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Abstract
The volume of diagnostic imaging studies performed in the United States is rapidly increasing
resulting from an increase in the number of patients as well as an increase in the volume of studies
per patient. Concurrently, the number and complexity of images in each patient data set are also
increasing. Nuclear medicine physicians and radiologists are required to master an ever-expanding
knowledge base whereas the hours available to master this knowledge base and apply it to specific
tasks are steadily shrinking. The convergence of an expanding knowledge base and escalating time
constraints increases the likelihood of physician errors. The problem is particularly acute for low-
volume studies such as MAG3 diuresis renography where many imagers may have had limited
training or experience. To address this problem, renal decision support systems (DSS) are being
developed to assist physicians evaluate suspected obstruction in patients referred for diuresis
renography. Categories of DSS include neural networks, case-based reasoning, expert systems and
statistical systems; RENEX and CART are examples of renal DSS currently in development.
RENEX (renal expert) uses a set of rules obtained from human experts to analyze a knowledge
base of expanded quantitative parameters obtained from diuresis MAG3 scintigraphy whereas
CART (classification and regression tree analysis) is a statistical method that grows and prunes a
decision tree based on an analysis of these quantitative parameters in a training data set. RENEX
can be queried to provide the reasons for its conclusions. Initial data show that the interpretations
provided by RENEX and CART are comparable to the interpretations of a panel of experts blinded
to clinical information. This project should serve as a benchmark for the scientific comparison and
collaboration of these 2 fields of medical decision-making. Moreover, we anticipate that these
DSS will better define the essential interpretative criteria, foster standardized interpretation, teach
trainees to better interpret renal scans, enhance diagnostic accuracy and provide a methodology
applicable to other diagnostic problems in radiology and medicine.

The number of diagnostic imaging studies performed annually in the United States is rapidly
increasing. In part, this increase is the result of an increase in population but an even more
important factor is an increase in the number of studies performed for each patient. The
volume of imaging procedures for each Medicare beneficiary, for example, has been
increasing about 10% per year for the past 5 years.1 At the same time the volume of imaging
studies is increasing, the number and complexity of the images in each patient data set is
also increasing. Imagers are required to master an ever-expanding knowledge base whereas
the hours available to master this knowledge base and apply it to specific tasks (selecting the
most appropriate protocol, quality control, image interpretation, reporting) are steadily
shrinking. The convergence of an expanding knowledge base and escalating time constraints
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increases the likelihood of physician errors. The problem is particularly acute for low-
volume studies such as diuresis renography.

For many full-time nuclear medicine physicians, diuresis renography is a low-volume study.
Of the estimated 590,000 renal scans performed annually in the United States, many are
interpreted by diagnosticians in sites that perform fewer than 3 studies per week2 and even
full-time nuclear medicine physicians may disagree up to 20% of the time whether or not a
kidney is obstructed, indeterminate, or not obstructed.3 Most nuclear medicine studies in the
United States, however, are performed by radiologists. Nuclear medicine is only a small
component of most radiology practices, and diuresis renography represents only a small
component of nuclear medicine procedures. The problem is compounded by the fact that
radiology residents are largely trained to interpret images that require a detailed knowledge
of anatomy whereas interpretation of diuresis renography studies depends more on an
understanding of the pharmacokinetics of the radiopharmaceutical and renal physiology.
Moreover, radiology residents typically receive only 3 months of training to cover all of
nuclear medicine compared with 3 years of training for nuclear medicine residents. Nuclear
medicine physicians or radiologists with limited experience or insufficient training may try
to compensate by overrelying on a single parameter such as the T1/2 (time to half maximum
counts) after furosemide. If the T1/2 is longer than 20 minutes, there is a tendency to
interpret the kidney as obstructed. The T1/2 is prolonged in obstruction but, depending on
how and when the measurement is made, it can be prolonged in a normal individual. Among
other factors, the T1/2 is affected by hydration, underlying renal function, size and
compliance of the renal pelvis, bladder distension, patient position, dose of furosemide and
by technical factors such as assignment of regions of interest (pelvis or whole kidney), the
algorithm to calculate the T1/2 (linear, exponential) and the starting and end points for the
T1/2 calculation. Naïve and uninformed reliance on a single parameter can lead to
inappropriate patient management and unnecessary surgery. In summary, physicians in a
conventional imaging practice may lack the time and experience to achieve the desired level
of competence in low-volume studies such as diuresis renography, where training may be
already limited. For these reasons, it is particularly important to develop and implement
decision support tools to help physicians interpret low volume studies such as diuresis
renography at a faster rate and at a higher level of expertise.

Consensus Reports as Decision Support Tools
To help standardize practice and guide interpretation of renal scans, an international group
of experts in renal nuclear medicine has recently published consensus reports on (1)
angiotensin converting enzyme inhibition (ACEI) renography for renovascular
hypertension,4 (2) diuresis renography,5 (3) plasma sample clearance measurements,6 (4)
quality control of quantitative measurements obtained from the renogram,7 (5) technical
aspects of renal transplant evaluation,8 and (6) pediatric renography.9 The consensus
recommendations for acquisition of the renogram data, the recommended quantitative
parameters, and basic interpretative criteria are now generally accepted by experts but recent
British surveys have shown that only 49% of full time nuclear medicine practitioners in
Britain were even aware that a guideline on renal clearances existed.10 The situation is
undoubtedly worse in the United States, where most renal scans are interpreted by
physicians who practice nuclear medicine part time.2 Guidelines and consensus reports have
been designed to assist physicians perform and interpret renal studies but for the time
constrained physician, they may have made interpretation more complex. To assist in scan
interpretation, experts and consensus panels have recommended clearance measurements
and the measurement of specific renogram parameters such as time to maximum counts, 20-
minute to maximum count ratio, postvoid to maximum count ratio and 20-minute to 2- to 3-
minute count ratios for cortical and whole kidney regions of interest (ROIs),4–8 but for many
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trainees and practicing physicians, these measurements simply represent a bewildering array
of numbers; comfort with the technical requirements of the study and the underlying
knowledge of when and how to apply these parameters to assist in scan interpretation may
be lacking and, most importantly, physicians may not have time to read and assimilate the
relevant papers.

Computer-Based Decision Support (Expert) Systems
To minimize physician errors and improve patient outcomes, tools need to be developed and
implemented that will assist physicians in interpreting studies at a faster rate and at a greater
level of expertise. Such tools will also minimize subjectivity and intra- and interobserver
variation in image interpretation and help achieve a standardized high level of performance.
Because diagnostic imaging has become largely digital, computers are a necessary part of
acquiring and processing imaging studies and it is reasonable to expect that these new tools
should be computer based. During the past several years, artificial intelligence methods have
been investigated as a way to develop such tools. Examples include neural networks11–18

and case-based reasoning19 techniques to provide computer-assisted diagnosis of planar and
single-photon emission computed tomography (SPECT) myocardial perfusion studies.11–19

In the artificial neural net approach, the concept is to try to emulate how human neurons
perform pattern recognition tasks. For example, repeated recognition trials can be run using
sample myocardial perfusion data as input and corresponding coronary angiography results
as output to modify the strength between the input and output nodes. In this manner, the net
is trained and the input data eventually predicts the output. In the case-based reasoning
approach the algorithm searches a library of patient cases to find the ones that best match
those of the patient study being analyzed. The common findings from these cases, such as
coronary angiography results, are then used to assist the diagnostician’s interpretation.
Another artificial intelligence approach to assist diagnosticians in making clinical
interpretations is the knowledge-based expert system. In expert systems, a knowledge base
of heuristic rules is obtained from human experts capturing how they make their
interpretations. These rules are usually expressed in the form of “IF A THEN B”
expressions.

Expert systems have been investigated in nuclear medicine to assist in the interpretation of
perfusion-ventilation lung studies,20 captopril renography,21,22 hemamethylpropyleneamine
oxime brain SPECT studies,23 and stress/rest myocar–dial perfusion SPECT.24–26 Using our
previous expertise,25,26 we have developed a generalized methodology to aid in the
interpretation of imaging studies using an expert system to analyze quantitative data
extracted from imaging studies, and have applied this generalized methodology to develop a
renal expert system (RENEX) for detecting renal obstruction using pre and post
furosemide 99mTc mercaptoacetyltriglycine (MAG3) renal scans.

Why Have We Chosen to Develop Both an Expert System and a Statistical
Predictive Model for Diuresis Renograpy?

Two primary issues of concern for any decision support system are its accuracy and its
clinical acceptance. Both are necessary in terms of the ultimate clinical utility. Statistical
methods for prediction incorporate scientific knowledge about the data and they incorporate
the variability of the measurements in the observed data. They also have the ability to make
inferences from a sample to a population including hypothesis testing and estimation of
parameters of interest such as misclassification rates. Direct application of standard
statistical methods such as logistic regression etc. use well-understood mathematical
techniques; however, standard statistical programs have 3 failings that are impediments to
acceptance by physicians in that they have no real “understanding” of their problem area,
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they have no mechanism for “discussing” their knowledge with the user, they have no means
for “explaining” (justify their findings) to physicians.27 More sophisticated statistical
methods, however, can overcome some of these deficiencies.

Knowledge-based systems, with their emphasis on knowledge representation, offer a natural
environment for implementing the tools that are lacking in many statistical approaches and
can provide a rationale for medical decisions.28 Nevertheless, knowledge-based systems
may implement statistical techniques that can benefit from the development of more formal
mathematical approaches. We have chosen to implement predictive statistical modeling and
a heuristic expert system with the expectation that each approach will inform and strengthen
the other approach. Moreover, we hope this effort will serve as a benchmark for the
scientific comparison and collaboration of these two important fields of medical decision-
making.

The Gold Standard for Diuresis Renography: Expert Interpretations or
Outcome?

Use of clinical outcome as the gold standard for a diuresis renography decision support
system is an attractive goal, but it misses the point of an expert system, which is to interpret
studies with the same level of expertise as experts. It is generally accepted that experts
interpret studies in their imaging specialty better than general radiologists; this is the basis
for having distinct areas of expertise within academic radiology departments and private
practice settings. Outcome is certainly an important measure but, in diuresis renography,
outcome as a gold standard is confounded by the fact the scan interpretation (obstruction
versus no obstruction) has a major impact on the clinical outcome (surgical intervention
versus observation); consequently, this gold standard is biased. An additional problem is
illustrated by a patient who had a pyeloplasty to relieve obstruction 1 year after a diuresis
renography scan was interpreted as “no obstruction.” In this example, did the scan miss
obstruction, was the study interpreted incorrectly, did the patient only become obstructed
one year following the scan or did an aggressive surgeon operate on a nonobstructed
kidney? Using patient outcome as a gold standard has an inherent bias, interpretation of the
results is not straightforward and it is not the goal of an expert system.

Choice of Radiopharmaceutical and Furosemide Protocol
Our protocol is based on the 1996 international consensus panel recommendations for
diuresis renography.5 We use 99mTc mercaptoacetyltriglycine (MAG3) because the
consensus panel considered it to be diagnostically superior to 99mTc DTPA. The consensus
panel recommended a single 35-minute continuous acquisition (single stage) with
furosemide administered at 20 minutes; an alternative protocol was to break the continuous
acquisition into two stages with a 20-minute baseline acquisition followed by furosemide
administration and a second acquisition. Kuyvenhoven and coworkers have pointed out that
the inconvenience of furosemide administration can be omitted if the baseline scan can
exclude obstruction29; this approach can reduce medical costs by reducing the camera,
computer and technologist time required to complete the furosemide study and physician
time required to interpret it. For this reason, we have used the two stage acquisition since
1990 and omitted Stage 2 when the baseline acquisition could exclude obstruction.

Acquisition and Processing Protocols
Patients were hydrated with approximately 10 ounces of water on arrival in the department.
Imaging was performed with the patient supine and the scintillation camera detector placed
under the table. A three-phase dynamic acquisition was begun at the time of injection of
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approximately 10 mCi of 99mTc MAG3. Phase one consisted of twenty-four 2-second
frames, phase two was sixteen 15-second frames, and phase three was forty 30-second
frames. Our original processing software, QuantEM 1.0, was developed specifically
for 99mTc MAG330 and included a camera-based method to calculate the MAG3 clearance,
which was validated in a multicenter trial.31 QuantEM 1.0 also incorporated several quality
control procedures to improve reproducibility, generated specific quantitative parameters
recommended for scan interpretation, and was licensed by Emory University to GE
Healthcare. To support our expert systems, we have upgraded this acquisition and
processing software, now called QuantEM 2.0, and have designed it to automatically
perform a more extensive check of quality control, acquire additional input parameters, and
transmit these parameters to the decision support systems.32,33 The acquisition protocol now
consists of two phases: Phase 1 acquires one-hundred twenty 2-second frames followed by
the Phase 2 acquisition of eighty 15-second frames. To have the broadest applicability, we
have written QuantEM 2.0 in IDL (Interactive Data Language, Research Systems, Inc,
Boulder, CO) which can run on a PC or any commercial platform. All patient studies were
processed using the QuantEM 2.0 renal quantification program.

To process the baseline renogram, a static image is summed from the 2- to 3-minute
postinjection frames. Using a filtered version of this image, whole kidney and cortical ROIs
as well as perirenal backgrounds that avoid the ureter and collecting system are
automatically defined. The user can override any of these automatic ROIs and replace them
with manual ROIs. Background-subtracted whole kidney and cortical curves are generated
and 47 quantitative parameters are generated including patient demographics (height,
weight, age, sex, body surface area), curve parameters (time to peak counts, and 20 minute
to count ratio for both whole kidney and cortical ROIs), voiding indices (postvoid to prevoid
and postvoid to maximum count ratios), relative uptake and the MAG3 clearance. The
MAG3 clearance is calculated from the 1 to 2.5 minute whole kidney uptake of MAG3
corrected for renal depth and attenuation and the preinjection and postinjection images of the
dose syringe.30,31,34–36

The furosemide component of the study is a separate acquisition consisting of forty 30-
second frames. Furosemide is administered at the start of the furosemide acquisition; the
standard dose of furosemide is 40 mg but the nuclear medicine physician monitoring the
study sometimes increases the dose of furosemide to 60 or 80 mg if the MAG3 clearance on
the baseline study is reduced or if the patient is known to have an elevated creatinine.37

Technologists approve or modify automatically assigned kidney and background ROIs and
assign pelvic ROIs and the time interval for the calculation of the T1/2. Quantitative
parameters are automatically extracted from the two acquisitions, placed in an XML file and
forwarded to RENEX or the statistical decision support systems for analysis.

What Are the Normal Values for the Camera-Based MAG3 Clearance,
Renogram, and Voiding Parameters?

Clearance measurements and other specific quantitative parameters have been recommended
to assist in scan interpretation and patient management.4–8,38–44 To assist in the
interpretation of ACEI renography, for example, the Santa Fe consensus report and the
Society of Nuclear Medicine procedure guideline on renovascular hypertension recommend
measurements of time to maximum counts (Tmax) and 20-minute/maximum count ratios for
whole kidney and cortical regions of interest.4,39 The 20-minute/2- to 3-minute count ratio
has been proposed as a useful parameter to simultaneously evaluate clearance and excretion
and may be especially useful in monitoring transplant patients to distinguish between acute
tubular necrosis and rejection.40 A measurement of urine drainage based on a quantitative
comparison of postvoid kidney counts to the counts obtained during the prevoid period
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improves the sensitivity and specificity for detecting an obstructed kidney.41–43 Finally, the
postvoid urine volume can easily be determined at the time of the scan and may provide
important additional information regarding excretory function.44

To develop our decision support systems, we had to specify the normal values for all the
parameters we measured. To define the normal ranges for the quantitative parameters and to
determine if the normal ranges varied based on age and gender, the archived MAG3
acquisitions from 106 subjects evaluated for kidney donation were processed using
QuantEM 2.0.45 To summarize the results, the percent relative uptake in the right and left
kidneys was 49% and 51% ± 4% respectively; there was no difference between males and
females. Cortical values for the time to maximum counts, 20-minute/max ratio and 20-
minute/2- to 3-minute ratio were lower than the whole kidney values (P < 0.001); the mean
cortical 20-minute/max count ratio was 0.19 with a SD of 0.07 and 0.04 for the right and left
kidneys, respectively. The mean postvoid/max whole kidney count ratio was <0.1 (Table 1)
and the mean postvoid residual bladder volume was <30 mL (Table 2). These results
confirm and extend previous studies46–48 and establish normal limits adjusted for age and
gender.45

The mean camera-based MAG3 clearance corrected for body surface area was 321 ± 69 mL/
min/1.73 m2 (Table 3). Clearance measurements can aid in the interpretation of the
renogram and facilitate appropriate patient management.6,38,49–52 Plasma sample clearance
methods are considered to be superior to camera-based clearances6 and MAG3 clearances
can be calculated with reasonable accuracy from a single plasma sample obtained 40 to 45
minutes after injection51,52; however, informal surveys indicate that nuclear radiology
services in the United States rarely offer plasma sample clearances because of the additional
technical expertise required to perform a plasma sample measurement and the necessity of
complying with CLIA (Clinical Laboratory Improvement Act) regulations required for in
vitro plasma sample clearances. Camera based clearances do not require blood or urine
collection and generally provide an acceptable estimate of renal function that is equivalent to
or superior to the creatinine clearance.53–57 The mean and standard deviation for the BSA
corrected camera-based MAG3 clearance (321 ± 69 mL/min/1.73 m2; Table 1) was
essentially the same as the plasma sample MAG3 clearance measured in two separate
populations of potential renal donors at different institutions, 304 ± 70 and 317 ± 74 mL/
min/1.73 m2.58,59 The camera-based clearance technique used in this study has been
validated in a multicenter trial31 and an earlier version is commercially available on General
Xeleris systems; the camera-based MAG3 clearance is more reproducible than the creatinine
clearance.57 Other camera-based MAG3 clearance techniques have been described,60,61 and
some vendors provide software to measure the MAG3 clearance using a camera-based
technique similar to the one described here but data comparing their results to a plasma
based standard have not been published. Camera-based clearance measurements using
software from other vendors should be comparable to those described in Table 1 as long as
the programs incorporate similar quality processing and control features (background
correction, dose infiltration, avoiding potential dead-time loses, a standardized time zero)
and the vendors can provide validation studies to ensure the software is performing as
specified.

The Architecture of RENEX
RENEX was inspired by two previously developed expert systems, MYCIN (28 Shot) and
PERFEX (perfusion expert; licensed Syntermed, Inc, Atlanta, GA).25,26 MYCIN is a
pioneering rule-based expert system developed in the 1970s to help physicians determine the
appropriate antibiotic for patients with infections; the name “MYCIN” was chosen because
many of the available antibiotics included “mycin” in the name of the antibiotic. PERFEX is
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a commercially available imaging expert system developed to assist physicians in the
interpretation of myocardial perfusion SPECT studies.26 An expert in radionuclide
scintigraphy (domain expert) used his experience and the normal limits for the kidney
parameters extracted from the 99mTc MAG3 scans of 106 potential renal donors46 to
estimate 5 boundary conditions for each parameter: (1) definitely abnormal, (2) probably
abnormal, (3) equivocal, (4) probably normal, and (5) definitely normal. A sigmoid-like fit
constrained to these 5 boundary conditions was then generated to create a parameter
knowledge library to be used for converting the value of any individual quantitative
parameter to a certainty factor regarding normality or abnormality (Fig. 1A and B).
Certainty factors provide an alternative to conditional probability and can easily be
combined to adjust hypotheses as additional evidence becomes available. For example, the
certainty factor value of + 1 is assigned to indicate that the parameter is “definitely
abnormal” and the certainty factor value of −1 is assigned to indicate a parameter is
“definitely normal”; the certainty factor to indicate the boundary when an equivocal study
becomes probably abnormal is assigned a value of +0.2, a truly equivocal study is assigned a
certainty factor of 0 and a certainty factor value of −0.2 is assigned to indicate the boundary
when an equivocal value becomes probably normal (Fig. 1A and B). Certainty factors
between +0.2 and −0.2 are equivocal; unknown values are also assigned a certainty factor of
0.

Sixty heuristic rules (“IF A THEN B”) were extracted from the domain expert to generate
the knowledge base for detecting obstruction; 12 of these 60 rules are specifically applied to
the baseline study to determine the need for a furosemide administration. Each rule uses the
certainty factors describing the degree or abnormality or normality for each parameter that
the rule evaluates to generate a certainty factor regarding the need for furosemide to exclude
obstruction. For example, one of the rules states, “If the ratio of the postvoid kidney counts
of the postfurosemide renogram to the counts in the baseline renogram during the 1 to 2
minute interval is normal, then there is a very strong evidence (certainty factor of +0.8) that
the kidney is obstructed.”

These applied rules are chained together by a forward chaining inference engine. An
inference engine is software that selects and executes the rules; the design of the RENEX
inference engine follows the MYCIN inference engine by approximating Bayes theorem to
combine the certainty factors generated by the relevant rules to reach a conclusion
(combined certainty factor) regarding the need for furosemide; the combined certainty factor
can range from “definitely needs furosemide (+1.0)” to “definitely does not need furosemide
(−1.0).” An example of a meta-rule is one that states that when the combined certainty factor
regarding the need for furosemide is in the equivocal range (+0.2 to −0.2), the patient should
also receive furosemide. If a kidney does not need furosemide, that kidney is not obstructed.

If furosemide is needed, additional certainty factors are generated for parameters relating to
the furosemide acquisition as well as certainty factors for parameters relating values from
the furosemide acquisition to the baseline acquisition values such as the ratio of the pre- and
postvoid kidney counts of the furosemide acquisition to the maximum kidney counts of the
baseline acquisition (Fig. 1). The inference engine then selects and executes the rules to
reach a conclusion (combined certainty factor) regarding the presence or absence of
obstruction from definitely obstructed (+1.0) to definitely not obstructed (−1.0). Kidneys
with combined certainty factors in the equivocal range (+0.2 to −0.2) are indeterminate for
obstruction. For example, when the inference engine starts execution, the certainty factor
that a kidney is obstructed is 0 (unknown). As production rules are asserted (fired), the
certainty factor that the kidney is obstructed increases or decreases based on whether the
rule is providing positive or negative evidence that the kidney is obstructed. After all the
pertinent rules are asserted (ie, all rules with antecedents ≥0.2 are fired), the resulting
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certainty factor is the conclusion reached by the inference engine. Thus, if the final certainty
factor that the kidney is obstructed is greater than 0.2, the conclusion is that the kidney is
obstructed; the larger the certainty factor (closer to the maximum value of 1.0), the greater
the confidence that the kidney is obstructed. If the certainty factor is less than −0.2, the
kidney is not obstructed, and if it lies between −0.2 and +0.2, the kidney is equivocal for
obstruction. These initial rules were modified as the system was trained with patient data.
Rules were grouped into knowledge islands to perform 5 functions common for each kidney:
(a) consider if furosemide needs to be administered, (b) consider if furosemide does not need
to be administered, (c) consider if the kidney is obstructed, (d) consider if the kidney is not
obstructed, (e) consider if meta-rules for the kidney applies. Meta rules are rules considered
after all of other rules are considered.

A software component called a justification engine was implemented to record the sequence
of each rule that was fired and the certainty factor value of all input and output parameters at
the time of instantiation to track and justify the logic of the conclusions.32 The justification
engine allows a user to query RENEX to determine the rules and parameter values that
“justify” or explain the software’s conclusion regarding the need for furosemide.62 The
architecture of RENEX is summarized in Figure 2.

First Things First: Can the Decision Support Systems Analyze the Baseline
Acquisition to Exclude Obstruction?

Our suspected obstruction protocol has been to first obtain a baseline scan. If the baseline
scan can exclude obstruction, the furosemide acquisition is omitted. Of 704 renal scans
obtained for suspected obstruction from Jan 1994 to July 2002, the baseline examination
excluded obstruction in 221 (30%) patients. Consequently, as an intermediate step to
develop decision support systems to detect obstruction, we first applied our decision support
systems to examine only the baseline parameters to determine whether the baseline scan
could exclude obstruction. This choice addressed a clinical problem, only required 12 rules
from RENEX and provided the data and experience to develop the more complicated
systems needed to analyze a two stage study for the presence of obstruction.

The Statistical Approach (CART)
Decision trees present an attractive way of summarizing expert knowledge for convenient
use by nonexperts. Decision trees provide a simple flowchart prescription of a short series of
yes/no questions which result in a decision relevant to the scientific question of interest. The
statistical use of these concepts was developed in 1984 by Breiman and coworkers63 who
named the method “classification and regression trees,” more commonly known by its
acronym CART. CART was applied to a training set of 80 randomly selected patients (79
right kidneys and 80 left kidneys) referred for suspected obstruction.64 The single decision
tree for the right kidney as illustrated in Figure 3.

The basic element of the tree is a node, which can either be an internal node or a terminal
node. In Figure 3, internal nodes are represented by circles; terminal nodes are represented
by rectangles. A tree is grown in a hierarchical manner. At each internal node, a binary (yes/
no) question is asked. As a first step, at the top node, the algorithm finds the parameter
among all kidney parameters and the cut-off point among all possible cut-off points that
does the best job of differentiating between kidneys in the data set that require and those that
do not require furosemide to further evaluate obstruction. This process of splitting at each
node is continued until a large tree is constructed. A large tree usually overfits the data (ie, is
overly sensitive to irregularities in data). An overfitted tree runs the risk of correctly
predicting the outcome for all subjects in the training set, yet ending up so specifically
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tailored to the training set that it performs poorly on many other datasets. A pruning rule is
thus implemented to determine the proper tree size. As a final step, a misclassification rate is
calculated in each terminal node of the tree.

In Figure 3, the tree for the right kidney consists of four levels with 6 terminal nodes. In this
particular tree, four kidney parameters were found to be useful: postvoid/max ratio, relative
uptake, cortical 20 minute/max ratio, and MAG3 clearance. Whether or not a patient
requires furosemide depends on the kidney’s values for these variables. For example, a right
kidney which has a postvoid/max ratio <0.3781, relative uptake <86% and cortical 20
minute/max ratio <0.5084 is predicted not to require furosemide. In the training set, 34 right
kidneys had this set of characteristics, and none of them were misclassified. The number
0/34 in the left-most terminal node of Figure 3 indicates the misclassification rate for this
particular path. The total misclassification rate was only 2.5% (2/79). However, when this
tree was applied to the right kidneys (n = 64) in the validation sample, the misclassification
rate was 15.62% (10/64). Because the data in the validation set were not used in building the
original tree, the increase in the number of misclassified kidneys was expected.

CART With Bagging—The CART algorithm is a commonly used method for building
statistical models from simple feature data to predict medical decisions. CART is powerful
because it can deal with incomplete data and multiple types of features both in terms of
input features and predicted features; moreover, CART produces a tree containing rules that
can be easily comprehended (Fig. 3).63 A potential problem with using a single tree (as in
standard CART) on which to build a prediction model is that small perturbations in the
training data can result in drastically different trees. Errors made in an early split are passed
down to subsequent splits, thus compounding the error. To stabilize the algorithm, 1001
classification trees were constructed by the common statistical technique of bootstrapping
the training data.65 In brief, bootstrap sampling is a process that randomly selects a single
kidney from the training set, assigns that kidney to the bootstrap dataset, randomly selects
another kidney from the training set (this kidney could potentially be the same as the first
kidney), assigns that kidney to the bootstrap dataset and continues this process until a
bootstrapped sample the same size as the original training set has been constructed. This
whole process was then repeated for 1001 iterations to produce 1001 bootstrapped datasets.
A tree (algorithm) was developed for each of the 1001 bootstrapped datasets to determine
the need for furosemide. These 1001 trees from the training set were applied to each kidney
in the validation data, resulting in 1001 predictions for each kidney regarding the need for
furosemide to exclude obstruction. The final prediction regarding furosemide was
determined by simple majority vote of the 1001 outcomes. This methodology, called
bootstrap aggregation or bagging,66 reduces dependence on the training set and stabilizes the
prediction algorithm by averaging the results. An odd number of bootstrap samples is
chosen to avoid any ties in voting.

The modified CART algorithm with bagging reduced the misclassification rate for the right
kidney from 15.62% without bagging to 10.94% (P = 0.03). The misclassification rates for
these 1001 single trees ranged from 4.69% to 35.94%, indicating large variability for single
trees but the bagging misclassification rate for the right kidney was smaller than the mean
(and median) misclassification rate of the 1001 bootstrapped samples and bagging had the
effect of stabilizing the standard CART analysis. In the prospective data set, CART with
bagging accurately predicted the need for furosemide about 90% of the time. A significant
disadvantage in the bagging technique is the lack of a simple tree at the end of the procedure
on which to base future predictions; the final prediction based on 1001 trees is too
complicated to be presented visually. Moreover, CART with bagging cannot provide the
interpreting physician with a rationale for reaching a specific conclusion.
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An important advantage of the CART algorithm is that it identified and specified the
parameters used at the various levels of the bootstrapped sampled trees to determine when
obstruction could be excluded without the furosemide acquisition; this analysis provided an
important insight into the parameters that are most important in discriminating between
obstruction and nonobstruction. The time to half peak (T1/2) is frequently cited as an
important measurement in evaluating possible obstruction,67 but this was not an important
variable in the CART analysis for determining the need for furosemide (distinguishing
between nonobstruction and possible obstruction). In fact, 2 of the 3 most frequently
selected parameters at the first level employed a comparison of the counts in the kidney after
voiding to an earlier time period (maximum counts or counts at 1–2 minutes; Table 4), and
support an earlier study suggesting that voiding indices will provide simple and more robust
parameters for evaluating obstruction than the T1/2.41,68

CART Versus RENEX
As an intermediate step in the development of our decision support systems to detect
obstruction, we conducted a prospective study to compare the decisions regarding the need
for furosemide made by a heuristic approach (RENEX) and an analytic approach (CART)
with the need for furosemide determined in clinical practice and by expert readers.69 Both
RENEX and CART used the same pilot group of 31 patients (61 kidneys) as a training set.
CART with bagging was applied to construct 1001 classification tree to determine the best
separation between kidneys that required furosemide to evaluate obstruction and kidneys
that were not obstructed and did not require furosemide. Subsequently, both systems were
prospectively applied to 102 patients (200 kidneys) of whom 70 received furosemide;
decisions regarding the need for furosemide were compared with the clinical decisions and
the decisions of three experts who independently scored each kidney on the need for
furosemide and resolved differences by majority vote. RENEX performed better than CART
when furosemide was required to further evaluate possible obstruction. RENEX agreed with
the experts’ decisions to give furosemide in 98% (65/66) of patients whereas CART agreed
in 89% (59/66), respectively, P ≤ 0.03. In contrast, CART performed better than RENEX
when furosemide was not required; CART agreed with the experts’ decision to withhold
furosemide in 78% of kidneys (87/111) whereas RENEX agreed in only 69% of kidneys
(77/111), P = 0.008. Both systems can be improved and this study is not sufficient to
determine if one approach is inherently superior to the other.69,70

This study was limited by the fact that the training set was relatively small; this limitation
was probably more of a disadvantage for a statistical system such as CART than for a
heuristic system like RENEX. Knowledge-based expert systems have an advantage over
neural nets, case based reasoning, or predictive statistical approaches because development
of knowledge-based systems do not require the same large numbers of studies as the other
approaches. A second advantage of a knowledge-based system, especially from a learning
perspective, is that it is possible to query the system to learn the rules that led to a specific
conclusion. For example, RENEX disagreed with the experts in one kidney in regard to the
need for furosemide because RENEX gave greater weight to the abnormal T1/2 than to the
postvoid to maximum count ratio. The experts were not queried but appeared to give greater
weight to the images and the low postvoid to maximum count ratio. This interpretation is
supported by data from CART, indicating that voiding indices will provide a more robust
method for determining the presence or absence of obstruction than the T1/2 (Tables 2 and
4).64 RENEX can be improved by comparing results and its “reasoning” with expert
decisions and adding new rules and/or adjusting the weighting factors. In this case, RENEX
should be tested giving greater weight to the postvoid to maximum count ratio than the T1/2.
Use of RENEX or CART as decision support tools in institutions that employ the baseline
plus furosemide protocol has the potential to offer a “second opinion” and help avoid
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unnecessary imaging and reduce the technologist, computer, camera, and physician time
required to perform the procedure.69 Importantly, the results obtained from this study helped
in the more complex task of developing decision support systems to actually diagnose or
exclude obstruction.

Additional Quality Control Is Needed
A review of the discrepancies between the experts and the decision support systems
indicated that additional quality control was needed. Experienced nuclear medicine
physicians can sometimes read around errors that affect the quantitative parameters but
discrepant results occurred because the decision support systems assumed the quantitative
values were correct. One error occurred when a patient got off the table before the study was
complete; the 20 minute/maximum count ratio was zero indicating to RENEX complete
emptying of the kidney and, therefore, no obstruction but it was obvious to the clinicians
that the patient got off the table and that the study was incomplete and nondiagnostic. A
reduction in renal function can lead to a delay in drainage of MAG3 from the kidney and
RENEX incorporates rules relating the individual MAG3 clearance to the rate of washout.
The camera-based MAG3 clearance requires a correction for attenuation based on a
regression equation derived from the patient’s height and weight.34,35 The software can
accept data entry in pounds or kilograms but if pounds are entered for kilograms or
kilograms entered when the software is expecting pounds, the camera-based MAG3
clearance will be erroneous, the resulting certainty factor describing the MAG3 clearance
will be erroneous and a rule may be incorrectly applied.

We have developed software to check the entire technologist input data used by the decision
support systems.71 Checks are made for logical inconsistency (negative and nonnumeric
values, impossible clock times, final void time earlier than initial void time, dose counted
larger than dose injected) and demographic values outside the expected range. Additional
checks flag potentially unreliable results (height and weight outside an expected range, very
low time-to-peak kidney counts, infiltrated dose and starting the camera after
radiopharmaceutical injection) as well as factors that may lead to unreliable quantitative data
such as relative uptake less than 5%; in this setting, the cortical parameters for the poorly
functioning kidney may have too much noise to be reliable parameters. To validate the QC
software, two technologists not involved in software development processed 83 consecutive
clinical studies. QC events were defined as technical (study descriptors that were out of
range or were entered and then changed, unusually sized or positioned ROIs, missing frames
in the dynamic image set) or clinical (calculated functional values judged likely to be
unreliable). Potentially serious QC events were defined as the following: camera started late,
significant dose infiltration, left/right side ROIs swapped, background oversubtraction
giving a negative renogram curve and missing frames. Technical QC events were identified
in 30/83 (36%) studies, clinical QC events were identified in 28/83 (34%) of studies and
potentially serious QC events were identified in 5/83 (6%) of studies.71 This evaluation
demonstrates that there are QC issues are not uncommon; they can be identified, flagged,
and corrected. If QC issues are recognized but cannot be corrected, the certainty factor
associated with the suspect parameter can be modified to have less effect on the final
decision.

How Well Does RENEX Work in Detecting Obstruction?
The entire system was fine tuned and tested using a pilot group of 32 patients (63 kidneys)
deemed by a panel of 3 experts to have 41 unobstructed kidneys, 13 obstructed and 9
equivocal findings.32 The 32 patient studies used as a training set were selected to try to
challenge all branches of the decision tree. As each patient was interpreted by RENEX, the
rules and certainty factors were adjusted to match the expert’s interpretations. RENEX
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agreed with the expert panel in 92% (12/13) of the obstructed kidneys, 93% (38/41) of the
unobstructed kidneys, and 78% (7/9) of the kidneys interpreted as equivocal for
obstructions.32 Displays of the baseline and furosemide acquisitions used for review by the
expert panel are illustrated in Figure 4. Processing time per patient was practically
instantaneous using a 3.0 GHz PC programmed using IDL. Although this initial agreement
was encouraging, it did not validate the method since the results only applied to patients in
the training set.

A second study was performed to test RENEX in a prospective population consisting of 60
randomly selected studies (117 kidneys).72 Obstruction was excluded by the baseline scan in
17 subjects; 43 subjects received furosemide followed by a second 20-minute acquisition.
An expert and RENEX granted each kidney as obstructed, equivocal and nonobstructed;
both the expert and RENEX were blinded to the clinical history. RENEX requested
furosemide in 3/17 subjects who did not receive furosemide and whose kidneys were
considered by the expert reader to be nonobstructed. Since there was no furosemide study,
these studies were assigned an incorrect diagnosis of obstruction by RENEX even though a
furosemide acquisition would have probably led RENEX to the correct diagnosis. RENEX
agreed with the expert reading in 86% (73/85) of nonobstructed kidneys, 53% (8/15)
equivocal kidneys, and in 82% (14/17) of the obstructed kidneys (Table 5). Of the 75
kidneys interpreted as nonobstructed by RENEX, 73 (97%) were interpreted as
nonobstructed by the expert reader.

A subsequent and more formal evaluation of RENEX has been performed which consisted
only of studies containing both baseline and furosemide acquisitions. Because the baseline
scan excludes obstruction in approximately one third of our patients, selecting only studies
with both baseline and furosemide acquisitions increased the likelihood of including kidneys
considered to be obstructed or equivocal by experts and represented a more challenging
population because a large population of clearly nonobstructed kidneys was excluded from
study. In this study, 3 experts blinded to clinical information reviewed 95 studies and
resolved differences by consensus (Taylor A, Garcia EV, Binongo J, et al, unpublished data,
2007). Their results were compared with RENEX. These results have been submitted for
publication and showed that RENEX agreed with the experts as well as the experts agreed
with each other.

Does RENEX Get the Right Answers for the Right Reasons?
It is possible that RENEX could give the right answers for the wrong reasons or that
RENEX could get the right answer by accident. Knowledge-based decision support systems
with a justification engine like RENEX can be queried; the justification engine will respond
to the query by providing the rules (reasons) used to reach (justify) a diagnostic decision. To
determine if RENEX was giving the right answers for the right reasons, we designed a
laborious experiment to validate the complicated process by which an expert physician
reaches conclusions as compared with RENEX.62 The RENEX justification engine was
evaluated in a prospective group of 60 patients (117 kidneys). Validation consisted of a
blinded expert reviewing the baseline and postfurosemide MAG3 renal images and
quantitative data sets provided by QuantEM 2.0 and then identifying and ranking the main
variables used to determine if a kidney is obstructed, equivocal or not obstructed. Two
parameters were then tabulated: (1) the frequency the main rules associated with the
diagnosis of nonobstruction or obstruction by the expert were also provided by RENEX and
(2) the frequency that additional justification rules provided by RENEX were deemed to be
correct by the expert. Only kidneys where RENEX and the expert agreed on the diagnosis (n
= 87) as to the presence of absence of obstruction were used for this evaluation; kidneys
indeterminate for obstruction were excluded from analysis. In the 87 kidneys where there
was agreement on the diagnosis, RENEX agreed with 91% (184/203) of the rules supplied
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by the expert to justify the diagnosis. RENEX provided 103 additional rules justifying the
diagnosis and the expert agreed that 102 (99%) were correct although these rules were
considered to be of secondary importance. These results show that the justification engine is
essentially using the same rules as the expert to reach its conclusions. Importantly, in the
cases where there was disagreement, the process of the patient-by-patient comparison
between the rules used by the expert and those used by RENEX provide a mechanism for
knowledge discovery as to how to modify existing rules or add new ones to improve the
performance of RENEX. To our knowledge, this is the first attempt at validating any
justification engine. In an invited perspective, Porenta points out that the clinical
acceptability of an expert system strongly depends on user acceptance and user acceptance
can only be achieved if the user has confidence in and accepts the reasoning process of the
expert system.73 Our study documents that our rule based expert system gives the right
answer for the right reason and has the potential to be used not only to assist physicians in
the

Limitations and Future Directions
This study addressed the diuresis renography protocol recommended by the international
consensus report where baseline data are obtained followed by the administration of
furosemide and an additional period of imaging.5 There are other protocols in which
furosemide is given 15 minutes before the radiopharmaceutical, at the same time as the
radiopharmaceutical or 5 to 10 minutes later.5,43,74,75 Obviously, the systems we describe at
present do not apply to these protocols QuantEM 2.0 cannot detect and correct for patient
motion and, at this time, the software cannot distinguish between diffuse retention with slow
washout due to impaired function and focal pelvic retention with slow wash-out due to
possible obstruction. Robust algorithms to assign the kidney regions of interest, algorithms
to detect and correct for motion and algorithms to distinguish between diffuse retention in a
kidney and retention in a dilated renal collecting system need to be designed, implemented
and tested. One of the most important limitations is the absence of clinical information. In
all our studies, both the experts and the decision support systems were blinded to clinical
information other than the fact that the reason for the scan was suspected obstruction. Our
preliminary data suggest that the addition of clinical data will reduce the number of
equivocal or intermediate interpretations by 60 to 70%. Our future plans include
incorporating clinical information, adapting the decision support systems to other diuresis
renography protocols and to apply this approach to patients with suspected renovascular
hypertension.
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Figure 1.
Graphical representation of the transformation of 3 input quantitative parameters to certainty
factor values. The 3 parameters are illustrated as follows. (A) Lasix prevoid to baseline max:
the ratio of the counts in the kidney ROI during the last frame of the postfurosemide
renogram to the maximum counts in the kidney ROI from the prefurosemide baseline
renogram. (B) Lasix pelvis time to half peak: the time that it takes for the renogram curve
extracted from a kidney’s pelvic ROI to decrease from its maximum value to half that value.
(C) The MAG3 clearance curve shows the camera-based MAG3 clearance for the left
kidney. Notice that the curves have a general sigmoid shape but do not have a smooth, exact,
Sigmoid fit. (Reprinted by permission of the Society of Nuclear Medicine from Garcia et
al.32)
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Figure 2.
Flow diagram for RENEX. This diagram shows the flow of how a renal scan is acquired,
processed, quantified to extract parameters of renal function and how these parameters are
converted to certainty factors (CF) that are then input to the expert system. The expert
system is comprised of the knowledge base, the inference engine and the justification
engine. The inference engine applies rules from the knowledge base to the certainty factors
describing the parameters of the study and combines the certainty factors to reach a
conclusion regarding the presence or absence of obstruction. The justification engine keeps
tract of the order and sequence of the rules that were applied. The trapezoidal blocks
indicate domain expert; the rectangular blocks indicate software algorithms. (Reprinted by
permission of the Society of Nuclear Medicine from Garcia et al.32)
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Figure 3.
A single decision tree to determine whether furosemide is needed for the right kidney to
further evaluate obstruction is illustrated. The basic element of the tree is a node, which can
either be an internal node or a terminal node. Internal nodes are represented by circles;
terminal nodes are represented by rectangles. At each internal node, a binary (yes/no)
question is asked. As a first step, at the top node, the algorithm finds the parameter among
all kidney parameters and the cut-off point among all possible cut-off points that does the
best job of differentiating between kidneys in the data set that require and those that do not
require furosemide to further evaluate obstruction. This tree consists of four levels with 6
terminal nodes; four kidney parameters were found to be useful in determining the need for
furosemide: postvoid/max ratio, relative uptake, cortical 20-minute/max ratio, and MAG3
clearance. Whether or not a patient requires furosemide depends on the kidney’s values for
these variables. For example, a right kidney which has a postvoid/max ratio <0.3781,
relative uptake <86% and cortical 20-minute/max ratio <0.5084 is predicted not to require
furosemide. Each terminal node gives the number and percentage of kidneys in that node
that were misclassified. (Adapted with permission from Binongo et al.64)
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Figure 4.
(A) The standard display shows demographic data, the dose injected, dose counted on the
camera, percent dose infiltrated, the MAG3 clearance and the expected MAG3 clearance
followed by the percent uptake, Tmax, T1/2, and 20-minute/max ratios for the whole kidney
ROI. The voided volume, postvoid residual and urine flow rate were not measured. The
upper central panel shows 2-second images at the beginning of the acquisition. The upper
right panel shows the injection site; just beneath is a frame for viewing a dynamic cine, and
pre and postvoid bladder images. The central panel shows twelve 2-minute images followed
by a postvoid image of the kidneys with the patient lying on the camera in the same position
as the initial images. The lower left panel shows the whole kidney ROIs and the whole
kidney renogram curves; the lower right panel shows the cortical ROIs and the cortical
renogram curves. The MAG3 clearance was reduced (94 mL/min/1.73 m2 compared with a
normal range of 226–439 mL/min/1.73 m2). The relative uptake of the left kidney was 26%.
The T1/2 of the left kidney was greater than 50 minutes and the T1/2 of the right kidney was
19 minutes. The 20-minute/max ratio was bilaterally abnormal; consequently, the patient
received furosemide followed by a second acquisition (Fig. 1C). (B) An expanded review is
available to the reviewers. This display shows the patient values and normal ranges for the
MAG3 clearance, residual urine volume, percent relative uptake and the Tmax, 20-minute/
max, T1/2, and postvoid/max ratio for whole kidney and cortical ROIs. The expanded review
page also shows an enlarged parenchymal image obtained at 2 to 3 minutes, an enlarged
display of the 19- to 20-minute image, and quality control images showing the before and
after injection syringe counts and time of the bolus arrival in the kidneys. (Color version of
figure is available online.) (C) This panel shows displays the 2-minute sequential images
after the administration of 43 mg of furosemide. The curves were generated from whole
kidney and renal pelvic regions of interest. The T1/2 of the left renal pelvis was 19 minutes
and 46 minutes for the right renal pelvis. (D) This panel displays the baseline and
furosemide acquisition on the same scale. The time activity curve generated by the pelvic
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region of interest is also displayed on an expanded scale. Even though the right kidney is
abnormal, tracer washed out of the renal pelvis and the ratio of kidney counts in the prevoid
furosemide acquisition to the maximum counts was only 0.23. On a 5-point scale,
obstructed, probably obstructed, equivocal, probably nonobstructed and nonobstructed, the
experts interpreted the right kidney as probably nonobstructed. Activity washed out of the
pelvis and the ratio of prevoid furosemide counts to the maximal counts on the baseline
study was only 0.23. RENEX interpreted the right kidney as not obstructed (certainty factor
of −0.42). Relative and absolute function of the left kidney were reduced, there was
prominent pelvic retention, washout was prolonged with a pelvic T1/2 of 19 minutes and the
ratio of prevoid furosemide counts to the maximal counts on the baseline study was
abnormal at 0.59. The consensus interpretation of the experts was probably obstructed;
RENEX also interpreted the left kidney as obstructed (certainty factor of 0.34). (Color
version of figure is available online.) interpretation of diuretic renal scans but also as an
educational tool for students and trainees.
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Table 4

Most Frequent Kidney Parameters in the Training Set on Level 1

Kidney Parameter

Frequency (%)

Right Kidney Left Kidney

Cortical 20-min/max ratio 32.1 3.6

Postvoid/max ratio 29.1 83.0

Postvoid/1- to 2-min ratio 13.3 6.3

19- to 20-min/max ratio 10.8 1.0

Reprinted with permission from Binongo et al.64
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Table 5

Comparison of RENEX and Expert Interpretations

Expert

RENEX

Obstructed Equivocal Non-obstructed

Obstructed 14 3 0

Equivocal 5 8 2

Non-obstructed 3* 9 73

*
RENEX did not exclude obstruction based on the baseline acquisition. No furosemide was given; consequently, these kidneys were assigned a

RENEX interpretation of obstruction.
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