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Abstract
Every sensory event elicits activity in a broad population of cells that is distributed within and
across cortical areas. How these neurons function together to represent the sensory environment is
a major question in systems neuroscience. A number of proposals have been made, and recent
advances in multi-neuronal recording have begun to allow researchers to test the predictions of
these population-coding theories. In this review, I provide an introduction to some of the key
concepts in population coding and describe several studies in the recent literature. The focus of
this review is on sensory representation in the visual cortex and related perceptual decisions. The
frameworks used to study population coding include population vectors, linear decoders, and
Bayesian inference. Simple examples are provided to illustrate these concepts. Testing theories of
population coding is an emerging subject in systems neuroscience, but advances in multi-neuronal
recording and analysis suggest that an understanding is within reach.
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Introduction
One of the major goals of systems neuroscience is to understand how the nervous system
creates complex behavior, such as perception and cognition. A key structure of the brain is
the cerebral cortex, where neural circuits convert sensory signals into motor commands.
Much of systems neuroscience endeavors to understand the computations that take place in
these circuits. One powerful approach is to measure the signals in a given circuit, namely,
the spike trains of neurons, and to study their relationship to a sensory stimulus or motor
output.

The traditional method of directly measuring spike trains is to insert microelectrodes into the
cortical tissue. This method, however, poses a number of challenges. Arguably the most
profound is the small number of spike trains that can be measured simultaneously. In
traditional experiments, no more than a few neurons are sampled at a time (Alonso et al.,
1996; DeAngelis et al., 1999; Gawne et al., 1996; Gochin et al., 1994). This severely limits
the range of questions that can be addressed via experiment. Even simple relationships, such
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as the correlation of a neuron with its neighbors, are difficult to characterize without
simplistic assumptions (Zohary et al., 1994). Thus, traditional methods have hindered the
progressive chain of building theories and testing predictions of how networks of neurons
give rise to the computations underlying complex behavior.

Techniques for multi-neuronal recording have advanced over the past decade. Whereas
multi-neuronal recording previously involved measuring the spike trains of pairs of neurons
(Alonso et al., 1996; DeAngelis et al., 1999; Gawne et al., 1996), it now involves
simultaneously recording from populations of neurons on the order of approximately 70
cells (Churchland et al., 2010; Cohen and Maunsell, 2009; Ecker et al., 2010; Smith and
Kohn, 2008). This technological advancement has expanded analyses beyond pairwise
relationships of firing patterns, e.g., synchrony or correlation, to information coded in the
population activity (Berens et al., 2012; Churchland et al., 2012; Graf et al., 2011). In this
review, I cover several areas in which considerable strides have recently been made by
neuronal populations, with a focus on the coding of sensory information in the visual cortex.

Population vectors and linear decoders
A pioneering theory of population coding in the visual cortex assumed that each neuron
represented a vector (Gilbert and Wiesel, 1990; Vogels, 1990). In this view, the preferred
orientation of a neuron defines the direction of a vector and the neuron’s firing rate provides
the amplitude. The neuronal population coded the stimulus orientation as the vector sum of
all the neurons; hence, this coding scheme is termed the “population vector”. The population
vector was originally posited for coding the direction of a reaching arm movement by
neurons in the motor cortex (Georgopoulos et al., 1986). In both models of the visual and
motor cortices, the population vector utilizes the bell-shaped tuning functions of individual
neurons to represent a circular variable. In principle, the value of the encoded variable is
completely recoverable with a very small number of neurons in the representation. In the
absence of response variability, two neurons are sufficient to represent the full range of
orientations (Fig 1A).

The minimum population size of two follows from two simple mathematical facts: A)
orientation is a circular variable that can be mapped onto a point on a unit circle and B) the
point can be represented in a Cartesian coordinate system with two dimensions. In order for
the mapped set to be an exact circle, the orientation tuning of individual neurons must have a
sinusoidal shape, and the sinusoids must be orthogonal to each other. For example, let’s
assume that there are two neurons with response r1 and r2,. Their responses to an orientation
θ are

, where r ̄ denotes the average response to all orientations. With elementary trigonometry, we
can solve the equations for θ with the following:

.
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Thus, the original value θ is completely recoverable from the responses of the two model
neurons. Real neurons deviate from the idealized conditions in a number of ways, but subtle
deviations in the shape of the tuning functions are relatively trivial. The population vector
works as long as neurons have bell-shaped tuning functions.

In reality, small populations of neurons provide poor coding performance because the
responses of visual neurons are variable to repeated trials of the same stimulus (Shadlen and
Newsome, 1998; Tolhurst et al., 1983; Vogels et al., 1989). The variability acts as noise in
the visual system, when we view the function of the system is to represent the stimulus value
(Fig 1B). In the above equation, we cannot recover the original θ with perfect accuracy
when r1 and r2 are corrupted with noise. However, we can make the population vector robust
to such noise by increasing the population size because independent variability is cancelled
through the summation. As more neurons are recruited to the population, more of the
independent variability is canceled. This follows directly from the central limit theorem,
which states that the confidence interval of the mean from N samples is inversely
proportional to the square root of N. In the case of the population vector, having neurons
with the same tuning function in the visual system is not redundant, but rather is
advantageous to the animal for representing the stimulus value.

Pooling over a large population will eliminate noise when the variability is independent
across the population. Otherwise, when the variability is not independent between the
neurons, the pooling will not eliminate the noise no matter how large the population might
be (Shadlen et al., 1996; Zohary et al., 1994). In most areas of the cortex, the variability of
neurons is weakly correlated. Values of the measured correlation varies across studies, but
the correlation are always non-zero (for a summary across various cortical areas, see (Cohen
and Kohn, 2011)). Even a weak correlation will preclude the elimination of noise by
pooling.

Theoretical studies predict that the structure of correlated variability can have strong effects
on the accuracy of the population code (Abbott and Dayan, 1999; Paradiso, 1988; Shadlen et
al., 1996; Vogels, 1990). The equations and simulations show that knowledge of the
correlation matrix is critical to estimate the accuracy of the coding. The difficulty in
measuring the structure of correlations has been the inadequate size of the sampled
population of neurons. Because all the neurons have fluctuations, the correlation matrix of
all combinations of neurons in a population must be measured in order to adequately
characterize the variability.

An important implication of the theoretical studies was that the population vector is neither
an accurate nor plausible way of representing a stimulus variable (Salinas and Abbott,
1994). The population vector is prone to misrepresent the stimulus variable when faced with
response variability; the reconstructed stimulus will have a bias unless certain conditions are
fulfilled. A generalization of the population vector was proposed (Salinas and Abbott, 1994),
which relaxes the fixing of the vector, and retains the weighted summation (also known as
the linear combination in mathematical terms) of the population’s response. This generalized
model was coined the linear decoder. Under the assumptions of the linear decoder, the
challenge is to correctly estimate the weights in order to recover the original stimulus (Fig
1C). The approach of the linear decoder is to use a prerecorded set of trials to fit the weights
of each neuron. If the weights are estimated correctly, the original stimulus should be
recoverable more accurately from the weighted sum of the population’s response than from
the population vector.

To demonstrate the difference in accuracy, we take the example in Fig 1C and modify the
model so that a misrepresentation becomes more apparent. This is done by replacing the
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model cell with a 45 degrees (deg) preference for another one with an 85 deg preference.
With the modified model, the clouds of dots with filled and open symbols will overlap
substantially. We simulated the modified model and found that the population vector
correctly recovered the stimulus in only 90% of trials, while the linear decoder did so in
96% of trials. Thus, the linear decoder was more accurate at reconstructing the stimulus.

The linear decoder has an appealing aspect besides it accuracy. The weighted summation is
a plausible model of what actually happens in the visual cortex; the summation of inputs is
what neurons compute, to a rough approximation (Shadlen et al., 1996). This allows us to
investigate how sensory representations lead to perception. To set the stage for concrete
predictions, we must first define perception as a measurable quantity. A powerful approach
is sensory discrimination, in which subjects must decide which action to take based on what
he/she just perceived. This framework has come to be widely known as perceptual decision
making (Newsome et al., 1989) to clarify that the task of the subject involves both
perception and decision-making.

Bayesian inference and probabilistic population code
Perceptual decisions are inevitably accompanied by uncertainty. Subjects are aware of the
multiple choices that are potentially correct, but the ground truth is undisclosed. Subjects
must use the available information in order to infer the truth as accurately as possible. This
is an inference process, so it is helpful to formalize the problem in terms of statistical
inference (Gold and Shadlen, 2001).

The basis of statistical inference is the Bayes’ theorem, which establishes the precise
relationship of the probabilities regarding the sensory stimulus s and the population response
r = {r1, r2, …, rN}, as:

.

The denominator P(r) is often omitted because it does not depend on the stimulus s. In an
inference process, the value of P(r) is fixed. Its omission from the denominator turns the
Bayes’ theorem into a proportional relationship:

.

This relationship has useful implications. The distribution P(s|r) on the left-hand side is the
desirable function for the inference (called the posterior probability). Given the population
response r, the decision process needs to determine the s that has the highest probability.
The problem with this inference is that there is no means for directly estimating P(s|r) in an
experiment, as it would take an enormous number of trials to sample every population
response multiple times. The above relationship provides a solution to this problem. The two
distributions on the right-hand side are in fact measurable. We will follow the nomenclature
of statistical inference and call P(r|s) and P(s) the likelihood and the prior probability,
respectively.
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The ground truth of the prior probability P(s) is predefined in the perceptual-decision task.
Typically the prior probability is set to a uniform distribution, in which P(s) is substituted
with a constant and absorbed into the proportionality. The above relationship simplifies to
P(s|r)∝P(r|s). When the task satisfies this proportionality, the highest peak in the
distribution of the posterior probability coincides with the highest peak in the distribution of
likelihood (Fig 2). Thus, determining the peak of likelihood is the statistically optimal
solution of the inference.

An optimal inference is possible with a model as simple as a linear decoder, provided that
the variability of individual neurons follows a Poisson distribution (or a distribution with
similar properties as a Poisson) and provided that the variability of the neuronal population
is independent of each other. Under these conditions, the logarithmic of likelihood P(r|s) is a
linear combination of the population response r = {r1, r2, …, rN}. The prediction is that each
neuron’s tuning function determines the weights (Jazayeri and Movshon, 2006). The
predicted relationship is formally written as:

where the function fi(s) represents the orientation tuning of the i-th neuron. A
straightforward way to test this prediction is to compare the accuracy of inference with other
linear decoders (e.g., ones that fit the weights). The Bayesian model should infer the
orientation more accurately than any other linear decoder.

A recent study tested this prediction with population responses measured in the primary
visual cortex (Graf et al., 2011). The authors found that, contrary to the prediction, it was the
linear decoder with fitted weights that outperformed the Bayesian model in accurately
inferring the orientation. The linear decoder with fitted weights was able to infer two
orientations, separated by 5 deg, with ~85% accuracy, whereas the Bayesian model inferred
with only ~70% accuracy. The results of this study suggest that the population response in
the visual cortex deviates from the assumptions of the model. In particular, the correlated
variability of the neuronal population caused the Bayesian model to perform less well. The
linear decoder with fitted weights adapted successfully to the existing correlation. It is
essential to record the trial-by-trial responses of the population for the fitting, as an
accumulation of paired recordings in separate sessions is not sufficient to fit the weights.
The superior accuracy of the linear decoder implies that the decision mechanism should take
into account the correlations in the visual cortex, rather than be based simply on individual
tuning properties, to provide the best performance.

The Bayesian model is a general framework with a wide range of applications. The model
applies to cases with more than one population of neurons representing the same sensory
stimulus. Two populations might provide separate information to the decision mechanism.
The solution to this conflict is to sum the responses of the two corresponding neurons (Ma et
al., 2006). The authors propose that the resulting population response, as a whole, implicitly
represents the distribution of the posterior probability. They show that the summation is
actually advantageous because the peak of the represented posterior probability is closer to
the truth than either of the two populations alone. In this model, probabilities are not
explicitly calculated with a linear decoder. Ma et al. termed this coding scheme the
“probabilistic population code” and distinguished it from linear decoding models.
Probabilistic population codes and linear decoders are not mutually exclusive. It is possible
that both mechanisms work at different levels in the neural mechanism of perceptual
decisions. The probabilistic population code has yet to be tested with experimental data; a
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direct test would require recordings from three separate populations that have
correspondence between their neurons.

Object recognition and dimensionality reduction
The major difference between a linear decoder and the population vector is that a linear
decoder detaches neurons from their labels (i.e., the preferred orientation). Without the
labels on the neurons, the linear decoder has a wider range of applications than the
population vector.Gochin et al. (1994) employed this property of linear decoders to explore
the sensory representation in a higher area of the visual cortex. In the inferior temporal
cortex (IT cortex), neurons do not have a distinct bell-shaped tuning function to any stimulus
variable, although they signal information about the identity of objects. Without a bell-
shaped tuning, it is unhelpful to attach a label to the neurons (e.g., the preferred orientation).
Instead of varying the orientation, the authors used a variety of images of real and abstract
objects. They recorded simultaneously from up to eight neurons in the IT cortex. They fitted
a linear decoder to the data and were able to recover the image with 75% accuracy (Gochin
et al., 1994). This accuracy is high compared to a chance level accuracy of 20% (the linear
decoder must recover one image out of five). The success of a linear decoder suggests that a
similar mechanism might underlie the transformation of visual representations in the IT
cortex to object recognition.

The linear decoder applied to IT neurons has a property that is intriguingly similar to our
daily experience in recognizing objects. We accurately recognize objects from their images
even though the images vary to a great degree, depending on variables such as the object’s
position in the visual field. Our visual system is thought to learn the association between the
object and particular images and generalize the association to new images. Similar to that
human ability, a linear decoder fitted to the responses of IT neurons successfully recovers
the category and identity of the object even after the image has been altered for translation
and expansion (Hung et al., 2005). A mechanism similar to a linear decoder might transform
the object representation by IT neurons to object recognition. Such a transformation suggests
that any dynamic changes in the population response of IT neurons should be reflected in
object recognition.

A graphical visualization of the population response helps us characterize how the response
evolves over time. To do this, it will help to return to the inner workings of the linear
decoder. At the front end of a linear decoder, the geometrical representation of the sensory
representation is a point (or a vector) in an Ndimensional space, where N is the number of
neurons in the population. That point is then projected to a point in low dimensional space.
This reduction in dimensionality is a powerful approach to make the stimulus reconstruction
more straightforward. The previous example in Fig 1C graphically illustrates the
dimensionality reduction. The linear decoder projects each dot on a plane (a 2- dimensional
space) onto an axis (a 1-dimensional space) which is perpendicular to the boundary. The
projection reduces the dimensions from 2 to 1. A similar technique for dimensionality
reduction is principal component analysis (PCA). The only difference with linear decoders is
that PCA determines the projection solely based on the distribution of the cloud in the
original N-dimensional space. PCA identifies the projection onto the axis along which the
entire cloud is elongated. Unlike a linear decoder, it does not fit the best projection for
stimulus reconstruction.

Using PCA, the population response of IT neurons was shown to evolve in a particular
pattern over the course of the response. During the first 50 ms of the response, the cloud of
dots is separated by category only (Matsumoto et al., 2005). All the dots corresponding to
the same category form a tight cluster of dots. Thus, the population response only
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differentiates the category of the stimulus, and not the identity. Toward the latter 50 ms of
the response, each tight cloud begins to spread. The spreading suggests that the population
response is able to differentiate the identity of the stimulus.

The delay of spreading provides an explanation of why object recognition appears to happen
in two steps; we recognize the rough category of the object first (e.g., face vs. non-face) and
later discern the identity from finer details (e.g., the faces of individuals A vs. B). The
population responses are very similar for the various identities in the same category in the
early phase of the response. There is no boundary that might separate the tight cloud of dots.
Boundaries can only be drawn when the cloud separates in the later phase of the response
(Matsumoto et al., 2005). This example of the IT population demonstrates how powerful
dimensionality reduction is as a tool for analyzing the dynamics of the population response.
Dimensionality reduction has also revealed interesting transitions in the movement signals
of the motor cortex, from which the population vector was first conceived (Churchland et
al., 2012, 2010). Dimensionality reduction may open new doors into understanding the
computations that take place in various other cortical circuits.

Conclusions
This review covered several topics that directly used population codes as a means to
represent sensory information in the visual cortex. Some of the concepts, such as the
population vector, have been around for over two decades (Georgopoulos et al., 1986),
although they are relatively newer to neurophysiology than traditional concepts such as
stimulus selectivity and receptive fields (Hubel and Wiesel, 1962). Techniques for multi-
neuronal recording have brought population codes from the arena of mathematical modeling
to evidence-based testing. The neural circuits that convert sensory representations into
perceptual decisions provide a model system for testing population codes. This is not to say
that these circuits are the only system. The motor cortex (Churchland et al., 2012, 2010) and
the retina (Pillow et al., 2008; Schneidman et al., 2006; Shlens et al., 2006) have also proven
to be powerful test-beds, although they were not covered in this review.

Technological advancement of multi-neuronal recording and conceptual advancement in
population coding have evolved hand-in-hand. On one hand, ideas on how to test population
codes have pushed researchers to take up newly available recording systems. On the other
hand, demands from researchers have spurred engineers to develop devices that record ever-
larger populations of neurons simultaneously. In addition to testing theories of population
codes, another notable drive for developing these devices is the applications to medical
engineering, such as neural prostheses (Nirenberg and Pandarinath, 2012; O’Doherty et al.,
2011; Velliste et al., 2008). We expect to see more discoveries as more theories of
population coding are tested and as even newer concepts are introduced.

Acknowledgments
The author thanks Adam Kohn for providing helpful comments on this manuscript.

Abbreviations

deg degrees

IT Inferior temporal

Tanabe Page 7

Neurosci Res. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



References
Abbott LF, Dayant P. The effect of correlated variability on the accuracy of a population code. Neural

Comput. 1999; 11:91–101. [PubMed: 9950724]

Alonso JM, Usrey WM, Reid RC. Precisely correlated firing in cells of the lateral geniculate nucleus.
Nature. 1996; 383:815–819. [PubMed: 8893005]

Berens P, Ecker AS, Cotton RJ, Ma WJ, Bethge M, Tolias AS. A fast and simple population code for
orientation in primate V1. J. Neurosci. 2012; 32:10618–10626. [PubMed: 22855811]

Churchland MM, Cunningham JP, Kaufman MT, Foster JD, Nuyujukian P, Ryu SI, Shenoy KV.
Neural population dynamics during reaching. Nature. 2012; 487:51–56. [PubMed: 22722855]

Churchland MM, Cunningham JP, Kaufman MT, Ryu SI, Shenoy KV. Cortical preparatory activity:
representation of movement or first cog in a dynamical machine? Neuron. 2010; 68:387–400.
[PubMed: 21040842]

Cohen MR, Kohn A. Measuring and interpreting neuronal correlations. Nat. Neurosci. 2011; 14:811–
819. [PubMed: 21709677]

Cohen MR, Maunsell JH. Attention improves performance primarily by reducing interneuronal
correlations. Nat Neurosci. 2009; 12:1594–1600. [PubMed: 19915566]

DeAngelis GC, Ghose GM, Ohzawa I, Freeman RD. Functional microorganization of primary visual
cortex: receptive field analysis of nearby neurons. J Neurosci. 1999; 19:4046–4064. [PubMed:
10234033]

Ecker AS, Berens P, Keliris GA, Bethge M, Logothetis NK, Tolias AS. Decorrelated neuronal firing in
cortical microcircuits. Science. 2010; 327:584–587. [PubMed: 20110506]

Gawne TJ, Kjaer TW, Hertz JA, Richmond BJ. Adjacent visual cortical complex cells share about
20% of their stimulus-related information. Cereb Cortex. 1996; 6:482–489. [PubMed: 8670673]

Georgopoulos AP, Schwartz AB, Kettner RE. Neuronal population coding of movement direction.
Science. 1986; 233:1416–1419. [PubMed: 3749885]

Gilbert CD, Wiesel TN. The influence of contextual stimuli on the orientation selectivity of cells in
primary visual cortex of the cat. Vision Res. 1990; 30:1689–1701. [PubMed: 2288084]

Gochin PM, Colombo M, Dorfman GA, Gerstein GL, Gross CG. Neural ensemble coding in inferior
temporal cortex. J. Neurophysiol. 1994; 71:2325–2337. [PubMed: 7931520]

Gold JI, Shadlen MN. Neural computations that underlie decisions about sensory stimuli. Trends
Cogn. Sci. 2001; 5:10–16. [PubMed: 11164731]

Graf ABA, Kohn A, Jazayeri M, Movshon JA. Decoding the activity of neuronal populations in
macaque primary visual cortex. Nat. Neurosci. 2011; 14:239–245. [PubMed: 21217762]

Hubel DH, Wiesel TN. Receptive fields, binocular interaction and functional architecture in the cat’s
visual cortex. J Physiol. 1962; 160:106–154. [PubMed: 14449617]

Hung CP, Kreiman G, Poggio T, DiCarlo JJ. Fast readout of object identity from macaque inferior
temporal cortex. Science. 2005; 310:863–866. [PubMed: 16272124]

Jazayeri M, Movshon JA. Optimal representation of sensory information by neural populations. Nat.
Neurosci. 2006; 9:690–696. [PubMed: 16617339]

Ma WJ, Beck JM, Latham PE, Pouget A. Bayesian inference with probabilistic population codes. Nat.
Neurosci. 2006; 9:1432–1438. [PubMed: 17057707]

Matsumoto N, Okada M, Sugase-Miyamoto Y, Yamane S, Kawano K. Population dynamics of face-
responsive neurons in the inferior temporal cortex. Cereb Cortex. 2005; 15:1103–1112. [PubMed:
15563724]

Newsome WT, Britten KH, Movshon JA. Neuronal correlates of a perceptual decision. Nature. 1989;
341:52–54. [PubMed: 2770878]

Nirenberg S, Pandarinath C. Retinal prosthetic strategy with the capacity to restore normal vision.
Proceedings of the National Academy of Sciences of the United States of America. 2012;
109:15012–15017. [PubMed: 22891310]

O’Doherty JE, Lebedev MA, Ifft PJ, Zhuang KZ, Shokur S, Bleuler H, Nicolelis MAL. Active tactile
exploration using a brain-machine-brain interface. Nature. 2011; 479:228–231. [PubMed:
21976021]

Tanabe Page 8

Neurosci Res. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Paradiso MA. A theory for the use of visual orientation information which exploits the columnar
structure of striate cortex. Biol. Cybern. 1988; 58:35–49. [PubMed: 3345319]

Pillow JW, Shlens J, Paninski L, Sher A, Litke AM, Chichilnisky EJ, Simoncelli EP. Spatio-temporal
correlations and visual signalling in a complete neuronal population. Nature. 2008; 454:995–999.
[PubMed: 18650810]

Salinas E, Abbott LF. Vector reconstruction from firing rates. Journal of computational neuroscience.
1994; 1:89–107. [PubMed: 8792227]

Schneidman E, Berry MJ, Segev R, Bialek W. Weak pairwise correlations imply strongly correlated
network states in a neural population. Nature. 2006; 440:1007–1012. [PubMed: 16625187]

Shadlen MN, Britten KH, Newsome WT, Movshon JA. A computational analysis of the relationship
between neuronal and behavioral responses to visual motion. J Neurosci. 1996; 16:1486–1510.
[PubMed: 8778300]

Shadlen MN, Newsome WT. The variable discharge of cortical neurons: implications for connectivity,
computation, and information coding. J Neurosci. 1998; 18:3870–3896. [PubMed: 9570816]

Shlens J, Field GD, Gauthier JL, Grivich MI, Petrusca D, Sher A, Litke AM, Chichilnisky EJ. The
structure of multi-neuron firing patterns in primate retina. J. Neurosci. 2006; 26:8254–8266.
[PubMed: 16899720]

Smith MA, Kohn A. Spatial and temporal scales of neuronal correlation in primary visual cortex. J.
Neurosci. 2008; 28:12591–12603. [PubMed: 19036953]

Tolhurst DJ, Movshon JA, Dean AF. The statistical reliability of signals in single neurons in cat and
monkey visual cortex. Vision Res. 1983; 23:775–785. [PubMed: 6623937]

Velliste M, Perel S, Spalding MC, Whitford AS, Schwartz AB. Cortical control of a prosthetic arm for
self-feeding. Nature. 2008; 453:1098–1101. [PubMed: 18509337]

Vogels R. Population coding of stimulus orientation by striate cortical cells. Biol. Cybern. 1990;
64:25–31. [PubMed: 2285759]

Vogels R, Spileers W, Orban GA. The response variability of striate cortical neurons in the behaving
monkey. Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale.
1989; 77:432–436. [PubMed: 2792290]

Zohary E, Shadlen MN, Newsome WT. Correlated neuronal discharge rate and its implications for
psychophysical performance. Nature. 1994; 370:140–143. [PubMed: 8022482]

Tanabe Page 9

Neurosci Res. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Highlights

• Techniques for multi-neuronal recording have advanced in the past decade.

• Researchers are now able to test the predictions of population-coding theories.

• Several topics on population coding are introduced and reviewed.

• We expect to see more discoveries as newer concepts and predictions are
introduced.
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Figure 1.
A demonstration of a population response. A) The population consists of two cells. One cell
prefers a 45 deg orientation, while the other prefers a 90 deg orientation. The tuning
functions are modeled with a Von Mises function. B) The population response represents a
single point on a plane. The dashed ellipse shows the set of points as orientation varies, in
the absence of variability. The black dots show how the responses deviate from the ellipse in
the presence of Poisson variability. Orientation was varied in 5 deg steps. The upward and
downward arrows point to the responses when the orientation was 45 deg and 90 deg,
respectively. These points correspond to the right-hand and top corners of the dashed ellipse.
C) The two orientations, 45 deg (open dots) and 90 deg (filled dots), were repeated 100
times each. The variability of the responses makes the points scatter around the
corresponding point on the dashed ellipse. The diagonal line shows the fitted boundary
between the two clouds of dots. Linear discriminant analysis was used for the fit.
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Figure 2.
A demonstration of Bayesian inference. A) The values of the likelihood P(r|s=90) are shown
as a heat map. Each position represents a population response to a 90 deg orientation. The
peak of the heat map is located at the top corner of the dashed ellipse, which corresponds to
the response in the absence of variability. The white dot shows the population response on a
given trial. B) The values of the likelihood P(r|s=45) are shown. The white dot is plotted
again for the same sampled trial. We use the heat maps to look up the likelihoods of 45 and
90 deg orientations on the sampled trial. C) The likelihood values of this trial are plotted
against orientation. The likelihood of a 45 deg orientation was higher than 90 deg. The final
output of the inference process is an orientation of 45 deg.
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