terms of the

gene expression pattern of their classifiers, there have
been several studies to find a first step toward developing
personalized rational therapy that targets the unique
gene changes in each patient’s individual tumor.27

Most recently, the 4 groups were named proneural,
neural, classical, and mesenchymal, showing distinct,
but overlapping, copy number alterations and gene
expression,7 suggesting that the family of gliomas
constitutes at least 6 major biological subtypes.27 The
GBM subtypes, however, were found to show a lack of
prognosis, insufficient tumor classification, limited
sample size, and variation of the signature of the
subtype.1,7,28,29 Through a comprehensive genomic-
based classification of GBM, we identified the existence
in specific tumors of a pattern of genomic alterations as-
sociated with tumor aggressiveness and a list of genes
that are related with EMT process in GBM. The tumor
subtypes identified in this study were different, com-
pared with previously reported subtypes identified by ex-
pression profiling.1,7 At first, it appears that the gene
expression and copy number highly resemble the pro-
neural subtype observed in Phillips et al and Verhaak
et al. However, the comparison showed that the group
classification could be different but similar characteris-
tics from the previously published subtypes and the 42
probe sets to identify survival-based subtypes may have
association of GBM subtype with a trend toward
longer survival among patients. Through the compari-
son of these 3 survival-derived subtypes with the previ-
ously published subtypes, our study shows a clear
hypothesis to explain the divergence between the poor
prognosis subtypes of different signaling pathways,
which seem to progress through a different and

Table 2. Univariate and multivariate analyses for GBM among
several survival factors (n ¼ 173) in TCGA dataset

Variable Univariate
log-rank
test

Multivariate
analysis

Hazard
ratio

42 probe sets 0.0006 0.018 2.582

Co-deletion of CDKN2A/
2B + PTEN

0.0034 0.632 1.081

Deletion of CDKN2A/2B 0.0457 0.583 1.068

Deletion of PTEN 0.0167 0.707 0.841

Chr7 gain + No Chr10 loss 0.0036 0.803 0.967

Chr7 gain 0.098 0.851 0.969

Chr10 loss 0.0051 0.883 0.876

Age 0.0196 0.031 1.190

Sex 0.1957 0.707 1.537

Fig. 5. A dendrogram of the cluster analysis of the integrated GBMs and clinical factors of TCGA dataset. The expression pattern of the

long-term survival group 3 is associated with several factors, compared with the short-term survival groups 1 and 2. The data are

presented in matrix format, where columns represent individual genes and rows represent each tissue. Each colored bar represents each

molecular signature and clinical factor.
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independent mechanism. A subset of samples in the
TCGA dataset showed a G-CIMP phenotype and en-
riched for IDH1 mutations.24 It had reduced copy
number gains of Chr7 and fewer losses of Chr10, was
a subset of the proneural mRNA subtype, and had signif-
icantly improved outcomes. Of the 24 G-CIMP tumors,
21 (87.5%) were classified in the proneural expression
group. These G-CIMP tumors represent 21 (30%) of 71
of all proneural GBM tumors in Verhaak et al. In this
study, it appears that the G-CIMP tumors with IDH1
mutations had similar characteristics in group 3. Thus,
because the comparison between G-CIMP classification
and the group 3 classification was highly overlapped, it
could be very interesting to show that this potential
subset of samples can be identified by both methylation
subtypes and survival-based subtypes.

Our observations demonstrate the prognostic value of
42 probe sets in glioblastomas showing better outcome,
compared with poor prognosis subtypes. Although this
may support the notion that GBM subtypes follow dif-
ferent pathways to malignancy, this study shows that
specific expression and CNA variation have an impor-
tant role in signaling pathways implicated in gliomagen-
esis and predicting outcome of GBM cases. With use of
76 grade III or IV GBM samples, the 35-gene signature
was identified that correlated with patient survival and
was used to separate the tumors into 3 groups: proneu-
ral, mesenchymal, and proliferative.1 Later, the
38-gene set revealed consistent association with patient
outcome.28 The 9-gene set was then validated and con-
firmed as an independent predictor of outcome. In
general, the large-scale gene signature classification
studies have demonstrated the heterogeneous nature of
glial tumors. Thus, although these genes may indeed
play a role in the biology of gliomas, their use as
diagnostic markers is not yet clear, perhaps because of
unrecognized molecular heterogeneity in the tumor
groupings.30,31 Very recently, the heterogeneity between
tumors and in individual tumors was noted to under-
standing the molecular aspects of tumorigenesis essential
to finding effective therapies.32

By inspecting the lists of genes across the panel of
data, we identified 42 unique transcripts that identify
each specific tumor subtype. This gene list contains
genes of known pathologic significance in GBM that
were not previously recognized as targets. These includ-
ed genes involved in nerve growth factor receptor signal-
ing pathway (eg, neuroepithelial-transforming protein
1), histone H2B conserved C-terminal lysine ubiquitina-
tion (eg, WW domain containing adaptor with coiled-
coil), and negative regulation of cell proliferation (eg,
Kruppel-like factor 13). At present, it is unclear what
the interpretation of the genes presented here should
be. Understanding whether any of these targets are
driver genes of aberrant tumor growth and survival in
GBM is a next major challenge of our research. One
subtype, which we term group 3, is distinguished by
markedly better prognosis. Two poor prognoses sub-
types showed more heterogeneity than the other group
and activation of gene expression programs indicative
of cell proliferation by expressing genes associated

with EMT that has been associated with poor out-
come in several tumor types.33 Recent observations dem-
onstrate that mesenchymal transition that is associated
with poor outcomes in GBM and is analogous to the
epithelial-to-mesenchymal transition.28,34 Another
example of aberrant gene expression that plays in the
regulation of cellular properties of glioma is the phe-
nomenon of mesenchymal drift. This means a change
in transcription factor networks and epigenetic process-
es toward a mesenchymal signature and indicates a more
aggressive phenotype.1,34 It has been noted that a series
of mesenchymal-associated genes only overexpressed in
a subset of primary glioblastomas but not in secondary
glioblastoma, low-grade astrocytoma, or normal
brain.35 Our data support a hypothesis in which overex-
pression of the genes may facilitate tumor aggressiveness
by inducing EMT through an oncogene-mediated in-
crease in MMP9, TGFB2, FGF1, and SERPINB1.
Consistent with a recent report linking GBM to
EMT,36 we also noted a strong correlation between 42
probe set expression and EMT signature. The patient
population in the younger group had a uniformly
better prognosis, which provides strong correlation
with clinical outcome or expression information. It
was shown that the older age of patients with mesenchy-
mal subtype tumors can acquire the phenotype through
accumulation of genetic or epigenetic abnormalities.37

The mesenchymal phenotype in GBM is also associated
with a stem-like phenotype,38 showing its role in the reg-
ulation of stem cell pluripotency and differentiation.39

Therefore, these observations support the possibility of
a fundamentally distinct mechanism, possibly facilitat-
ing EMT process in at least a subset of the poor subtypes,
regardless of underlying mechanism for the biology of
disease progression. Thus, drugs targeting EMT-trans-
formed cancer stem–like cells have been promising ther-
apies for patients with the poor prognosis molecular
profile.28,40,41

Several studies have shown that losses on Chr10,
loss of PTEN locus, CDKN2A homozygous deletions,
and chromosome 7/7p amplification are the most
frequently observed in primary glioblastomas that are as-
sociated with poor prognosis.6,42,43 Many mesenchymal-
associated genes on chromosome 7 (MET, HIF-2, CAV1,
CAV2, SERPINE1, PBEF, GPNMB, UPP1, MEOX2,
EGFR, and SEC61G) were reported to be associated
with Akt phosphorylation, antiapoptosis, hypoxia, an-
giogenesis, and EMT,1,35 whereas better survival
groups did not have these alterations. In addition, a
gain of chromosome 7 has been suggested to confer radi-
ation resistance,44 and primary glioblastomas simultane-
ously express a host of transcripts typically expressed in
mature mesenchymal lineage cell types.35 These findings
are consistent with those of other studies that the cells
undergoing a change from an epithelial to a mesenchy-
mal phenotype after PTEN knockdown and further es-
tablishes a connection between EMT and the PI3K
pathway.45,46 Downregulation of PTEN, however, is
not sufficient to trigger EMT-like phenotype and
metastatic properties, such as a complete loss of epithe-
lial cell polarity and cell detachment.47 Therefore,
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inappropriate reactivation of the EMT process needs ad-
ditional abnormalities in addition to the loss of PTEN to
become fully invasive and metastastic.46,48 It was report-
ed that, in combination with KRAS, p53, and SMAD4
mutations, loss of epithelial PTEN function leads to in-
vasive lesions or even metastasis.49–51 Two separate
studies identified the CDKN2A–CDKN2B locus as
risk factors using genome-wide association studies.19,52

CDKN2A-deficient tumors yielded distinctive gene ex-
pression profiles that closely mirrored those typical
of p53 deficiency, indicating that CDKN2A defici-
ency, like p53 deficiency, promotes EMT-associated
relapse.53 In this study, the CNA data showed that the
median survival in a group of patients without codele-
tion of CDKN2A/2B and PTEN was longer than that
in the other groups of patients with codeletion of
CDKN2A/2B and PTEN. Our study shows that the
copy number aberration of poor subtype is strongly cor-
related with EMT process, which is an integrated
genomic predictor model of each subtype. Thus, chro-
mosomal deletion of the CDKN2A/2B and PTEN
locus may be a better predictor of survival potency.
Further confirmation of the biology of disease progres-
sion and glioma aggressiveness could offer an important
insight into the ways tumor subtypes differ in their
etiologies.
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