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Abstract

This paper examines the multiple atlas random diffeomorphic orbit model in Computational Anatomy (CA) for parameter
estimation and segmentation of subcortical and ventricular neuroanatomy in magnetic resonance imagery. We assume that
there exist multiple magnetic resonance image (MRI) atlases, each atlas containing a collection of locally-defined charts in
the brain generated via manual delineation of the structures of interest. We focus on maximum a posteriori estimation of
high dimensional segmentations of MR within the class of generative models representing the observed MRI as a
conditionally Gaussian random field, conditioned on the atlas charts and the diffeomorphic change of coordinates of each
chart that generates it. The charts and their diffeomorphic correspondences are unknown and viewed as latent or hidden
variables. We demonstrate that the expectation-maximization (EM) algorithm arises naturally, yielding the likelihood-fusion
equation which the a posteriori estimator of the segmentation labels maximizes. The likelihoods being fused are modeled
as conditionally Gaussian random fields with mean fields a function of each atlas chart under its diffeomorphic change of
coordinates onto the target. The conditional-mean in the EM algorithm specifies the convex weights with which the chart-
specific likelihoods are fused. The multiple atlases with the associated convex weights imply that the posterior distribution
is a multi-modal representation of the measured MRI. Segmentation results for subcortical and ventricular structures of
subjects, within populations of demented subjects, are demonstrated, including the use of multiple atlases across multiple
diseased groups.
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Introduction

The advent of high-resolution T1-weighted magnetic resonance

(MR) neuroimaging technologies facilitates a detailed exploration

into human brain anatomy. Many quantitative studies have

demonstrated that morphometric and functional responses of

cortical and subcortical brain structures are highly correlated to

numerous neuropsychiatric illnesses. There now exists a large

research community supported by universally deployed software

packages [1–5] applying automated methods for reconstruction of

the human brain structures, which often rely on pre-defined brain

atlases. These atlases represent structural and functional informa-

tion of the brain associated to single-subject, population-averaged,

or multiple brain atlas coordinate systems including whole brain

based coordinate systems [6–11], white matter based coordinate

systems [12–17], and surface based coordinate systems [18–21];

see [22] for an excellent review. Often these are coupled with

global deformable template methods, small and large deformation

in nature [23–38], for transferring information across anatomical

coordinate systems.

In these deformable template approaches, the solutions inherit

the smoothness and the topological properties from the atlas. The

problem focused on in this paper is to extend the generative

random diffeomorphic orbit model that has been used in single

atlas approaches [30,31,35,39] to the multiple atlas model, in

which not only are the diffeomorphic changes in coordinates

unknown but also jointly measurable parameters are unknown

such as those arising in: (1) atlas labeling corresponding to disease

inference, (2) structure parameters such as volumes, or (3) dense

label field estimation associated with segmenting the target image

into anatomically defined regions. In all the three examples, the

atlas in the collection is unknown in generating the image,

implying the posterior distribution is multi-modal determined by

the multiple atlases. In these global deformable template methods

[40], the parameters to be estimated are not ‘‘isolated’’ from the

simultaneous acquisition of the global shape phenotype, which is
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encoded via the structure of the template and the associated

deformation.

Since the atlases used for interpreting the image are not known,

the conditional-mean technology of the expectation-maximization

(EM) algorithm [41] underlies the problem. As we will show, the

conditional-mean explicates the weights with which the atlases

contribute to the interpretation of the image in the multi-modal

representation. In this setting, there is a likelihood indexed over

each atlas which is then combined via superposition to generate

the single a posteriori distribution that the Bayes maximum a

posteriori (MAP) estimator optimizes. The superposed weights are

the conditional expectations of the latent variables determining the

amount that each atlas-specific likelihood is factored into the single

a posteriori likelihood. We name this the likelihood-fusion

equation.

A significant extension, developed in this paper, of the random

atlas model is to add to the global deformable template the notion

of locality which is usually associated to the local approaches from

differential geometry [42]. Here an atlas is defined as collections of

local charts linked through diffeomorphic coordinate transforma-

tions. The anatomical model constructs the atlas via charts of

subcortical and cortical volumes delineated in varying anatomical

coordinate systems. In our case, we focus on subcortical structures

and the ventricles. The MAP problem labels each voxel of the

target image via mixtures of the locally-chart-defined conditional a

posteriori probabilities. Since for any voxel, a chart from any of

the atlases could be the generator of its mean field and the

associated conditional a posteriori probability, the conditional-

mean of the latent variables on chart selection is calculated for

each voxel in the target image, thus providing locality in the

segmentation as part of the global model.

The multi-atlas random orbit model used here for segmentation

differs from several other approaches in the following ways. First,

the proposed method solves for the single set of unknown

segmentation variables Wand conditions only on the observable

imageI . It does not generate a set of segmentation labels associated

to each atlas-chart interpretation, which might then be combined

via voting for fusing based on a performance metric [37,43–49].

The conditional expectation framework derived here explicates

the role of each chart and atlas by averaging via the conditional-

expectation over the atlas-dependent log-likelihoods generating

the single fused likelihood, from which the segmentation labels are

generated as maximizers. This is likelihood-fusion instead of label-

fusion.

Also, it is noteworthy that, in the likelihood-fusion approach, we

do not generally find that the posterior probability is concentrated

as a delta-function supported on one or a small number of the

same atlases, which would be equivalent to the generalized

likelihood problem in which the atlases and charts are tested

separately with the ‘‘closest’’ ones determining the solution via

combination as in [45,49–51]. The fact that the convex

combination of atlases is rarely concentrated on a single or a

small subset of atlases implies that the likelihood-fusion mediates

the high dimensionality of atlas selection which the generalized

likelihood problem would suffer from. The likelihood-fusion is

associated to averaging of log-probabilities over multiple atlases.

The method proposed here is a generative model approach,

more akin to the approach suggested in [52]. The generative

model we use here extends the conditionally random field orbit

model of Computational Anatomy (CA) to the multiple-atlas case,

modeling the images as conditionally random fields conditioned

on the random segmentation field and the random unknown atlas

charts to be selected. Chart selection is applied throughout the

field, extending the global nature of diffeomorphic methods to

local selection via spatial chart selection throughout the random

field.

In this paper, we investigate the quality of the multi-atlas multi-

chart diffeomorphic orbit model for the segmentation of deep gray

matter structures, as well as the ventricles, using T1-weighted MR

images. We were particularly interested in characterizing brain

atrophy, and therefore, we tested our method in elderly and

dementia populations. Results from the automated segmentation

scheme have been compared with the manual segmentations to

examine the accuracy of the method. More specifically, we

investigate: 1) the level of accuracy we can achieve using a single-

atlas approach; 2) the degree of improvement by incorporating the

multi-atlas approach; and 3) the impact of the anatomical

variability on accuracy based on a normal elderly and a dementia

patient population.

Methods

2.1 Atlas Selection and The Random Orbit Model
We first examine the class of maximum a posteriori problems in

which the generalized parameters h are jointly distributed with

respect to the observed MRI image I in the context of a family of

atlases Iaf g. The parameters can take several forms – the disease

type associated to the image, the volume of a structure in the

image, or the labeling of the image into a segmentation field of

subcortical structures. The likelihood model for inference based on

a single atlas a is the form of a conditional density jointly measured

with the unknown parameters p(I ,hDa). Viewing the multiple-atlas

problem with atlas A random, the fusion of the likelihood

functions gives the multi-modal mixture model:

p(I ,h)~
X

a

p(I ,hDA~a)pA(a), ð1Þ

with pA(a) the prior averaging over atlases. This is the generative

model with which we score each image and perform inference on

the parameters within our multi-modal model.

2.1.1 The Random Orbit Model
Scoring the images in Eq. (1) boils down to the calculation of the

conditional density of the image given any particular atlas p(I Da).
For this, we use the generative random orbit model to model the

image as a random field [31], a noisy observation of an unknown

change in coordinates Q of the underlying atlases Ia,a~1,::: which

generate it. Conditioned on the atlas as well as the diffeomorph-

ism, the observed image has a conditional density indexed over the

voxel lattice p(I DIa0Q,a)*exp½{ 1
2

I{Ia0Qk k2�, with the diffeo-

morphisms generated via flows Q~
Ð1
0

vt(Qt)dt,v[V . We use the

shorthand notation for the densityp(I DQ,a).

The diffeomorphic flows are generated by the set of time-

indexed vector fields _QQt~v(Qt) with finite integrated norm

v :
Ð1
0

vtk kV dtv?

( )
. The flows are spatially smooth since time-

sections of the vector fields are of finite norm vtk kV dominating a

Sobelev norm of spatial derivatives existing in squared error [30].

For computational purpose, we use an operator-induced norm so

that fk k2
V ~

P3
i~1

Lfik k2
2 and fik k2

2~
Ð

fi(x)j j2dxwith the differen-

tial operator L~{b+2pzc, where+2pis the Laplacian operator

with power p§1:5, and b, care real numbers. The prior in the

random diffeomorphism orbit model is built using the geodesic

Diffeomorphic Likelihood-Fusion Based Segmentation

PLOS ONE | www.plosone.org 2 June 2013 | Volume 8 | Issue 6 | e65591



energy in the space of diffeomorphisms _QQv~v(Qv)relative to

the identity mapping, privileging the initial tangent vector

determining the geodesic p(Qv0 Da)*exp({cr2
a(id,Qv0 )) with

r2
a(id,Qv0 )~exp({cDDv0DD2V ). In the random orbit model, the

conditional density of the image is computed via the nuisance

integral:

p(I Da)~

ð
p(I ,QDa)dQ~

ð
p(I DQ,a)p(QDa)dQ: ð2Þ

2.1.2 Atlas Selection for Real-Valued MAP Estimation
Model selection plays a fundamental role in the MAP estimation

of parameters. We associate the high dimensional parameter set

h[RN to the MRI (I ,h). At the heart of the MAP estimation

problem is how much each single atlas contributes to interpreting

the image jointly with its parameters, denoted as the conditional

probability according to PA(aDI ,h). We use the EM algorithm to

find the MAP estimatorh.Shown in Appendix S1 is the proof that

the EM algorithm is monotonic in likelihood for the sequence of

segmentation labels and that fixed points satisfy the necessary

conditions of being a MAP estimator.

2.2 The Hierarchical Segmentation Random Orbit Model
Now we examine MAP estimation in the high-dimensional

setting of unknown segmentation fields, h~W1,:::,WN corre-

sponding to subcortical labelings Wi[ A,C,H,T ,:::f gof amygdala,

caudate, hippocampus, thalamus…, associated to the MRI

(I ,h)~(I1,W1,:::,IN ,WN ) indexed over the voxel lattice of size

N~n3.

We define a hierarchical model between the image and the

underlying diffeomorphic change in coordinates of the atlas, so

that W splits the target image and the diffeomorphic change of

coordinates. Conditioned on W , the joint measurement I ,Q is

independent with the image being a conditionally independent

random field from voxel to voxel under the product distribution:

p(I ,W Da,Q)~p(I DW ,a,Q)p(W Da,Q)

~P ip(Ii Da,Wi)p(W Da,Q):
ð3Þ

The term p(Ii Da,Wi) is computed using Gaussian mixture models.

The probability p Wi Da,Qð Þ is calculated by transferring the

segmentations of the atlas under the action of the diffeomorphism

between the atlas and the target. For voxel xicorresponding to

atlas coordinate Q{1
a (xi) which is interior to the atlas anatomical

labels so that all neighbors on the lattice are of the same label type,

no interpolation is required and the prior probability is an

indicator function; otherwise the probability is interpolated. To

compute the joint probability of image and segmentation labeling

I , W for the iterative MAP algorithm, we must solve the integral

over the nuisance variables of coordinate transformations for which

we use the mode approximation QW ~arg maxQp(W Da,Q)p(QDa)

approximating

p(I ,W Da)~

ð
p(I ,W Da,Q)p(QDa)dQ

*p(I ,W ,QW Da),

ð4Þ

with p(QDa) the prior on transformations conditioned on the atlas.

2.2.1 Local Charts
Locality is introduced into the global representations by defining

the atlases to correspond to manually-labeled T1-weighted

imagery with empirical mean and standard-deviation parameters

obtained over the subcortical structures indexed throughout the

volume. The charts are collections of the manually delineated

sixteen subcortical and ventricular structures, each with means

and variances; associated to each chart are the parameters ma,sa

representing the structure. Locality of the atlas-charts is introduced

by indexing to the target image the atlas label fieldA~(A1,A2,:::,),
where Ai denotes the atlas-chart interpreting the target voxels.

The charts are ‘‘open sets’’ containing each of the subcortical

structure so that their unions cover the full volume and are related

with each other as depicted in Figure 1 via diffeomorphic

coordinate transformations. Two pointsXand Y in the hippocam-

pus chart and the amygdala chart may be compared using the

forward and inverse mappings via: Y~Q{1
a 0Qh(X ),

X~Q{1
h 0Qa(Y ). This ensures that during segmentation, multiple

charts overlapping allows for weighted interpretation, since all

‘‘mediation’’ of errors occurs at the boundaries of the structures.

At one boundary of the hippocampus, for example, are portions of

the ventricles, at another the amygdala. Interpretation of those

boundary voxels is supported by multiple charts which can overlap

and therefore may offer alternative contributions.

The multi-atlas random orbit model of the observed imagery I

is that the mean-fields are random deformations of atlas-charts

arising from perhaps different atlases, each locally indexing

different parts of the brain. The image and diffeomorphism are

linked through the fact that the diffeomorphism determines the

segmentation.The image is conditionally Gaussian with mean

determined by the deformed atlas-chart according to

Ii~ma(W 0Q{1
a xið Þ)znoise, with the noise being additive Gauss-

Figure 1. Depiction of two charts and the associated diffeo-
morphisms chosen to illustrate the interpretation. The charts are
related via diffeomorphic coordinate transformations as depicted in the
figure, in which points X, Y in the hippocampus chart and the amygdala
chart are compared using the forward and inverse mappings. In our
paper the charts are manually delineated structures including the
amygdala, caudate, hippocampus, putamen, thalamus, lateral ventricle,
the 3rd ventricle, and the 4th ventricle.
doi:10.1371/journal.pone.0065591.g001
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ian. This indexing of every point in the target image with a chart

label gives the locality. The probabilistic structure we induce

corresponds to splitting the image and diffeomorphism so that, given

the segmentation, the image is conditionally independent of the

diffeomorphism p(Ii DWi,Q,a)~p(Ii DWi,a)~eexp({
Ii{ma(Wi)ð Þ2

2sa(Wi)
2

):

We also use Gaussian mixture models for the conditional random

field as introduced in [53].

2.2.2 Likelihood Fusion and the EM Algorithm
We introduce the localized indicator functions associated to the

atlas field labelling A~(A1,A2,:::) with da Aið Þ~1 meaning that

atlas Ai~a is used to interpret the image I ; the joint density is

conditionally independent between different voxels, conditioned

on the atlas-chart labels given by

p(I ,W DA~A1,A2:::)~P
i
P
ai

p(I ,W Dai)
dai (Ai ), ð5Þ

where ai designates the atlas used to interpret the image voxels.

For the case where the atlases are global, then one atlas is used to

interpret the image; for all of the cases shown here the atlas-charts

are locally defined subcortical structures with multiple atlas-charts

interpreting each image.

The Algorithm. Define the Q-function as the conditional

expectation of the complete-data log-likelihood according to

Q(W ; W old )~E log p I ,W DAð ÞDI ,W old
� �

~
X

i

X
a

PAi
(aDI ,W old )log p(I ,W Da):

ð6Þ

Then the sequence of iterates W (1),W (2),:::, associated to the

alternating maximization defined by the iteration:

W new~arg maxW Q(W ; W old ), ð7Þ

is monotonic in the incomplete-data likelihood (proven in

Appendix S1) with atlas selector PAi
(aDI ,W old ). The monotonicity

follows from the fact that Eq. (6) is an EM Algorithm, as proven in

the Appendix S1, since

Q(W ; W old )~E
PA(:DI ,Wold )

log p(I ,W DA)DI ,W old
� �

~E
PA(:DI ,Wold )

X
i

X
a

da(Ai)log p(I ,W Da)

( )
,

with Eq. (6) following from the expectation

E
PA(:DI ,Wold )

da(Ai)~PAi
(aDI ,W old ). Eq. (6) is the likelihood-fusion

equation. During the iteration, the sequence of conditional

probabilities PAi
(:DI ,W old ) derived from the conditional mean of

the indicator functions encodes the set of atlases being selected in

the interpretation of any particular voxel. Computing the

maximization requires calculating the integral over the nuisance

of coordinate transformation for which we use the mode

approximation. The general steps of the algorithm can be

summarized as follows:

1. Initialize: W old , and Qold for each atlas, PAi
(a)~uniform

2. Compute optimized mappings

Qold~arg maxQp(W old Da,Q)p(QDa): ð8Þ

3. Compute the approximated atlas selector

P̂PAi
(aDI ,W old )~

p(a,Qold DI ,W old )P
a

p(a,Qold DI ,W old )
~

p(I ,W old ,Qold Da)p(a)P
a

p(I ,W old ,Qold Da)p(a)
ð9Þ

4. Generate new segmentation W new
i , i~1,:::,n maximizing

approximate Q-function

maxW Q̂Q(W ; W old )~
X

i

X
a

P̂PAi
(ajI ,W old )log p(I ,W ,QW

��a):ð10Þ

5. If either W new{W old
�� ��2

ve or total iterations is bigger than

100, then stop, otherwise, update segmentation,W old/W new,

and go to 2.

Remark. To maximize Eq. (10), we iterate between fixing the

diffeomorphism and maximizing the segmentation, then locally

maximizing the diffeomorphisms for the fixed segmentation

labeling using Eq. (4) to define log p(I ,W ,QW Da). Locality is

implied here since for atlas-charts, only segmentation labels in the

target image in the vicinity of the atlas-chart are determined by the

log-probability.

To maximize Eq. (8), we use measures of the distance between

the segmentation W old of the target structures and the diffeo-

morphic mapping results from the template structures to the

target, analogous to the Large Deformation Diffeomorphic Metric

Mapping (LDDMM) for image matching and surface matching.

We have examined several approaches for computational purpos-

es. The first computes the distance between the atlas structure and

the structures in W old via dense LDDMM image matching [54].

Given the pair(W old ,W a), both of which are viewed as dense

functions over the image domain, the vector field is generated to

minimize the energy

Table 1. Three different groups of MR scans and their
respective size, age range, resolution, imaging protocol, and
pathology.

Group Size
Age
range Resolution (mm)

Imaging
protocol

Patient
group

1 14 55 to 85 0.937560.937561.2 3.0T NC elder

2 15 56 to 87 0.937560.937561.2 3.0T AD

3 6 51 to 84 0.898460.898461.0 3.0T Dementia
(PPA)

NC indicates normal controls, AD indicates Alzheimer’s disease, PPA indicates
primary progressive aphasia.
doi:10.1371/journal.pone.0065591.t001

Diffeomorphic Likelihood-Fusion Based Segmentation
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E(v)~

ð1

0

vtk kV
2
dtz

1

s2
W a0Q{1{W old
�� ��2

2
: ð11Þ

The LDDMM variational problem has direct interpretation as a

MAP estimator. Associate to Qv is the initial momentum or the

initial vector field [55] since it satisfies the ordinary differential

equation _QQv~v(Qv). The smooth norm DD:DD2V on the spatial

derivatives of the velocity field is chosen via the Laplacian

smoothness operator based on parameters a and c, for which we

use a ratio-cascading method as described in [56]; the ratio a=c is

gradually decreased to improve numerical stability and prevent

sub-optimal local minima.

The second method we use to compute the distance is to create

triangular meshes of the structures and compute the distance

between the atlas structures and meshes of the structures in W old

via LDDMM surface matching [57]. The third method for

computing distance is to compute the overlap via set distance

calculations which is extremely fast for determining p W old Da,Q
� �

;

the Dice overlap is one example. For the prior probability p(a,Q),

we weigh solutions via the metric distance in diffeomorphism

space given by the exponential of geodesic length.

For computational purpose, we remove outlier atlases used in

the computation following a robust scoring scheme analogous to

that suggested in [48]. For each conditional probability represent-

ing the overlapp W old Da,Q
� �

, we calculate the mean �pp and remove

atlases that are 2s outliers:

P̂PAi
(aDI ,W old )~

p(ai,Q̂QDW old ,I)1v�pp+2s(p)P
a

p(a,Q̂QDW old ,I)1v�pp+2s(p)
: ð12Þ

2.3 Subcortical Structure Segmentation
In this study, sixteen deep gray matter and ventricles structures

were manually defined in the atlases images, which cover only a

small part of the images. We defined a cuboid region of interest

(ROI) encompassing all the structures of interest in all atlases, and

modeled the segmentations within this ROI. Voxels inside the

ROI not belonging to any of the sixteen manually delineated

structures were automatically labeled as white matter, gray matter,

or cerebrospinal fluid (CSF) based on a local brain tissue

Figure 2. A comparison of two sets of atlas segmentations. Panels A–C show the mean Dice values and its standard deviations of the sixteen
structures, for the three different groups, obtained from likelihood-fusion via multi-atlas LDDMM based on two different sets of atlas label definitions:
1) sixteen manually defined structures (red); 2) sixteen manually defined structures and three generic neighboring tissue segmentations (green).
doi:10.1371/journal.pone.0065591.g002

Diffeomorphic Likelihood-Fusion Based Segmentation
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segmentation algorithm [53]. This generic labeling of tissues

outside the sixteen structures of interest ensures that all voxels were

labeled. Because the likelihood-fusion algorithm tries to assign a

label with the highest probability to each voxel, this type of

‘‘generic’’ labels outside the structures of interest (in this case, the

16 manually segmented structures) is necessary to avoid over

assignment.

2.3.1 Subject data and Comparison Metrics
In this study, we use T1-weighted images from 35 subjects from

three groups, as described in Table 1. Magnetization Prepared

Rapid Gradient Recalled Echo (MPRAGE) T1-WIs (TR/

TE = 8.4/3.9 ms) were acquired using 3T whole-body MRI

scanners (Philips Medical Systems, Best, The Netherlands), with

an axial orientation and an image matrix of 2566256. Participants

were scanned with two slightly different protocols: one used a field

of view (FOV) of 2306230 mm and 120 slices of 1 mm thickness;

and the other used an FOV of 2406240 mm and 140 slices of

1.2 mm thickness. These images were then manually segmented

into sixteen structures – left and right hippocampus, amygdala,

caudate, putamen, pallidum, lateral ventricle, thalamus, the 3rd

ventricle, and the 4th ventricle.

To quantitatively evaluate the accuracy of our algorithm, we

employed a leave-one-out cross-validation method on the datasets

of Group 1 and Group 2. For Group 3, we used datasets from

Group 1 and Group 2 as the atlases for segmentation. Manual

segmentations were regarded as the gold standard. The segmen-

tation accuracy was measured through the use of the Dice

overlap coefficients. The Dice overlap is computed as:

D~
2TP

2TPzFPzFN
, where TP, true positive, is the volume of

the region that belongs to both the automated segmentation and

the manual segmentation,FP, false positive, is the volume of the

region that belongs to the automated segmentation but not the

manual segmentation, and FN, false negative, is the volume of the

region that belongs to the manual segmentation but not the

automated segmentation.

Ethics Statement
All subjects provided written consent for participation in

accordance under the oversight of the Johns Hopkins Medicine

Institutional Review Board (JHM-IRB). Additionally, for those

subjects with dementia, the consent form was co-signed by a family

Figure 3. A comparison of segmentation accuracy between single-atlas LDDMM and multi-atlas LDDMM. Panels A, B, C respectively
show the mean Dice overlaps and the standard deviations of the sixteen structures obtained from single-atlas LDDMM (red) and likelihood-fusion via
multi-atlas LDDMM (green) for the three different groups.
doi:10.1371/journal.pone.0065591.g003

Diffeomorphic Likelihood-Fusion Based Segmentation
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member. The Johns Hopkins Institutional Review Board approved

this study.

2.3.2 Comparison with label-fusion methods
The segmentation accuracy of the proposed method was

compared with that of the segmentations obtained from two

label-fusion techniques: STAPLE [12] and Spatial STAPLE [58].

STAPLE and Spatial STAPLE were chosen for the comparison

because they provide state-of-art segmentation accuracy and are

widely used for multi-atlas label-fusion based segmentations. For a

comparison, the multi-atlas LDDMM likelihood-fusion method

was compared with STAPLE and Spatial STAPLE by using the

codes which were available via the ‘‘MASI Label Fusion’’ project

[58] on the NeuroImaging Informatics Tools and Resources

Clearinghouse. The parameters for STAPLE and Spatial STA-

PLE were optimized through the consultation from Simon

Warfield (STAPLE) and Bennett Landman (Spatial STAPLE).

For both algorithms, we used the log-odds of the majority voting

results as the explicit spatically-varing prior. The convergence

factor was chosen to be 1|e{4. The EM algorithm for both

STAPLE and Spatial STAPLE was designed to start with an initial

estimate of the label probabilities, instead of the regional

performance level parameters. For Group 1 and Group 2, we

used the same leave-one-out testing: for each subject, the

segmentation labels were transferred from the 28 atlases by the

same transformation matrices derived in each single LDDMM

image mapping and they were fused by STAPLE and Spatial

STAPLE. For Group 3, the propagated segmentations from the 29

atlases in Groups 1 and 2 were fused.

To measure the statistical significance of differences between

two groups in comparison, instead of using the student’s t-test, we

applied Fisher’s method of randomization. We utilized Monte

Carlo simulations to generate 10,000 uniformly distributed

random permutations, which gives rise to a collection of t-statistics

coming from each permutation. The p-value is then given by the

fraction of times that the t-statistic values from the permutations is

larger than the value obtained from the true groups.

Results

3.1 Evaluation of adding neighboring generic tissue
labels in the atlases

In the first experiment, we explored the efficacy of adding

neighboring tissue labels around the structures of interest (the

sixteen manually delineated subcortical and ventricular structures)

in the atlas. The same likelihood-fusion procedure was applied to

the two sets of labels of the same atlas images: 1) the sixteen

manually defined structures, and 2) the sixteen manually defined

structures and the three generic neighboring tissue segmentations

– gray matter, white matter, and CSF. A quantitative comparison

between the two sets of automated segmentations based on the two

different sets of label definitions, in terms of all the three groups, is

shown in Figure 2.

As shown in Figure 2, adding neighboring tissue labels in the

atlases improves the segmentation accuracy for a majority of

structures, especially for subjects with dementia (Group 2 & 3). For

normal subjects (Group 1), it also helps in the segmentation of

certain structures such as pallidum, the 3rd ventricle, and the 4th

ventricle. In addition to the improvements shown via average Dice

values, we also observed that adding tissue definitions prevents the

mislabeling between ventricles and their neighboring gray matter

structure such as hippocampus and amygdala, particularly in the

area close to the inferior horn.

3.2 Quantitative Evaluation of the benefit of Multiple
Atlases

It is clear that having multiple atlases increases the computa-

tional complexity. We wanted to be able to quantify the

advantages of supporting multiple atlas anatomies in the solution.

For this we performed multiple experiments. The first compares

the performance of segmentation via single-atlas LDDMM using a

leave-one-out technique in which a single subject was chosen as a

template and all the other subjects in the group were segmented

via the LDDMM image mapping procedure. For this purpose, the

data in Groups 1 and 2 were combined; one of the 29 subjects was

used as the atlas and the other 28 images were segmented. This

process was repeated for 29 different atlases implying each subject

was segmented 28 times using 28 different atlases. For subjects in

Group 3, the single atlases chosen from groups 1 and 2 were used

for segmentation to avoid the potential bias of the leave-one-out

Figure 4. Depiction of the variability within different single atlases. Scatterplot of Dice overlaps of automated segmentations of sixteen
different structures of one subject from 6 different atlases using single atlas LDDMM.
doi:10.1371/journal.pone.0065591.g004
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approach. The mean Dice values and the standard deviations for

each set of Dice values for automated segmentations of various

structures from single-atlas LDDMM are shown in Figure 3.

As demonstrated in Figure 3, the single-atlas LDDMM

performs relatively poorly in segmenting several of the structures

for the Alzheimer’s disease (AD) population (Group 2), especially

for the amygdala and the hippocampus. These two structures are

adjacent to the inferior horn of the ventricles, which tend to have

poor segmentation results due to a large topological variability and

resultant LDDMM mapping inaccuracy in these areas.

Figure 4 shows results for six representative atlases for

segmentation of sixteen different structures in one subject. The

figure suggests that the best atlas varies depending on the

structure; there is no single atlas that outperforms all other over

all sixteen structures. For example, for the segmentation of the

right putamen and the thalamus in both hemispheres, atlas #2

outperformed other atlases, whereas, for the third ventricle, atlas

#2 gave the lowest segmentation accuracy in terms of the Dice

overlap.

To contrast to the single-atlas LDDMM case, we examined the

likelihood-fusion via multi-atlas LDDMM approach using a series

of leave-one-out tests combining the data from Groups 1 and 2. In

the leave-one-out strategy, the remaining MRIs form the atlases.

Figure 5 shows the segmentation results of two subjects for a

comparison between the single-atlas and the multi-atlas approach.

The Dice overlaps that resulted from multi-atlas LDDMM are also

demonstrated in Figure 3 for a direct comparison with that from

single-atlas LDDMM. Because of the possibility that the leave-one-

Figure 5. Example of subcortical segmentations from single- and multi-atlas LDDMM approaches. Panel A shows the automated
segmentation results of two subjects using single-atlas LDDMM, while panel B shows the segmentation results for the same subjects using multi-atlas
LDDMM approach.
doi:10.1371/journal.pone.0065591.g005
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out analysis using the data with a identical image protocols

(Groups1 and 2 data) may not represent the real-world perfor-

mance of the proposed approach, the method was applied to the

Group 3 data, which were acquired with a different scanner and

imaging parameters. The MRIs from Groups1 and 2 were taken

as the atlases. The Dice overlap for segmentation of Group 3 using

the single-atlas and multi-atlas LDDMM is also illustrated in

Figure 3, demonstrating a comparable level of Dice from multi-

atlas LDDMM as those obtained in Groups 1 and 2.

Figure 6 shows the results from one representative case,

comparing Dice values of the multi-atlas approach to approaches

based on selection of any of the single atlases. This figure clearly

shows that likelihood-fusion via multi-atlas LDDMM form an

empirical upper bound in performance even for the best

combinations of the single-atlas approach for all structures.

Regardless of the anatomical variability among these three

populations, the multi-atlas approach consistently out-performed

the single-atlas approach. For all structures in all three groups, a

significant improvement in Dice values has been found with

pv0:0005 in the statistical tests.

Shown in Figure 7 is an examination of the convex weighting

function of Eq. (9) for segmenting one subject averaged over voxels

i within each single structure j,
P

i[struct#j

P̂PAi
(aDI ,W old )

, P
i[struct#j

1,

a indexed as a function of atlases. As depicted in the figure

different atlases contribute different weighting functions when

segmenting different structures of the same subject.

Figure 6. Boxplots of the Dice overlaps for sixteen different structures. The Dice overlaps were computed between the automated
segmentations of sixteen different structures of one subject from 28 different atlases using single atlas LDDMM and the one from multi-atlas LDDMM
(blue dotted line).
doi:10.1371/journal.pone.0065591.g006

Figure 7. The convex weighting function normalized over each structure. For each structure, we color-coded the quantityP
i[struct#j

P̂PAi
(aDI ,W old )

, P
i[struct#j

1 that is depicted for each atlas (column) and each of the 16 structures (rows).

doi:10.1371/journal.pone.0065591.g007
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Shown in Figure 8 is a depiction of the likelihood contribution

of each atlas in the likelihood fusion equationP
i[struct#j

P̂PAi
(aDI ,W old )maxQp(Ii,W

old
i ,QDa)

, P
i[struct#j

1 averaged

over each of the 16 structures (rows) depicted for each of the

twenty-eight atlases (columns).

3.3 Comparisons to segmentation averaging (STAPLE &
Spatial STAPLE)

The generative probability model which multi-atlas LDDMM is

based averages likelihoods generating a single label for each

segmentation voxel. It is natural to compare to competitive

methods which average segmentation labels via label fusion. For

this we compared the multi-atlas LDDMM with two representa-

tive label fusion techniques, STAPLE [46] and Spatial STAPLE

[58]. One might expect that while label fusion should be more

robust to images for which the generative model is not accurate,

likelihood fusion should provide benefits in circumstances when

the generative model is valid. Tables 2–4 tabulate the mean values

and standard deviations of the Dice overlaps for the three methods

computed across subjects in the three groups. The performance of

Spatial STAPLE and likelihood-fusion via multi-atlas LDDMM

were almost identical for the control group (Table 2), providing

superior performance relative to STAPLE. For the brains from

patient populations, significant improvement by likelihood-fusion

via multi-atlas LDDMM over Spatial STAPLE was observed for 9

structures in the AD (Table 3) and 3 structures in the primary

progressive aphasia (PPA) populations (Table 4). One of the most

notable improvements was found in the area around the inferior

and posterior horns of the lateral ventricles, where the ventricle

anatomy has a substantial amount of anatomical variability

(Figure 9). The benefit must be arising from the fact even though

these anatomies are disease we are able to do an adequate job of

modelling the generative probability therefore the atlas selector

function is effectively averaging in the proper likelihoods which fit

the anatomies.

Discussion

As accurate segmentation is at the center of many neuropsy-

chiatric studies, there have been many methods developed for

brain segmentation, which are typically based on local approaches

mostly involving multi-compartment appearance and Gaussian

mixture modeling, coupled to MAP or maximum-likelihood

[53,59–69]. To introduce constraints between voxels, Markov

random fields and level sets are two examples of locally-defined

prior distributions enforcing interactions at the voxel level [1,70–

78]. Similar appearance modeling is used in the deformable

template approaches as the matching cost functions; the higher

lever relationships are inherited from the templates. The MAP

segmentation we used is a direct generalization of the MAP

approach originally articulated by [1] in which global constraints

are introduced via Markov random field conditional probability

structure at the segmentation layer. The approach here is based on

the diffeomorphic orbit model to induce neighborhood depen-

dence at the random field level.

The conditionally Gaussian random field model used through-

out is the generative random orbit model used for ‘‘template’’

estimation [39,79,80]. Whereas, for template estimation, the

template and the diffeomorphism of the hyper-template are the

unknown, and the population contributes through the conditional

likelihood functions associated to each of the multiple anatomical

coordinate systems in the atlas set. In this paper, the segmentation

field plays the role of the unknown, and the population is

represented via the charts in the atlases.

In these global deformable template methods, templates which

are far in the deformation space are less accurate for representing

anatomical features and parameters being estimated. In the

context of segmentation, multiple atlas based methods which

embed the global solution with more locally accurate properties

Figure 8. The likel ihood contribution of each atlas averaged over the atlas structures. The q uant i t yP
i[struct#j

P̂PAi
(aDI ,W old )maxQp(Ii,W

old
i ,QDa)

, P
i[struct#j

1 was obtained from the 28 different atlases (columns) for each structure (row).

doi:10.1371/journal.pone.0065591.g008
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via label combination have been used extensively [37,46]. The

multi-label interpretation approach, as described in [46], enters

into our method only indirectly, as we interpret each voxel

position in the anatomical target subject as arising from any of the

given atlases. Therefore, this must be interpreted by the Bayesian

conditional probability of each atlas chart contribution condi-

tioned on the image. The method described here fuses the atlases

via convex combination of the atlas-specific likelihoods, with the

weights in the convex combination given by the conditional-mean

formula, and never explicitly generates the atlas-specific segmen-

tations of the target MRI. The purpose of the conditional-mean

framework of the EM algorithm is to remove the explicit

dependence of the estimation of the target segmentation on the

high dimensional nature of the nuisance variables. It serves the

same purpose as in [39] and [80] – the nuisance fields do not grow

with the number of atlases, which could have the disadvantage

that it would make segmentation of the target MRI inconsistent.

Another aspect of the diffeomorphic framework is that since we

model human anatomy via the diffeomorphism metric as a

complete metric space [35,55,81,82], our weighting in the MAP

solution is specified via the metric distance between atlases and the

subject. Similar to the method proposed in [48], this allows us to

introduce a robust decision procedure, which decreases the

computational complexity by removing atlases that are large in

metric distance.

The proposed method has been tested based on three datasets

with different pathologies – normal aging, subjects with Alzhei-

mer’s disease, and subjects with dementia. Likelihood-fusion via

multi-atlas LDDMM improves the segmentation accuracy ob-

tained from single-atlas LDDMM. Favorable comparison to label-

fusion methods is also evident as shown in Tables 2–4.

Compared with other recently published segmentation methods

and the reported Dice overlaps, our method demonstrates

comparable or favorable levels of segmentation accuracy, with

mean Dice overlap results in the range of 0.8 to 0.93. A direct

comparison of segmentation accuracy among different programs is

difficult as many programs contain internal structural definition

with the resultant differences in performance which can simply

reflect the way that structures are defined. Given the structure sizes

and the intensity ranges, it is generally considered more difficult to

automatically segment the hippocampus and amygdala than other

deep gray matter structures. Previous publications such as [83]

have reported Dice values such as 0.73 and 0.76 for the

hippocampus, and [84] has reported Dice overlaps on the order

of 0.75 for the amygdala using either FreeSurfer [1] and FSL [69].

In the most recent work specifically on the segmentation of

hippocampus [85], reported Dice of 0.88 for the best performing

subjects while 0.78 for the worst subjects. [86] reported

hippocampus segmentations with mean Dice 0.83. Our results

compare favorably, although it is difficult to directly compare Dice

Figure 9. Example slices for a comparison of multi-atlas LDDMM, STAPLE, and Spatial STAPLE. Three representative 2-D slices of three
structures near medial temporal regions – the amygdala, the hippocampus, and the ventricle in both hemispheres obtained respectively from manual
delineation (top row), likelihood-fusion via multi-atlas LDDMM (2nd row), STAPLE (3rd row), and Spatial STAPLE (bottom row).
doi:10.1371/journal.pone.0065591.g009
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values from different studies given the difference that may be

caused by the dataset used, the image acquisition protocol, or the

quality and the protocol of manual segmentations. One future

direction should be evaluating the proposed method on some more

widely studies datasets so as to be comparable with other existing

segmentation methods [86,87]. We have chosen to focus our study

on populations with severe atrophy and the reported Dice values

should represent more realistic performance than those based only

on young healthy subjects such as those reported in [85]. As shown

in Figure 5, in addition to the accuracy reports, the likelihood-

fusion approach in the diffeomorphic setting exhibits smooth

boundaries for the segmentations, which is not typical in the usual

intensity-based segmentation approaches.

The current work has focused on subcortical and ventricular

regions. Our initial investigation into whole brain segmentation

setting via likelihood-fusion has been validated in a limited setting

in [88]. We might expect that the very simple model of

conditionally Gaussian (essentially single compartment modeling

of the intensity) can be significantly improved via the incorpora-

tion of multi-compartment mixture modeling such as in [53]. In

addition, the results presented in this paper only make use of T1-

weighted images. Incorporating multi-modality data (T2, diffusion)

information into our approach should increase the segmentation

accuracy. A clear potential limitation of this method is that it

requires manual labeling of multiple atlases, which is more labor-

intensive compared to the single-atlas approach, and increases the

computational complexity by O(N), where Ndenotes the number

of atlases.

Table 2. The average Dice overlaps between manual volume
and the automated volume measured over the fourteen
datasets of the first group for each structure for comparisons
of STAPLE, Spatial STAPLE, and likelihood-fusion via multi-
atlas LDDMM.

STAPLE Spatial STAPLE
multi-atlas
LDDMM

R. putamen 0.878 (0.0250) 0.908 (0.0154) 0.908 (0.0148)

L. putamen 0.857 (0.0362) 0.891 (0.0350) 0.892 (0.0329)

R. caudate 0.836 (0.0409) 0.867 (0.0355) 0.865 (0.0446)

L. caudate 0.812 (0.0506) 0.852 (0.0365) 0.851 (0.0465)

R. pallidum 0.776 (0.0357) 0.840 (0.0291) 0.836 (0.0378)

L. pallidum 0.730 (0.0543) 0.817 (0.0501) 0.822 (0.0463)

R. thalamus 0.907 (0.0224) 0.911 (0.0183) 0.911 (0.0185)

L. thalamus 0.883 (0.0370) 0.906 (0.0246) 0.898 (0.0199)

R. amygdala 0.786 (0.0401) 0.862 (0.0245) 0.861 (0.0188)

L. amygdala 0.767 (0.0527) 0.822 (0.0393) 0.826 (0.0388)

R. hippocampus 0.769 (0.0461) 0.838 (0.0337) 0.839 (0.0297)

L. hippocampus 0.795 (0.0499) 0.846 (0.0278) 0.840 (0.0227)

R. ventricle 0.874 (0.0465) 0.917 (0.0267) 0.934 (0.0247)

L. ventricle 0.880 (0.0503) 0.918 (0.0336) 0.937 (0.0259)

Third ventricle 0.548 (0.1712) 0.776 (0.1214) 0.824 (0.0817)

Fourth ventricle 0.671 (0.1287) 0.799 (0.0931) 0.854 (0.0776)

Bold typesetting indicates that the Dice overlap ratio obtained from the
corresponding is statistically significant higher than that of other methods
(p,0.05).
doi:10.1371/journal.pone.0065591.t002

Table 3. Mean and standard deviations of Dice overlaps
computed across the fifteen subjects in the second group for
each structure for comparisons of STAPLE, Spatial STAPLE, and
likelihood-fusion via multi-atlas LDDMM.

STAPLE Spatial STAPLE
multi-atlas
LDDMM

R. putamen 0.838 (0.0504) 0.878 (0.0351) 0.891 (0.0238)

L. putamen 0.813 (0.0661) 0.848 (0.0525) 0.854 (0.0444)

R. caudate 0.776 (0.0558) 0.856 (0.0346) 0.879 (0.0260)

L. caudate 0.746 (0.0696) 0.828 (0.0454) 0.850 (0.0359)

R. pallidum 0.784 (0.0547) 0.831 (0.0389) 0.834 (0.0392)

L. pallidum 0.746 (0.0475) 0.792 (0.0522) 0.791 (0.0668)

R. thalamus 0.881 (0.0355) 0.900 (0.0313) 0.891 (0.0270)

L. thalamus 0.855 (0.0541) 0.876 (0.0381) 0.872 (0.0275)

R. amygdala 0.703 (0.0974) 0.796 (0.0948) 0.803 (0.0816)

L. amygdala 0.647 (0.0708) 0.785 (0.0647) 0.806 (0.0592)

R. hippocampus 0.670 (0.0988) 0.783 (0.0759) 0.821 (0.0362)

L. hippocampus 0.703 (0.0859) 0.799 (0.0556) 0.818 (0.0363)

R. ventricle 0.904 (0.0481) 0.917 (0.0326) 0.929 (0.0299)

L. ventricle 0.908 (0.0466) 0.921 (0.0333) 0.932 (0.0278)

Third ventricle 0.678 (0.1244) 0.830 (0.0426) 0.862 (0.0668)

Fourth ventricle 0.706 (0.1245) 0.793 (0.0862) 0.839 (0.0741)

Bold typesetting indicates that the Dice overlap ratio obtained from the
corresponding is statistically significant higher than that of other methods
(p,0.05).
doi:10.1371/journal.pone.0065591.t003

Table 4. Mean and standard deviations of Dice overlaps
obtained respectively from STAPLE, Spatial STAPLE, and
likelihood-fusion via multi-atlas LDDMM in segmenting the 16
structures of the six subjects in the third group.

STAPLE Spatial STAPLE
multi-atlas
LDDMM

R. putamen 0.866 (0.0297) 0.884 (0.0166) 0.878 (0.0260)

L. putamen 0.856 (0.0392) 0.878 (0.0413) 0.872 (0.0499)

R. caudate 0.861 (0.0327) 0.854 (0.0253) 0.859 (0.0258)

L. caudate 0.832 (0.0432) 0.836 (0.0218) 0.847 (0.0322)

R. pallidum 0.788 (0.0393) 0.817 (0.0261) 0.810 (0.0212)

L. pallidum 0.763 (0.0520) 0.777 (0.0686) 0.784 (0.0847)

R. thalamus 0.871 (0.0298) 0.854 (0.0494) 0.867 (0.0482)

L. thalamus 0.849 (0.0415) 0.828 (0.0546) 0.843 (0.0563)

R. amygdala 0.707 (0.0568) 0.769 (0.0668) 0.769 (0.0741)

L. amygdala 0.662 (0.0752) 0.745 (0.0561) 0.770 (0.0580)

R. hippocampus 0.777 (0.0987) 0.796 (0.0385) 0.825 (0.0432)

L. hippocampus 0.805 (0.0251) 0.839 (0.0236) 0.858 (0.0174)

R. ventricle 0.927 (0.0144) 0.924 (0.0192) 0.923 (0.0229)

L. ventricle 0.927 (0.0246) 0.926 (0.0201) 0.927 (0.0255)

Third ventricle 0.749 (0.1034) 0.803 (0.0327) 0.808 (0.0511)

Fourth ventricle 0.738 (0.0487) 0.811 (0.0292) 0.836 (0.0428)

Bold typesetting indicates that the Dice overlap ratio obtained from the
corresponding is statistically significant higher than that of other methods
(p,0.05).
doi:10.1371/journal.pone.0065591.t004
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