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ABSTRACT: We present a novel free-energy calculation method that constructively integrates two
distinct classes of nonequilibrium sampling techniques, namely, driven (e.g., steered molecular
dynamics) and adaptive-bias (e.g., metadynamics) methods. By employing nonequilibrium work
relations, we design a biasing protocol with an explicitly time- and history-dependent bias that uses on-
the-fly work measurements to gradually flatten the free-energy surface. The asymptotic convergence of
the method is discussed, and several relations are derived for free-energy reconstruction and error
estimation. Isomerization reaction of an atomistic polyproline peptide model is used to numerically
illustrate the superior efficiency and faster convergence of the method compared with its adaptive-bias
and driven components in isolation.

SECTION: Biophysical Chemistry and Biomolecules

Computational investigation of complex systems such as
biological macromolecules is often hampered by the need

to sample rare events, that is, crossing high free-energy barriers,
which cannot be accomplished by standard sampling
techniques such as conventional room-temperature molecular
dynamics (MD) simulations. To enhance the sampling of such
rare barrier-crossing events, one may use a biasing potential.
Using a time-independent bias (e.g., umbrella sampling
technique1) has the advantage of keeping the system in
equilibrium; however, designing a “practical” biasing potential
may require a priori knowledge of the free-energy landscape,
particularly when this landscape is rugged. On the other hand,
simulations generated by time-dependent biasing protocols
require a nonequilibrium treatment. In the context of MD
simulations using (i) a history-dependent “adaptive-bias” force/
potential and (ii) an external (explicitly time-dependent)
“driving” force/potential are two well-known2−6 nonequili-
brium schemes to enhance the sampling and estimate the free
energies.
In adaptive-bias methods, for example, local elevation,2

coarse MD,7 adaptively biased MD,8 adaptive accelerated MD,9

metadynamics,3,4 and λ-metadynamics,10 the simulation history
is used to enhance the sampling by discouraging the system to
return to the already visited regions of the phase space.
Potential is adaptively biased until converged and used to
reconstruct the free energy landscape. A nonequilibrium driven
scheme (e.g., steered MD11) can be used to induce a transition
by steering the system along a reaction coordinate that
otherwise may not be sampled in an unbiased simulation. By
measuring the work along these nonequilibrium trajectories,
one may estimate the free-energy differences or reconstruct the
free-energy profiles using nonequilibrium work relations.5,6,12

These relations can be also used to estimate relative reaction
rates13 and generally any equilibrium path-ensemble averages.14

Adaptive-bias and driven MD schemes are powerful methods
whose applications have been extended to biomolecular
simulations;15−19 however, both methods have practical
limitations. Steered MD is often associated with a slow
convergence if used for free-energy calculations (because the
dissipative work is often large and many iterations may be
needed to capture a small one, that is, the dominant term in
work-based free energy estimators5) but it can be used to
explore the transition paths, at least qualitatively, an advantage
over metadynamics, in which the system starting from one end
of the configuration space (the reactant) may take a long time
to visit the other end (the product). One cannot estimate the
free-energy difference of the two end states until both states
have been sufficiently sampled.
By incorporating an explicitly time-dependent scheme into a

history-dependent scheme, we introduce a novel driven
adaptive-bias scheme, termed driven metadynamics (D-
MetaD), that takes advantage of both its driven and adaptive-
bias components and is advantageous over both components in
isolation. D-MetaD has an advantage over conventional
metadynamics in that it ensures the exploration of the
transition pathway (from one end to the other) in the early
stages of the simulation and gradually improves the estimate of
the free energies almost uniformly along the reaction
coordinate. D-MetaD also has an advantage over the conven-
tional steered MD in that the effective free-energy surface
gradually becomes smooth and flat such that the system can
move along the reaction coordinate with progressively less
amount of work.
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We use nonequilibrium work relations not only in analyzing
the trajectories but also more importantly in constructing the
biasing protocol that is per se a novel use of nonequilibrium
work relations. The approach presented here expands the scope
of nonequilibrium work relations into a new realm, namely,
designing work-based biasing protocols. We introduce a general
framework to combine an adaptive-bias scheme with a
nonequilibrium driven scheme by reweighting the kernel
memory (used in most adaptive-bias schemes) using on-the-
fly nonequilibrium work measurements. Although, for the sake
of clarity, we discuss a particular algorithm here, this approach
can be easily generalized to combine any methods from the
adaptive-bias class with any from the nonequilibrium driven
class, resulting in “hybrid” protocols that could be more
efficient than their adaptive-bias and driven components in
isolation.
Consider a system described by coordinates r and momenta

p and governed by the Hamiltonian H(r,p) with a canonical
equilibrium distribution at temperature 1/β. Suppose that x(r)
is a holonomic coordinate (e.g., representing a slow mode) and
F(x) is the free energy associated with x; that is, p(x) = e−βF(x)

describes the distribution of x in equilibrium:
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In the adaptive-bias scheme, one adds a history-dependent
biasing potential to the system such as:

∫ ω= + ′ ′ −′ ′U x t U x t x t K x x( , ) ( ) d ( , ) ( )
t

t t
a

0

0 (2)

in which K(Δx) is a kernel function (e.g., (1/((2π)1/2σ))exp-
(−(1/2)(Δx/σ)2) and σ is the kernel width), U0(x) is an
arbitrary function, and ω(x, t) is an energy rate that is

ω0e
−β′Ua(x,t) in the well-tempered metadynamics20 (1/β′ is an

arbitrary temperature) that reduces to a constant ω0 in the β′
→ 0 limit (i.e., conventional metadynamics3). Kernel K(Δx)
approximates a smooth δ function, and ⟨K(x − xt)⟩a can be
thought of as an approximation of the probability density p(x,
t) (⟨.⟩a is the average over an ensemble of adaptive-bias
trajectories). It has been shown21,20 that ⟨Ua(x,t → ∞)⟩a ≈
Ua

s(x) + u(t) (u(t) is an additive constant at each t) in which
Ua

s(x) equals −F(x) and −(1 + (β′/β))−1F(x) in the
conventional21 and well-tempered20 metadynamics, respec-
tively. The steady-state distribution of x can be described by

ps(x) ∝ e−β(F(x)+Ua
s(x)). U0(x) could be a flat function or an initial

guess for Ua
s(x) to speed up the convergence process, but Ua

s(x)
does not depend on it. Here we focus only on these variations,
although the generalization of our method to other variations of
the adaptive-bias scheme is straightforward.
In the nonequilibrium driven scheme, one adds a driving

potential Ud(x, t) to the system that is often harmonic, Ud(x, t)
= (1/2)k(x − X(t))2, in which X(t) is a protocol controlling the
target (e.g., X(t) = x0 + (x1 − x0)(t/T); x0 and x1 may represent
the reactant and product or the two ends of the x space to be
explored). Although the system might remain far from
equilibrium, one can reconstruct the unbiased distribution6

according to:

δ∝ ⟨ − ⟩β− Δp x x x( ) ( )et w
d

t

(3)

in which Δwt = wt − Ud(x
t,t), wt = ∫ 0

t dt′(∂/∂t′)Ud(x
t′,t′) is the

total work up to time t, and ⟨.⟩d denotes an average over the
ensemble of driven trajectories (driven ensemble). The initial
configurations are prepared in an equilibrium state perturbed

by the biasing potential Ud(x,0). The e−βΔw
t

term can be
thought of as a weighting factor to connect the driven ensemble
to the equilibrium ensemble.22

To combine the two schemes described above, here we
introduce a driven adaptive-bias scheme that adds an adaptive
(Ua(x, t)) and a driving (Ud(x, t)) potential to the Hamiltonian.
We use an iterative approach in which an independent
simulation is performed from time t = 0 to T in the nth
iteration (n = 1, 2, ...), biased by the potential Ud(x, t) + Ua

n(x,
t) in which Ud(x, t) = (k/2)(x − X(t))2 for all n and:

∫ ω= + ′ ′ − β− ′ ′ − Δ ′
U x t U x t x t K x x( , ) ( ) d ( , ) ( )en n

t
t t w

a
1

0

t
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in which Δwt = wt − Ud(x, t) similar to relation 3 and Un(x) =
Ua

n(x, T) for n > 0 and U0(x) is an initial guess. ω(x, t) is the
same as its nondriven (conventional or well-tempered)
counterpart. Note that the “weighted” average ⟨K(x −
xt)e−βΔw

t

⟩da approximates ⟨δ(x − xt)e−βΔw
t

⟩da (⟨.⟩da denotes an
average over the driven adaptive-bias ensemble). We also note

that for practical reasons the e−βΔw
t

factor in relation 4 can be
also reweighted using “weight functions” similar to those used
for the free-energy estimation from conventional pulling
experiments. (See ref 23.) To simplify the discussions we

leave the e−βΔw
t

factor as is (i.e., using the “constant weight”
protocol23). However, the “pulling potential” or “occupancy”
weights are generally more appropriate for practical/numerical
reasons.23

In general, the initial configuration for iteration n needs to be
equilibrated under the biasing potential Ua

n(x,0) + Ud(x,0).
However, preparing the initial configurations can be simplified
if we assume that the driven term is considerably greater than
the adaptive term, (guaranteed in the stiff-spring limit24) such
that the equilibrium distribution for the perturbed system is
more or less independent of the adaptive term. Because the
driven potential is the same for all n, the initial configurations
for all iterations can be also prepared simply by using the
Ud(x,0) bias.
If we iterate the protocol described above until the adaptive

term of the biasing potential converges to Ua
s(x), the system can

be considered as a nonequilibrium driven system governed by
the Hamiltonian H(r,p) + Ua

s(x) + Ud(x, t). One can show that
Ua

s(x) of a driven metadynamics protocol is the same as that of
its nondriven counterpart (see Supporting Information), for
example, Ua

s(x) = −(1 + (β′/β))−1F(x) for the well-tempered
variation and Ua

s(x) = −F(x) for the β′ → 0 limit.
Although Ua

s(x) can be used directly to estimate the free
energy of the system, one might alternatively measure work
along the trajectories once the Ua(x, t) has nearly converged
(i.e., Ua(x, t) ≈ Ua

s(x) + u(t)). If the driving process at time t =
0 starts from the state X(0), governed by the Hamiltonian
H(r,p) + Ua(x, t) + Ud(x,0), then the distribution of states
associated with x in the steady state, governed by H(r,p) +
Ua(x, t), may be represented by ps(x) ∝ exp(−βFs(x)), and
Fs(x) = F(x) + Ua

s(x) may be estimated from the non-
equilibrium work relation:
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In principle, this estimator will result in an accurate
description of free energy along x by using the work
measurements at any given t, assuming enough sampling for
all x. In practice, one might combine multiple time slices (by
storing xt and wt at different t) to estimate the free energy, for
instance, by employing the Hummer−Szabo estimator
method:6
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that can be solved self-consistently along with f(t):
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Ideally, in the case of conventional variation of metadynamics,
Fs(x) is flat because Ua

s(x) = −F(x). In practice, Fs(x) estimated
from the relation above is not flat and can be used to correct
the free energy estimated from biasing potential FU(x) =
−Ua

s(x) via FW = FU(x) + Fs(x); FW is the corrected free energy,
and ε(x) = |FW(x) − FU(x)| = |Fs(x)| is an error estimate
associated with it. This can be thought of as the driven
counterpart of “umbrella corrections”8 in conventional
adaptive-bias simulations. In the case of well-tempered
metadynamics, Fs(x) = −(β′/β)F(x), so the above work-
based estimate of Fs(x) can be used as an alternative method for
estimating F(x) as −(β/β′)Fs(x). However, choosing a β′
considerably smaller than β may result in a larger error than
direct use of Ua

s(x). In this case, Fs(x) can be used to correct
FU(x) = −(1 + (β/β′))Ua

s(x) and estimate the error similar to
the case of β′ = 0 discussed above. The corrected free energy
would be FW(x) = −Ua

s(x) + Fs(x), associated with an error
ε(x) = |FW(x) − FU(x)| = |Fs(x) + (β′/β)Ua

s(x)|. One can
estimate Fs(x) and Ua

s(x) from work measurements and
converged potential, respectively.
We note that one may derive other work-based free-energy

estimators for driven adaptive-bias trajectories similar to those
used in nonadaptive variations of nonequilibrium driven
systems. More importantly, a bidirectional driving protocol is
known to result in a faster convergence than a unidirectional
one by combining the forward and reverse driven ensembles. D-
MetaD as introduced here can be used in a bidirectional
scheme such that the forward direction XF(t) varies from XF(0)
to XF(T) and in the reverse direction XR(t) = XF(T − t). One
can iteratively run the forward and reverse simulations in an
alternating manner with an initial equilibration for each
simulation. Note that the two protocols (forward and reverse)
are associated with the same Ua

s(x). Deriving bidirectional free-
energy estimators12 is also straightforward.

D-MetaD in ω0 → 0 and k → 0 limits describes the
nonadaptive driven MD and nondriven metadynamics,
respectively. Interestingly, because of its iterative nature, at
the end of any iteration n, D-MetaD can be easily turned into
metadynamics or steered MD by removing its driven or
adaptive component, respectively. The biasing potential Un(x)
will be the initial guess for the metadynamics simulations and a
time-independent bias for the steered MD simulations. By
removing both driven and adaptive components and using
Un(x) as a time-independent bias, D-MetaD can be turned into
a conventional biased equilibrium simulation.

Finally, our method can be generalized to reconstruct
multidimensional free-energy surfaces. While this generalization
is straightforward in adaptive-bias simulations, the driving
protocol is easier to implement using a 1-D reaction coordinate,
x. One can use the driving potential Ud(x, t) and construct a
multidimensional adaptive potential Ua

n(x,y,t) described by:

ω̇ = − ′ − β− ΔU x t x t K x x Ky y y( , , ) ( , ) ( ) ( )ea
n t t t wt

(8)

in which y represents collective variables other than x and K′ is
a multidimensional kernel function.
To test the D-MetaD method and compare its performance

to that of metadynamics and steered MD, we carried out several
sets of MD simulations, investigating the cis−trans isomer-
ization reaction in polyproline peptides. Proline is unique
among the common amino acids in that its side chain is
cyclized onto the backbone nitrogen atom, restricting its
conformational space to a narrow region in the Ramachandran
map.25 However, of the 20 common amino acids, only proline
is “comfortable” in both cis- and trans-isomer conformations.
Polyproline is known to form helical structures with two well-
characterized conformations: (i) a right-handed polyproline
type-I helix (PPI) with all residues in the cis-isomer
conformation (all-cis conformer) and (ii) a left-handed
polyproline type II helix (PPII) with all residues in the trans-
isomer conformation (all-trans conformer) (see Figure 1).

Traditionally, an oligomeric proline peptide in aqueous solution
is seen as a “rigid rod”; however, recent experimental26 and
computational16 studies suggest a considerable heterogeneity in
the conformational space of polyproline with subpopulations of
distinct end-to-end distances due to the existence of distinct
cis−trans patterns.
From a computational point of view, the characterization of

proline-rich peptides is rather difficult because the cis−trans
isomerization reaction is an extremely slow process (i.e., tens to
hundreds of seconds at room temperature27). This reaction has
recently been studied using conventional adaptive-bias and
driven MD schemes both on pure polyproline16,28 and on other
proline-containing peptides.29−31 Free-energy landscapes of

Figure 1. Top (ribbon representation) and side (licorice representa-
tion) views of the right-handed PPI and the left-handed PPII
conformations of a pentameric polyproline peptide. The backbone
atoms involved in the definition of ω dihedral angles are shown; the
prolyl peptide bonds are highlighted.
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polyproline peptides in different environments including water,
propanol, and hexane, obtained using a variation of conven-
tional metadynamics (i.e., adaptively biased MD8) reveal that
water and hexane favor PPII while propanol favors PPI.16,28

Here we investigate the PPII ↔ PPI reaction of polyproline
peptides (Ac-(Pro)n-NH2) of various length (1 ≤ n ≤ 5) in an
implicit water environment (using the Generalized Born
model32). NAMD 2.833 simulation package was used to
perform the simulations using the CHARMM27 force field34

with a 1 fs time step at a constant temperature of 300 K (using
a Langevin thermostat with a damping coefficient of 1/ps) with
no cutoff for nonbonded interactions.
To study the cis−trans isomerization, we define a collective

variable Ω = ∑i=1
n cos2(ωi/2) based on the backbone dihedral

angles {ωi} that roughly measures the number of cis-prolyl
bonds in an n-mer peptide; ωi is around 0 (±180) for cis
(trans) isomers, and thus cos2(ωi/2) falls around 1 (0). Ω
ranges between 0 and n (representing all-trans PPII and all-cis
PPI conformers, respectively) and is associated with a free
energy F(Ω) with n + 1 minima and n maxima centered around
integer and half-integer values of Ω, respectively.16,28 We note
that generally designing a 1D collective variable (e.g., Ω) that
reflects all of the slow conformational changes of the system
(e.g., cis/trans isomerization of all prolyl bonds) is a key factor
in free-energy calculation methods such as metadynamics,
steered MD, and inherently D-MetaD.
A bidirectional steered MD (SMD) scheme was used to steer

the system along Ω between 0 and n with a constant speed of Ω̇
= 10/ns and a harmonic constant of 100 kcal/mol, iterated 10
000 times in each direction with a total simulation time of 2, 4,
6, 8, and 10 μs for monomeric, dimeric, trimeric, tetrameric,
and pentameric polyproline peptides, respectively. A metady-
namics MD (MetaD) scheme described by a Gaussian kernel of
width σ = 0.2 and a well-tempered rate of (ω0 = 0.1 (kcal/mol)
ps−1, (β/β′) = 10), and a flat initial bias U0(Ω) = 0 was used to
reconstruct F(Ω) using a total simulation time matching that of
the SMD runs for each peptide. Finally, a D-MetaD scheme

combining the SMD and MetaD methods with the exact same
parameters described above was used to reconstruct F(Ω). The
e−βΔw

t

factor was simplified to e−βw
t

, mimicking the pulling

potential weight protocol23 (i.e., e−βΔw
t

was multiplied by the
unnormalized pulling potential weight e−βUd(Ω,t)).
In the SMD and D-MetaD simulations, Ω and work values

were stored every 1 ps and used at the end of each bidirectional
iteration to reconstruct the free-energy profiles F(Ω) and Fs(Ω)
(for SMD and D-MetaD, respectively) using the self-consistent
bidirectional implementation12 of the Hummer−Szabo meth-
od.6 For the MetaD and D-MetaD simulations, the instanta-
neous adaptive potential Ua(Ω,t) was used as an estimate for
Ua

s(Ω) to reconstruct FU(Ω) at time t. The corrected D-MetaD
free energy FW(Ω) was constructed using Ua

s(Ω) and Fs(Ω), as
approximated from Ua(Ω,t) and work measurements, respec-
tively.
Figure 2 summarizes our results for the pentameric peptide;

SMD, MetaD, and D-MetaD methods give very similar
estimates for F(Ω) eventually (Figure 2a), but the D-MetaD
simulations converge considerably faster than the others (see
Figure 2b). To illustrate the convergence behavior, we plot two
physically relevant quantities in Figure 2c,d: the free-energy
difference between the PPI and the PPII conformers, F(5) −
F(0), and between the transition state and the global minimum,
F(2.5) − F(0). Figure 2 generally reveals that D-MetaD
constructively combines both MetaD and SMD methods to
speed up the convergence time. To quantify the convergence
time associated with a method m (SMD, MetadD, or D-
MetaD), we define it as the smallest time τc in which |Ft

m(Ω) −
Fc(Ω)| < ε for all Ω and for all t > τc; Ft

m(Ω) is the free energy
estimated from the method m at time t, Fc(Ω) is our final free-
energy estimate averaged over the results of all three methods,
and ε is an error parameter adjusted to ensure the
meaningfulness of the analysis statistically. Figure 3 shows τc
associated with all three methods for all of the peptides studied
using ε = 2 kcal/mol. τc is expected to grow exponentially by
the peptide length n (that somewhat represents the complexity

Figure 2. (a,b) Free-energy profile F(Ω) (offset by F(0)) of a pentameric polyproline peptide obtained from SMD (red), MetaD (blue), and D-
MetaD (black) simulations at t = 10 000 and 200 ns, respectively. In panel b, the dashed curve is the D-MetaD results without the work-based
corrections (i.e., FU(Ω)) and the green curve is the average of the three converged curves in (a) (i.e., Fc(Ω)). (c,d) Evolution of ΔF = F(5) − F(0)
and ΔF = F(2.5) − F(0) by time as estimated from SMD (red), MetaD (blue), and D-MetaD (black). The green regions represent Fc(Ω) ± ε with ε
= 2 kcal/mol.
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of the problem) due to the exponential growth of the number
of states; considering the cis-trans isomerization only, we
precisely have 2n conformers for an n-mer peptide. Interest-
ingly, the τc growth constant of D-MetaD method is
considerably smaller than that of MetaD and SMD such that
at least in this particular case and within this range (1 ≤ n ≤ 5)
τc grows almost linearly by n.
In summary, we have introduced a nonequilibrium free-

energy method with an explicitly time- and history-dependent
biasing protocol. D-MetaD is a novel scheme that takes
advantage of both driven and adaptive-bias schemes. Unlike
the nondriven metadynamics, D-MetaD samples the reaction
path almost uniformly from the very beginning, and unlike the
nonadaptive driven MD, the amount of work along the reaction
path decreases gradually. The history-dependent term of the
potential on average behaves similarly to that of conventional
adaptive-bias systems and once converged can be used to
reconstruct the free-energy profile whose error can be
estimated using nonequilibrium work measurements.
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