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Abstract

Protein interaction networks are important for the understanding of regulatory mechanisms, for the explanation of
experimental data and for the prediction of protein functions. Unfortunately, most interaction data is available only for
model organisms. As a possible remedy, the transfer of interactions to organisms of interest is common practice, but it is not
clear when interactions can be transferred from one organism to another and, thus, the confidence in the derived
interactions is low. Here, we propose to use a rich set of features to train Random Forests in order to score transferred
interactions. We evaluated the transfer from a range of eukaryotic organisms to S. cerevisiae using orthologs. Directly
transferred interactions to S. cerevisiae are on average only 24% consistent with the current S. cerevisiae interaction network.
By using commonly applied filter approaches the transfer precision can be improved, but at the cost of a large decrease in
the number of transferred interactions. Our Random Forest approach uses various features derived from both the target and
the source network as well as the ortholog annotations to assign confidence values to transferred interactions. Thereby, we
could increase the average transfer consistency to 85%, while still transferring almost 70% of all correctly transferable
interactions. We tested our approach for the transfer of interactions to other species and showed that our approach
outperforms competing methods for the transfer of interactions to species where no experimental knowledge is available.
Finally, we applied our predictor to score transferred interactions to 83 targets species and we were able to extend the
available interactome of B. taurus, M. musculus and G. gallus with over 40,000 interactions each. Our transferred interaction
networks are publicly available via our web interface, which allows to inspect and download transferred interaction sets of
different sizes, for various species, and at specified expected precision levels. Availability: http://services.bio.ifi.lmu.de/coin-
db/.
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Introduction

Using high-throughput screening techniques such as Yeast Two

Hybrid screens, mass spectrometry and protein microarrays large

amounts of protein interaction data can be obtained. A protein

interaction consists of proteins which bind permanent or transient

together in order to carry biological functions. Interaction data

collected in various databases has for example been used to study

regulatory networks, to explain experimental data or to predict the

functions of proteins [1]. Researchers can query protein interac-

tions in databases like IntAct[2] or BioGrid[3], which include

interactions derived from large-scale experiments, from literature

curations, from user submissions, and interactions from protein

structures. Besides this, repositories exist which integrate the

interactions from multiple sources. The current protein interaction

networks are derived from high-throughput experiments and

hypothesis-driven low-throughput experiments applied to partic-

ular gene sets of interest[4].

But still the experimental identification of interactions is a time

consuming and costly process, so that high-throughput experi-

ments have mostly been conducted on model organisms such as S.

cerevisiae [5], H. sapiens [6], A. thaliana [7] and D. melanogaster [8].

Thus, the available interaction networks for other species are

extremely sparse (see Table 1).

Furthermore, all experimental protein interaction detection

methods have different weaknesses and biases[9]. For example

false positive rates up to 50% are reported for Yeast Two Hybrid

screens [10], literature curations do only agree to some extent

[11], and interactions from Tandem Affinity Purification (TAP),

which requires further processing in order to infer physical protein

interactions[12,13].

Numerous computational approaches have been developed to

predict protein interactions. In particular, knowledge from other

(model) organisms can be used to predict protein interactions for a

specific target organism. But link attachments, link detachments,

gene duplications and gene losses lead to (evolutionary) changes in

protein interaction structures [14]. For example, single nucleotide

substitutions in the coding region of a gene can lead to structure

changes of the encoded protein so that new binding partners can

dock or other proteins can not dock anymore to the particular

protein. Gene duplications lead also to duplications of interactions

and again nucleotide substitutions of the genes lead to a network

rewiring. While transient protein interactions are affected by

rewiring, gene gains and losses, protein complexes are mostly

affected by losses and gains of subunits [15,16].

Matthews et al. [17] introduced the term interolog (an

orthologous gene pair interacting in at least one species) and

many methods transfer interaction data employing interologs [18–

22]. Matthews et al. was able to experimentally validate between

16% to 32% of transferred protein interactions from S. cerevisiae to

C. elegans with different ortholog identification techniques. Several
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features are commonly used to increase the reliability of

interaction transfers via interologs. The simplest approach is to

require a certain interolog quality, e.g. a minimum bootstrap score

for orthologs from the InParanoid database [18] or a minimum

sequence similarity between orthologs in order to transfer an

interaction. Yu et al. showed that protein interactions can be safely

transferred if the joint sequence identity between the orthologs

involved in the transfer is larger than 80% [22]. More advanced

filter approaches use thresholds for the Gene Ontology (GO) [23]

annotation similarity, domain similarity, gene expression correla-

tion or other features of the interologs [20,21,24–26]. To achieve a

specified performance, random protein pairs are compared with

known protein interaction partners to define thresholds for the

different features. Besides the inference of protein interaction from

interologs, various other approaches try to predict interactions

using structural properties [27], network topology information

[28], or protein domain information [29]. The STRING database

follows a different approach to score interactions by combining

information from experiments, databases, text-mining and transfer

information [30].

Lewis et al. showed that the transfer consistency cannot easily be

improved. Furthermore, they showed that the evolutionary change

of interactions is too high to allow the direct transfer of interactions

for phylogenetically distant species unless a strict definition of

homology is used [31]. In contrast van Dam et al. showed that

protein complexes are highly conserved even between H. sapiens

and S. cerevisiae [15]. All network transfer studies relay on

homologies which can be identified with different ortholog

detection methods like simple bidirectional BLAST best hit

results, graph-based methods that cluster orthologs, or tree-based

methods. Benchmarks of orthologs detection methods have shown

that there is no best method for ortholog detection [32]. It is

obvious that with conservative ortholog detection approaches only

relatively few interactions can be transferred, but that these

interactions are more likely conserved, whereas with cluster based

and tree based methods groups of orthologs are produced which

allow to transfer more interactions. Thus, the usage of ortholog

identification approaches, the choice of experimental data (only

physical interaction derived from Yeast Two Hybrid studies, or

more relaxed interaction data which includes interactions from

TAP or Co-Immunoprecipitation experiments, or even protein

complexes), and the approaches used to deal with the incomplete-

ness of current networks result in different estimated protein

interaction conservation rates.

In this paper, new features and successfully used features in the

literature are exploited to train Random-Forests-Filters (RFF) for

the reliable transfer of interactions to even distant species. The

RFF models are trained with interactions transferred from various

eukaryotic species to S. cerevisiae using all available interactions

from an integrated database and orthologs from cluster based

approaches. We train the models on yeast for the only reason that

the S. cerevisiae network is assumed to be the most complete one,

which allows to distinguish correct and incorrect transfers in the

learning phase. Another assumption we make is that the learned

RFF models can be used for other species as well. This is

reasonable as the models learn the important features (e.g.

sequence similarity, orthology, network properties, functional

similarities) and their appropriate weightings, which will hold in

a species-independent way (there are no particular S. cerevisiae

specific features or parameters). The transfer performance on S.

cerevisiae is taken as an estimate for the expected performance on

other species, especially for phylogenetically closer ones. We

applied the trained RFF predictor to transfer interactions on a

large scale in-between various eukaryotic species. This increases

the available reliable interactions for non-model organisms

manyfold without inflicting too many false positives. The

transferred networks are publicly available at our web interface.

Compared to competing approaches to predict protein interac-

tions we integrate a wide range of features and, instead of using

fixed thresholds, employ a systematic and conservative RFF

approach with an associated performance estimate for the (distant)

transfer to S. cerevisiae.

Materials and Methods

Data sources
We use an integrated database to get a complete view on the

currently discovered protein interaction networks and use the

Table 1. Protein interaction networks.

Species Interactions

Genes Physical Genetic Other Total Total interactions

per gene

S. cerevisiae 6,328 55,767 104,926 17,674 178,367 28.19

H. sapiens 28,383 43,412 71 20,992 64,475 2.27

D. melanogaster 14,321 19,088 2,118 17,265 38,471 2.69

S. pombe 4,958 1,943 9,665 804 12,412 2.5

C. elegans 20,184 5,483 1,785 4,208 11,476 0.57

M. musculus 24,865 3,513 3 2,596 6,112 0.25

A. thaliana 26,496 5,048 67 937 6,052 0.23

P. falciparum 5,503 2,215 0 4 2,219 0.4

R. norvegicus 24,770 804 0 867 1,671 0.07

D. rerio 24,352 173 11 13 197 0.01

Overview of protein interaction networks extracted from the database iRefIndex [33] for the ten eukaryotic model species with the largest protein interaction networks.
Besides the total number of protein interactions, the number of physical, genetic and interactions with an unknown interaction type is given. Only the interaction
network of S. cerevisiae, H. sapiens, D. melanogaster and S. pombe have more than 2 interaction per gene (S. cerevisiae peaks with 28.19).
doi:10.1371/journal.pone.0066635.t001
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interaction repository iRefIndex[33] as the source database for

experimentally determined protein interactions. iRefIndex pro-

vides interaction data for multiple species in a common format

from the 13 different interaction databases: BIND[34], Bio-

GRID[3], CORUM[35], DIP[36], HPRD[37], InnateDB[38],

IntAct[2], MatrixDB[39], MINT[40], MPact[41], MPIDB[42],

MPPI[43] and OPHID[44]. All databases include experimental

validated data extracted from different sources, besides OPHID

which also makes use of transferred interactions. Therefore, we

excluded interactions from OPHID for our study. Furthermore,

iRefIndex includes binary interactions (physical and genetic) and

few protein complexes. We transfer binary interactions from

iRefIndex (physical, genetic and other interaction types including

ambiguous or interactions without type annotation) to target

species using publicly available ortholog mappings. Orthologs are

obtained from the Orthologs Matrix Project (OMA) [45],

InParanoid [46] and HomoloGene [47]. These databases are

used due to the evaluation results in [32] and the coverage of

ortholog mappings for various eukaryotic species. The interaction

partners and orthologs are mapped to UniProt [48] as a common

reference to obtain annotations including GO terms, synonyms

and mappings to external databases (see Table S1 for an overview

of the used data sources). We consider all eukaryotes species for

which we could transfer at least one interaction given the

interaction and ortholog databases. Thus, we consider 83 out of

the approximate 166 (until January 2013) fully sequenced

eukaryotes for the subsequent analysis (for a list of sequenced

eukaryotes see EBI Genomes Pages: http://www.ebi.ac.uk/

genomes/eukaryota.html).

Interaction transfer
Protein interaction networks are modeled as graphs PPI~(P,I)

consisting of a set of proteins P and interactions I(P|P. Given

an interaction network PPIi~(Pi,I i), a target protein set Pj and

an ortholog mapping O : Pi?Pj , a (directly) (interolog based)

transferred interaction network consists of PPIj~(Pj ,I j) with

(pj
x,pj

y)[I ju(pi
x,pi

y)[I i ^ pj
x~O(pi

x) ^ pj
y~O(pi

y). Transferred in-

teractions (p
j
k,pj

c) can be scored and filtered to obtain a (filtered)

(interolog based) transferred interaction network. In our case, a trained

Random Forest Filter (RFF) model is used and its performance for

specific score thresholds is estimated via the transfer data to S.

cerevisiae.

Random-Forest-Filter (RFF)
For the scoring of transferred interactions we use Random

Forests (RF) from the WEKA [49] machine learning framework.

Random Forests predict the outcome class (correct, incorrect) of

an instance (transferred interaction) by using a voting procedure

on several learned decision trees with different feature sets.

Random Forests have shown good evaluation results on similar

learning tasks [50] and are considered more robust against noise

than other ensemble machine learning methods [51]. RF rely on

two parameters, the number of trees to learn and the number of

features to consider. We determine these parameters via a grid

search. In addition to the output class label, the WEKA Random

Forest implementation provides a score value between 0 (low

confidence) and 1 (high confidence), which we use as score value

for transferred interactions.

Features
As features we use the protein annotations of the interacting

partners in the source and the target network and of the orthologs

from which an interaction is transferred. The features can be

classified into four categories: 1.) Features modeling Gene

Ontology similarities (Gene Ontology), 2.) features derived from

the network structure (Network), 3.) features describing the

similarity between orthologs (Orthologs) and 4.) general features

(General).

Gene Ontology
GO similarity. We compute the semantic GO similarity for

two proteins based on Resnik[52] information content measure

IC(goi)~{ log
Freq(goi)

Freq(goroot)

� �
, ð1Þ

with Freq as the number of proteins annotated with a given term

goi, or its descendant terms in the GO tree. For two GO terms

gk,gl , we define the semantic GO term similarity as the IC for

their common ancestor. And for two proteins pi, pj[P we define

the semantic GO similarity as the maximum of all combination of

GO annotations for the two proteins. Formally defined as

GOSim(pi,pj)~ max
gok[GO(pi ),gol[GO(pj )

IC commonAncestor(gok,gol )ð Þ:ð2Þ

Given that measure, the semantic similarity is computed for the

interaction partners in the source and target network and the

orthologs. Besides a global semantic GO similarity, one feature is

modeled for each of the GO categories cellular component,

biological process and molecular function (indicated with C, B,

and M behind the feature name in the following) to take the

different types individually into account.

Network
Network overlap. The overlap of the neighborhood proteins

for a given pair of proteins in the source and target network. For

this purpose the Jaccard Index is computed for the direct

neighbors of the interacting proteins with the equation

J(pi,pj)~
n(pi)\n(pj)

n(pi)|n(pj)
, ð3Þ

where n(pj) and n(pi) are the adjacent proteins in the protein

interaction network.

Network GO similarity. The average semantic GO simi-

larity between the pair-wise neighbors of the interaction partners

in the networks computed with the equation

AVGSim(pi,pj)~ avg
pk[n(pi ),pl[n(pk )

GOSim(pk,pl): ð4Þ

General
Source interaction database. The source database from

which an interaction is extracted as provided as additional

information in the used integrated protein interaction database.

Edge support. The number of PubMed abstracts given as

evidence for the source interaction.

Source interaction type. The source interaction type

(physical, genetic or other) is used as discrete feature value. For

this purpose the molecular interaction type [53] is used.

Complementing the Eukaryotic Protein Interactome
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Total support. The number of times an interaction is

transferred from all other networks to the target network as

suggested by [54] for confidence scoring.

Gene expression correlation coefficient. Given a gene

expression time series for two genes the Pearson correlation

coefficient is computed for the putative interacting partners in the

target network with the equations

Cor(X ,Y )~

Pn
i~1

(Xi{ �XX )(Yi{ �YY )ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i~1

(Xi{ �XX )2

s Pn
i~1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i~1

(Yi{ �YY )2

s , ð5Þ

where X and Y represent the expression values for the respective

genes.

Ortholog
Sequence similarity. The sequence identity of the orthologs.

Harmonic sequence similarity. The harmonic mean of the

sequence identities of the orthologs.

Synonym similarity (Token score). From the orthologs the

function of the proteins is extracted from the textual description

using UniProt[48] by tokenizing, stemming and filtering stop

words and to general words resulting in a set of tokens which are

descriptive for the proteins. Based on these function terms we

define the similarity for two proteins pi and pj from the set of all

protein P as

TSim(pi,pj)~{ log
j pl[PjTokens(pi)\Tokens(pj)
� �

(Tokens(pl)j
jPj

� �
, ð6Þ

where Tokens(pi) and Tokens(pj) are the function terms of the proteins pi

and pj .

Domain/Family similarity. The InterPro and PFAM

annotations from UniProt[48] are used to compute the domain/

family similarity of the orthologs. For two proteins we define the

domain/family similarity as

DFSim(pi ,pj)~{ log
j pl[PjDFam(pi)\DFam(pj)
� �

(DFam(pl)j
jPj

� �
, ð7Þ

where DFam(pi) and DFam(pj) are the domain and family

annotations.

KEGG Pathway score. Boolean indicator whether the

orthologs are involved in the same pathways or in different

pathways.

Ortholog source. The database from which the orthologs

used for the transfer are extracted.

Ortholog score. Given two orthologs gi and gj we define the

ortholog score as

OScore(gi,gj)~isi|isj|bsi|bsj , ð8Þ

where isg is the inparalog score and bsg the bootstrap score

provided by InParanoid for each gene g in a ortholog clusters.

Ortholog support. The number of times the same ortholog

relation between two genes can be found in the different ortholog

databases.

Phylogenetic distance. The distance of the source and the

target species in a phylogenetic tree provided by [45].

Transitive ortholog. The idea behind this feature is that more

conserved orthologs can be traced from a source species to a target

species along the phylogenetic tree. For this purpose a phylogenetic

tree covering all species with ortholog mappings is used. Given such a

tree, a path from a source to a target species is computed by:

1. searching the shortest path between the two species and

2. searching the closest leaf nodes for all inner nodes on the

shortest path.

The result is a list of species which are ‘‘between’’ the target and

the source species. An ortholog is defined as transitively consistent

if a direct ortholog between the source and the target species can

also be reached when going along the pairwise ortholog mappings

on the estimated path.

In the case that a feature cannot be computed because of missing

annotation data, the feature is replaced by a missing value indicator.

Features are derived from different sources. In the rest of the article

we indicate with (T), (S) and (O) after the feature name whether a

feature is modeled between the protein pair in the target network,

the source network, or between the orthologs, respectively.

Evaluation measures
To assess the quality of the learned models we compute the

Precision(s)~
#Correctly transferred interactions with score s

#All transferred interactions with score s
, ð9Þ

RelativeRecall(s)~
#Correctly transferred interactions with score s

#All correctly transferable interactions
, ð10Þ

and

RegularRecall(s)~

#Correctly transferred interactions with score s

#All experimentally validated interactions in the target species

ð11Þ

for a given score value assigned by the learned model. A precision of

1.0 for a given score threshold s is obtained when all transferred

interactions with a score value §s can be found in the experimentally

validated network. The relative recall is 1.0 when all correctly

transferable interactions using the available ortholog relations are also

transferred after the filtering i.e. all transferred interactions have a

score value §s. We mostly use the relative recall instead of the

regular recall in order to assess the recall with respect to a direct

transfer. As overall measure for different score thresholds the area

under the precision (relative) recall curve (AUPRC) and the area

under the receiver operating characteristic curve (AUROC) are

used [55]. Furthermore, the Information Gain (IG) i.e. the

reduction of entropy of the data set given information about a

feature [56], is computed to estimate the impact of the different

features.

Formally, for a data set D and feature F the IG is defined as

IG(D,F )~E(D){
X

v[Values(F )

jDF~vj
jDj E(DF~v), ð12Þ

where DF~v is the set of instances in D with value v for feature F

and E(D) defined as
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E(D)~{ppositive log (ppositive){pnegative log (pnegative), ð13Þ

where ppositive and pnegative is the proportion of D belonging to the

class of correctly (consistently) and incorrectly (inconsistently)

transferred interactions, respectively.

Results

Current Protein Interaction Networks
Table 1 gives an overview of the protein interaction networks

derived from the integrated interaction database iRefIndex having

the largest number of interactions.

Over 78% of the S. cerevisiae and over 90% of the D. melanogaster

interactions stem from high-throughput studies where over 1,000

interactions are reported, whereas for H. sapiens only 43% of the

interactions stem from high-throughput studies (see Figure S1).

Furthermore, most interactions for S. cerevisiae are detected with

genetic interference and affinity chromatography technology

methods like Co-Immunoprecipitation or Tandem Affinity Puri-

fication, whereas for D. melanogaster most interactions are detected

within one high-throughput Yeast Two Hybrid screen (see Figure

S1 and S2).

The total number of interactions consists of physical interac-

tions, genetic interactions and other protein interactions (no

interaction type or ambiguous annotations).

With about 180,000 interactions the by far largest eukaryotic

interaction network is available for S. cerevisiae. The majority of

interactions are genetic interactions. When we only consider

physical interactions the S. cerevisiae interaction network is still the

largest. Especially in comparison with the second largest protein

interaction network from H. sapiens it becomes clear how sparse the

networks for the other species still are in current databases. The H.

sapiens network has fewer physical interactions, but more than four

times more genes in the network as compared to S. cerevisiae.

Furthermore, only the S. cerevisiae network consists of only one

connected component. It has been estimated that the complete S.

cerevisiae network has between 37,800 and 75,500 protein

interactions [57]. Actually, 55,767 physical interactions are

contained in iRefIndex for S. cerevisiae. Therefore, for the following,

we assume that the S. cerevisiae network is almost complete and,

thus, we use the S. cerevisiae network to evaluate the performance of

a protein interaction transfer.

It can be expected that more complex organisms also have a

more complex network. The number of genes (and maybe also the

number of proteins) is not dramatically different and, thus, most

likely the number of interactions is different. Therefore, the

extremely small coverage of even the best investigated model

organisms is apparent. For all other non-model organisms the

number of available interactions are neglegible.

Interaction transfer
Experimental settings. We transfer interactions from all

eukaryotic species with interaction data used in this study to S.

cerevisiae to train our models. The S. cerevisiae interaction network is

assumed to be almost complete and possible false negatives in the

gold standard are ignored. True positives are defined as

transferred interactions, which can be found in the S. cerevisiae

network, and false positives as transferred interactions, which

cannot be found in the network.

Three experimental settings are considered to evaluate our

approach:

All interactions setting (AllI): All interactions are transferred

to S. cerevisiae and only the occurrence of the transferred

interactions in the gold standard is checked.

Physical interactions setting (PhyI): Only physical inter-

actions are transferred to S. cerevisiae and in addition to the

occurrence of the interactions also the agreement of the interaction

type is checked.

Genetic interactions setting (GenI): The same as the

previous setting, but with genetic interactions.

In total 19,785 interactions from all eukaryotic species

considered in this study can be transferred to S. cerevisiae. For AllI

4,745 interactions can be found in the gold standard and the other

15,040 interactions are used as negative set. The physical, PhyI,

setting consists of 1,019 correctly transferred interactions and

8,174 incorrectly transferred interactions. The genetic, GenI,

setting consists of 901 correctly and 5,300 incorrectly transferred

interactions. The remaining 4,391 transferred interactions have an

unknown, other, or an ambiguous interaction type.

The features are modeled for the protein pairs involved in the

transfer. In total four proteins are considered for each transfer (two

proteins from the source network and two proteins from the target

network). The features are defined between the different protein

pairings in the target network, in the source network and between

the orthologs. In total 20 different features types are modeled

where for the features used for the orthologs one feature for each

of the two orthologs pairs involved in the transfer is created. E.g.

for the global GO similarity one feature is modeled between the

interaction partners in the source network, one feature is modeled

between the interaction partners in the target network and two

features are modeled between the orthologs involved in the

transfer. For the gene expression feature the compiled gene

expression experiment set from [58] which includes normalized

intensity values from different cellular states and biological

conditions is used.

Six feature sets are constructed for the training of the Random-

Forest-Filter (RFF) in order to compare the performance and to

estimate the feature contribution. This includes two main sets, one

in which all features are considered and one setting where only

features are used which can be assumed to be available for most of

the species. Hence, features containing information about the

network structure and the gene expression correlation are

excluded in the reduced feature set. The other four feature sets

(Network, Gene Ontology, General and Orthologs) consists only of

the features from the respective category. In Table 2 the

composition of the different feature sets and protein pairings is

given.

Direct protein interaction transfer. Using the previously

described interaction database and ortholog mappings, interac-

tions are directly transferred to S. cerevisiae. In Figure 1 the

precisions of the interaction transfers from six interaction networks

using the previously introduced experimental settings are shown.

We use orthologs from the well established cluster based

ortholog detection approaches InParanoid, OMA and Homo-

logGene. Orthologs from these databases result in higher transfer

consistencies than orthologs from tree based approaches like

EnsemblCompara[59] (see Figure S3).

The overall precision of an interaction transfer from the

different species to S. cerevisiae for AllI is 0.24, whereas for GenI and

PhyI the transfer precision is only 0.11 and 0.15, respectively. With

4,745, 1,019 and 901 correctly transferred interactions, 3%, 2%

and 1% of the S. cerevisiae network can be predicted for the

respective experimental settings AllI, PhyI and GenI. The highest

transfer precision of physical and genetic interactions can be

Complementing the Eukaryotic Protein Interactome
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achieved with a transfer from S. pombe (the phylogenetically closest

species in our tree with experimentally validated interaction data).

Given complete interaction data for all species it would be

expected that the highest precision would be achieved with a

transfer from the phylogenetic closest species. But since the

interaction data is incomplete and interologs of S. cerevisiae might

be used as prior knowledge for the interaction discovery, some

phylogenetically more distant species show higher interaction

transfer precisions than phylogenetically closer species. Most

notable is the performance of a transfer from M. musculus to S.

cerevisiae with an unusually high precision of 0.36 in the AllI setting.

A GO overrepresentation analysis (DAVID [60]) of the proteins

involved in the transfer from M. musculus to S. cerevisiae exhibits that

some highly conserved biological processes are overrepresented

(like DNA-dependent DNA replication, pre-replicative complex

assembly, DNA replication initiation and chromosome organiza-

tion), which might explain the high precision of the interaction

transfer. By looking at the transfer precisions for each biological

process it can be seen that for these overrepresented biological

processes the transfer precision from M. musculus to S. cerevisiae is

almost the same as the transfer precision from H. sapiens to S.

cerevisiae. E.g. 102 transferred interactions from H. sapiens to S.

cerevisiae are associated with the biological process DNA-dependent

DNA replication from which 64 are consistent, for the pre-

replicative complex assembly process 30 out of 43 and for the

DNA replication initiation process 31 out of 45 are consistent.

For phylogenetically distant species ortholog clusters consist of

more than two genes which results in 1:n or even n:m mappings.

Thus, with a direct transfer a single source interaction can be

inferred between different genes in the target network. For H.

sapiens and S. cerevisiae are for example on average 1.9 H. sapiens

genes and 1.18 S. cerevisiae genes in one cluster, whereas for H.

sapiens and M. musculus the cluster contain 1.05 and 1.01 genes,

respectively.

Transfer filter. We train our Random-Forest-Filters (RFF) to

score directly transferred interactions and to identify possible

conservations.

In Figure 2 the precision-(relative) recall curves of the Random-

Forest-Filters (RFF) trained with the full and reduced feature sets

and the three experimental settings AllI, PhyI and GenI using a 10-

fold cross validation are shown. A simple interaction filter using

the harmonic sequence similarity between the orthologs and a

filter based on the InParanoid ortholog bootstrap score are

evaluated as baseline comparisons.

The RFF trained with the full feature set in the AllI setting

achieves the highest AUPRC score of 0.86 and an AUPRC score

of 0.82 with the reduced feature set. When in addition to the

occurrence of an interaction also an interaction type agreement is

Table 2. Feature set configuration.

Pairing Feature set

Pairing
Source
network (S)

Target
network (T) Ortholog (O) Network GO General Orthologs Reduced Full

Network overlap x x x x

GO Network x x x x

GO Global x x x x x x

GO (B) similarity (GO Biological
process)

x x x x x x

GO (C) similarity (GO Cellular
component)

x x x x x x

GO (M) similarity (GO Molecular
function)

x x x x x x

Source interaction database x x x x

Edge support x x x x

Source interaction type x x x x

Total support x x x x

Gene expression correlation x x x

Sequence identity x x x x

Token similarity x x x x

Domain similarity x x x x

KEGG pathway score x x x x

Ortholog source x x x x

Ortholog score x x x x

Ortholog support x x x x

Transitive orthology x x x x

Phylogenetic distance x x x x

The table lists the features in the categories ’’Network’’, ’’GO’’, ’’General’’ and ’’Ortholog’’ and the protein pairings (proteins in the target network, proteins in the source
network, orthologs). Also the configuration of the full (target network needs to be available) and the reduced feature set (used in real prediction filtering) is shown. For
example the feature Global GO is modeled employing the interaction partners in the source network, in the target network and between the orthologs. Furthermore,
the feature is included in the GO, the reduced and the full feature set.
doi:10.1371/journal.pone.0066635.t002
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required, the performance drops significantly. Physical interactions

can be classified with an AUPRC score of 0.60 and of 0.58 with

the RFF trained with the full and reduced feature set, respectively.

Genetic interactions can be classified with AUPRC score of 0.60

and 0.48.

Using a maximum InParanoid ortholog bootstrap score of 1.00,

a transfer precision of 0.33 for AllI can be reached resulting in an

AUPRC of 0.30. For physical and genetic interactions the

precision of a direct transfer can barely be improved resulting in

an AUPRC of 0.15 and 0.18, respectively.

A high threshold has to be used for the sequence similarity

filter in order to increase the transfer precision resulting in a low

AUPRC score of 0.28 for AllI. Even lower are the AUPRCs for

PhyI and GenI. This can be explained with the low sequence

similarities of the orthologs used for the transfer, which ranges

between 33% and 38% on average for the different species. For

the full feature set the RFF for AllI yields a precision of 0.85 and a

relative recall of 0.69 (regular recall of 0.02) with a typical score

threshold of 0.5. With the same score threshold for PhyI a

precision of 0.72 and a relative recall of 0.33 (regular recall of

0.01) can be reached, whereas for GenI a slightly lower precision

of 0.68, but a higher relative recall of 0.40 is observed (0.003

regular recall).

In general, the predictors for AllI achieve a better performance

than the predictors for the more strict setting in which also the

interaction type has been transferred and predicted. This is

plausible as for AllI the gold standard is larger and as with a direct

transfer a consistency of 25% can be reached already. For the

different feature sets (full and reduced) a small drop in the AllI and

PhyI setting and a large drop for the GenI setting is observed.

In the following we show examples of transferred physical

interactions which receive high and low score values by RFF. On

one hand, the transferred interaction between LST8 and TOR2

from WAT1 and TOR2 (in S. pombe) and also the transferred

interaction between SMX3 and LSM5 from SmF and CG6610 (in

D. melanogaster) get a comparable high score of § 0.90. For the

first, but not for the second example also an interaction is known

between the orthologs in S. cerevisiae. But for the second example,

both orthologs (SMX3 and LSM5) carry the Sm domain and the

interaction between orthologs of SmF and CG6610 have been

found in S. pombe and H. sapiens, which suggests that SMX3 and

LSM5 indeed interact, but that they are not included in the S.

cerevisiae gold standard. On the other hand, the transferred

interaction between CRZ1 and HAT2 from Sp3 and RBBP4 (in

H. sapiens, identified within a low-throughput study[61]) and the

transferred interaction between ARP6 and RPS1A from Actr13E

and RpS3A (in D. melanogaster which was identified in a Yeast Two

Hybrid screen [8]) gets a score of ƒ 0.05. Both transferred

interactions are not in the S. cerevisiae gold standard, therefore, they

are filtered correctly. Due to the low-throughput experiment,

which was used to discover the interaction between Sp3 and

RBBP4 it can be assumed that this interaction indeed exists for H.

Figure 1. Precisions of a direct interaction transfer to S. cerevisiae for the different experimental settings. We show six eukaryotic
species having the largest number of interactions. For the all interaction setting (allI) only the occurrence of a transferred interaction in the S.
cerevisiae network is required, whereas for the genetic (GenI) and physical (PhyI) interaction setting also the exact type of the transferred interaction is
checked. In addition to the precisions, the number of total transferred interactions and consistent interactions for each species and type is shown on
top of the corresponding bar. Most interactions can be transferred from S. pombe to S. cerevisiae. There the transfer precision is highest for physical
and genetic interactions. For the allI setting the highest transfer precision is observed for M. musculus to S. cerevisiae. This is due to the small number
of interactions, which are mostly involved in conserved biological processes like DNA replication and chromosome organization.
doi:10.1371/journal.pone.0066635.g001
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sapiens, but not in S. cerevisiae. In contrast, the interaction between

Actr13E and RpS3A could also be false positive due to the high-

throughput Yeast Two Hybrid screen which was used to identify

the interaction in D. melanogaster. In Figure S4 (Supporting

Information) the transferred interactions together with their

assigned RFF scores and their feature values in comparison to

the feature distributions of correctly and incorrectly transferred

interactions are shown.

Feature impact. To estimate the contribution of each feature

to the performance of RFF, the Information Gain (IG) is

computed for the different experimental settings (Figure 3 d).

The IG for the different features differs among the experimental

settings, but the sorting of the features according to their IG value

is similar. The strongest feature is the network overlap in the target

network (Network overlap (T)). But also the GO features yield a

high IG. The combined GO features have higher IGs than the

category-wise GO features for biological processes, cellular

components and molecular functions. This can be explained by

the fact that more GO terms are considered for the global

semantic GO similarity, so less often a missing value indicator is

assigned. From the individual GO term types, the biological

processes category has the highest IG. Biological processes have

also been identified by [20] as a strong feature to define thresholds

for an interaction transfer filter. From the Ortholog features the

synonym similarity (token score) and the ortholog score feature

contributes most to the prediction.

In contrast, the gene expression correlation, which was used in

other studies for the prediction of protein interaction, has a rather

low IG. For the two features with highest IG (Network overlap

and GO similarity in the target network) also the score

distributions of correctly and incorrectly transferred interactions

for AllI are shown in Figure 3. Clearly, the fraction of correctly to

incorrectly transferred interactions increases with the score value

for these two features. For a feature like the harmonic sequence

similarity, which has a low IG, only a small difference in the

characteristics of the distribution can be observed, which explains

the weak performance of filters based on sequence similarity.

In Table 3 the performance of the different individual feature sets

(Network, Gene Ontology, General, Ortholog, Reduced set and Full

set) is summarized in addition to the filters based on the sequence

similarity and the InParanoid bootstrap score. For the GO features

the highest feature category-wise AUPRC score can be reached for

AllI and PhyI. For PhyI a similar AUPRC score can be achieved with

the ortholog features. Using a combination of all introduced features

an up to 0.08 higher AUPRC score can be obtained for the different

settings. For GenI the highest category-wise AUPRC score can be

reached with the network features, which is also higher than the

score for the reduced feature set. This explains the performance drop

for the reduced feature set for this GenI setting.

Generalizability. A general transfer approach should be able

to achieve a similar performance for the interaction transfer to

other species. Since the interaction networks for other species are

currently too sparse (see Table 1) RFFs can not be learned and

evaluated for individual species except for S. cerevisiae. Therefore,

we investigate the applicability of the RFF fitted for the interaction

transfer to S. cerevisiae for the transfer of interactions to other

eukaryotic species. It has to be expected that:

1. the RFF scores transferred interactions between phylogeneti-

cally closer species higher than transferred interactions between

phylogenetically distant species,

Figure 2. Precision - (relative) Recall curves. Precision - (relative)Recall curves for the RFF (Random-Forest-Filter) trained with the reduced
feature set, the full feature set and different experimental setting (only physical interactions (PhyI), only genetic interactions (GenI) and all interactions
(AllI)) using 10-fold cross validation. Interactions are transferred from all eukaryotic species with interaction data to S. cerevisiae and filtered with the
respective approaches. In addition, the precision and relative recall is given for a simple sequence similarity filter and a filter based on the InParanoid
ortholog bootstrap score. The RFF for AllI trained with the full (red) and reduced (red dotted) feature set perform best. The reduced feature set
performs somewhat worse than the full feature set. For the more strict PhyI and GenI settings in which also the type of an interaction is transferred,
the performance drops in comparison to AllI. By comparing the different feature sets it can be seen that for physical interactions (green, green
dotted) almost the same performance for the full and reduced feature set can be reached, whereas for genetic interactions (blue, blue dotted) a clear
difference in the performance can be observed. But again, for these two settings a huge improvement of RFF to the baseline filters based on
sequence similarity) and ortholog scores can be observed.
doi:10.1371/journal.pone.0066635.g002
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2. according to their importance, the ranking of features is similar

for the interaction transfer to different species even though the

networks are to incomplete to train a model and

3. that a comparable performance with competing transfer

approaches should be achieved when the RFF is applied for

the transfer of interactions to other species.

4. In the following we investigate these three points.

Transfer scores. We use the RFF with the reduced feature

set trained with transferred interactions to S. cerevisiae to transfer

protein interactions from the two largest interaction networks H.

sapiens and S. cerevisiae to both M. musculus and B. taurus and

analysed the score distributions. For physical and genetic

interactions in the source network, the predictor trained with the

respective interaction type (PhyI and GenI) is used and for

interactions with a different type the predictor trained with all

data is applied (AllI). As expected, the scores for transferred

interactions from the phylogenetically closer species, in this case H.

sapiens, are higher than the scores from the more distant species as

shown in Figure 4. The score distribution of transferred

interactions from S. cerevisiae to M. musculus and B. taurus are very

similar with a median score of 0.07 for both distributions. This is

comparable to the transfer of interactions to S. cerevisiae, where a

median score between 0.03 and 0.09 can be observed (see Figure

S5). In comparison, for the transfer of interactions between

phylogenetically closer species, a median score of 0.27 and 0.25

can be observed for the transfer of interactions from H. sapiens to

M. musculus and B. taurus, respectively. Thus, as expected with

higher score thresholds more interactions can be transferred from

H. sapiens to M. musculus as compared to H. sapiens to B. taurus. On

the other hand, from S. cerevisiae almost the same number of

Figure 3. Feature impact. Histogram of the score values for correctly (red) and incorrectly (green) transferred interactions (without interaction
type) for the features: a.) Network overlap, b.) Semantic GO similarity and c.) Harmonic sequence similarity. d.) Information Gain of the individual
features and experimental settings. For ortholog protein features the average Information Gain of the two orthologous partners is shown. For the
features a.) Network overlap and especially for b.) Semantic GO similarity a different distribution for correctly and incorrectly transferred interactions
can be observed resulting in a large Information Gain of these features. In contrast, for the harmonic sequence similarity feature only a small
difference in the distributions can be observed, which explains the small Information Gain and the filter performance based only on sequence
similarity.
doi:10.1371/journal.pone.0066635.g003
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interactions is transferred to the two species B. taurus and M.

musculus with different score thresholds.

Cross-species feature importances ranking. We transfer

all available interactions to S. cerevisiae, H. sapiens, D. melanogaster, S.

pombe and C. elegans and compute the Information Gain (IG) of each

modeled feature given the observed consistently and inconsistently

transferred interactions for the respective species. We observe that

the similarity of the feature ranking decreases with the IG i.e. that

those features which are important for the classifier are consistently

ranked high and the ranking of those feature which are not that

beneficial to our classifier differ more. For example the Network

overlap feature is ranked first for all considered species expect for C.

elegans. Also the feature which models the GO Similarity between

the target interactions is ranked second by all considered species

expect for C. elegans. In Figure S6 in the Supporting Information we

show the ranking of the features according to their IG for the

different species. As reference we use the ten features with highest

IG for the interaction transfer to S. cerevisiae.

Comparison with other interaction transfer

methods. Most protein interaction transfer methods predict

interologs for H. sapiens and, in addition, quite many experimen-

tally validated interactions are available for human. Therefore, this

network is chosen to evaluate the intersections of predicted protein

interactions from different data sets and a set of experimentally

discovered physical protein interactions.

Transferred interactions from InteroPORC [21], the STRING

database [62], InterologFinder [24], BIPS:BIANA [25] and interac-

tions predicted with RFF are used for the comparison. In order to

compare the sets, the protein identifiers are mapped to UniProt/

Swissprot identifiers. The following prediction sets are constructed

using the publicly available transferred networks from the

considered approaches for H. sapiens:

STRING(1): only high confidence interactions with at least one

evidence of an interaction transfer from another species (interac-

tions with a combined score below 0.7 are excluded);

STRING(2): The combined score of STRING incorporates

evidence from many sources including experimental knowledge for

the respective species (direct evidence). Thus, transferred interac-

tions with also direct evidence are scored higher, which biases the

STRING set for this comparison. Therefore, an additional STRING

interaction set is created where the combined score is recomputed

without the scores for the direct evidence from databases,

experiments and text-mining using the equation for the combined

score [30]. Again for this set a combined score threshold of 0.7 is

used to filter interactions.

InteroPORC: all transferred interactions;

Table 3. Result details for the transfer to S. cerevisiae.

Method Experimental Feature AUPRC AUROC

setting set

RFF All Full 0.86 0.94

RFF All Reduced 0.82 0.91

RFF All Network 0.79 0.90

RFF All GO 0.79 0.89

RFF All Ortholog 0.62 0.82

RFF All General 0.50 0.68

InParanoid All - 0.30 0.59

Sequence All - 0.28 0.55

RFF Physical Full 0.60 0.89

RFF Physical Reduced 0.58 0.88

RFF Physical GO 0.50 0.85

RFF Physical Network 0.42 0.84

RFF Physical Ortholog 0.48 0.82

RFF Physical General 0.19 0.62

InParanoid Physical - 0.15 0.61

Sequence Physical - 0.14 0.55

RFF Genetic Full 0.60 0.87

RFF Genetic Reduced 0.47 0.82

RFF Genetic Network 0.51 0.86

RFF Genetic GO 0.45 0.80

RFF Genetic Ortholog 0.35 0.75

RFF Genetic General 0.19 0.53

InParanoid Genetic - 0.18 0.60

Sequence Genetic - 0.15 0.51

10-fold cross validation results of the RFF (Random-Forest-Filter) trained with different feature sets, the InParanoid ortholog filter and the sequence similarity filter for
different experimental settings. Interactions are transferred from all eukaryotic species with interaction data to S. cerevisiae.
For each experimental setting and feature set the area under precision recall curve (AUPRC) and the area under the receiver operating characteristic curve (AUROC) are
computed. From the individual feature sets the RFF trained with the GO and Network feature set perform best for the AllI and GenI setting. Whereas for physical
interactions the performance for the Network features are lower than for the GO and Ortholog feature set.
doi:10.1371/journal.pone.0066635.t003
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Figure 4. Score distributions. Score distributions for transferred interactions with RFF from S. cerevisiae and H. sapiens to the two target species
(a.) M. musculus and (b.) B. taurus. Transferred interactions from S. cerevisiae have significantly lower score values than transferred interactions from
H. sapiens to both target species. With a low score threshold of 0.2 almost all interactions from H. sapiens will be transferred to the two target species
whereas a huge fraction of the transferred S. cerevisiae interactions is filtered out.
doi:10.1371/journal.pone.0066635.g004

Figure 5. Method comparison. Comparison of interaction transfer sets from various methods for H. sapiens with known H. sapiens interactions
from iRefIndex. We compare interaction sets from STRING [62], InteroPORC [21], InterologFinder [24], BIPS:BIANA [25] and our Random-Forest-Filter
(RFF). From the STRING database only interactions with interaction transfer information from other species and a combined score over 0.7 are
included (STRING(1)). The combined score uses information from all information sources including knowledge on experimental interactions for the
respective species (direct evidence). Therefore, an additional interaction set is created where the combined STRING score is recomputed excluding
the scores from the direct evidence of databases, experiments and text-mining (STRING(2)). In general, the intersections between the different sets
and the known interactions are small. a.) With the RFF and with STRING(1) 10% of the predicted interactions can be found in the experimental data.
The modified STRING(2) interaction set is 43% smaller and only 4% of the predicted interactions are consistent with the experimental data showing a
clear performance advantage of the RFF for species with no experimentally determined interactions. b.) We compare the interaction sets of RFF,
STRING(1), a combined set of unique interactions from InteroPORC, InterologFinder and BIPS:BIANA and a set of known H. sapiens interactions. With the
RFF 42% of predicted interactions can also be found in one of the other sets.
doi:10.1371/journal.pone.0066635.g005
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InterologFinder: 15,795 transferred interactions with highest

score (the score threshold is set so that the same number of

interaction as STRING(2) are predicted);

BIPS;BIANA: all transferred interactions in the online avail-

able precomputed prediction set with domain interactions or

shared GO terms;

RFF: The RFF for physical source interactions (PhyI) trained

with the reduced feature set and with transferred interactions to S.

cerevisiae is used. All transferred interactions with a score § 0.18

for the transfer to H. sapiens from all species considered in the study

are used. The score value is experimentally chosen to yield roughly

the same number of transferred interactions as STRING(2).

In the entire InteroPORC prediction set 17,111 physical

interactions and in the selected BIPS:BIANA set 7,073 interactions

are included. With 28,155 links between proteins the interaction

set from the STRING(1) is the largest, the STRING(2) set is only

slightly larger (15,795 interactions) than the set from RFF which

includes 14,634 predicted physical interactions. 35,628 experi-

mentally validated physical interactions are taken from iRefIndex

(7,784 interactions are excluded because the proteins are only

mappable to UniProt/TrEMBL).

In Figure 5 the consistency with experimentally validated

interactions (a.) and the intersections between different H. sapiens

protein interaction sets are shown (b.).

In general, the intersections between the sets are small. The

highest consistency of 10% between the predicted interaction sets

and the experimental set can be reached with the RFF and with

the STRING(1) interaction set.

From the STRING(2) and BIPS:BIANA interaction set 4% and

from the InteroPORC and InterologFinder around 3% of the predicted

interactions are consistent with the experimental data. In total

42% of predicted interactions with the RFF can be found in at least

one other set whereas for the STRING(1) set only 26%, for the

BIPS:BIANA set 18%, for the InteroPORC set 17% and for the

InterologFinder set 10% can be found in another interaction set.

Besides BIPS:BIANA all methods transfer interactions from all

available interactions in public available databases. But BIPS:BI-

ANA explicitly excludes interactions from Tandem Affinity

Purification experiments which explains the rather small interac-

tion set. In comparison to STRING(2), BIPS:BIANA, InteroPORC

and InterologFinder a clear performance gain of our RFF approach

can be observed. Furthermore, RFF cannot be outperformed by

STRING(1) even with the integration of experimental knowledge

(which is not available for most species) via the combined score.

Thus, for species without experimental knowledge but also for

model organisms with experimental protein interactions a

performance advantage of our approach in comparison to

STRING can be expected.

Enriched protein interaction networks
As shown above via the comparison with other state-of-the-art

method our RFF approach has a decent performance for the

transfer of interactions to species without experimental interaction

data. Therefore, we use our approach to obtain as comprehensive

as possible interaction networks for various eukaryotic species. For

this we use all available experimental interaction data for all 83

eukaryotic species for the transfer to all other eukaryotic species

whenever ortholog mappings of appropriate quality are available.

We employ three RFFs trained on S. cerevisiae: RFF, PhyI for

physical source interactions, RFF, GenI for genetic source

interactions and RFF, AllI for interactions for the remaining

interactions including interactions without annotated interaction

type. The same score threshold of 0.18 is used for all models.

With direct interaction transfer the interactome of 83 eukaryotic

species can be extended from currently 321,808 interactions to

5,751,775 interactions. With the RFF 1,248,609 pair-wise inter-

actions can be transferred (i.e. more than 78,% of transferred

interactions are filtered out as possible false positive). An overview

of the resulting interactomes is shown in Figure 6 using the

Interactive Tree Of Life [63] (only species are shown for which at

least 50% of the genes have associated GO annotations). For

higher vertebrates of interest such as the farm animals B. taurus, M.

musculus and G. gallus each interaction network can be enriched

with over 40,000 interactions. After that, the resulting inter-

actomes have a decent coverage of more than 2 interactions per

gene on average. Still, with our method for some species only few

interactions can be transferred. Examples are plants like O. sativa

or V. vinifera with an average of 0.35 interactions per gene. The

reason for the low coverage in these cases is the small number of

available orthologs in the ortholog databases.

It is clear that for the large scale interaction transfer with our

RFF method the limitations are the availability of ortholog

relations, of mappings of the orthologs to UniProt entries and of

annotations of the UniProt entries. This implies that for some

species only few interactions can be transferred. Of course, RFF

will profit from the expected improvements of protein annotations,

ortholog mappings and further experimental protein interactions.

The transferred interaction networks for the 83 species are

available on our web service and can be inspected and

downloaded. The user can specify score thresholds corresponding

to the expected transfer precision of our models. The database will

be frequently updated to incorporate newly available experimental

interactions and updates of protein annotations and orthologs for

more species. In Figure 7 the web interface including the ‘transfer

statistics view’ for M. musculus is outlined as an example.

Discussion and Conclusions

Years after high-throughput screening techniques for the

identification of protein interactions were introduced most

interaction data still is available for only a few model organisms,

in particular for S. cerevisiae. Transferring protein interactions

works best between phylogenetically close species, but already

between the two yeast species S. pombe and S. cerevisiae only a

consistency of 36% for transferred physical interactions can be

observed. The transfer consistency between more distant species is

of course much lower. The transfer consistency is also lower for

genetic interactions between the two yeasts, which might be due to

the incompleteness of the S. cerevisiae genetic interaction network.

We observed that for only 3% of the S. cerevisiae interactions

evidence of conservation between orthologs in different species

could be found. In order to improve the transfer quality and to be

able to also consider interactions from phylogenetically distant

species, e.g. from S. cerevisiae to M. musculus, we introduced a new

method using Random Forests (Random-Forest-Filter RFF) to

score and filter transferred interactions.

We trained the models with transferred interaction data from

eukaryotic organisms to S. cerevisiae. We did the training on yeast,

as the S. cerevisiae network is currently the largest eukaryotic

interaction network and for most of the proteins in the network

curated functional annotations are available. We evaluated the

models with different feature sets and experimental settings and

compared the models with commonly applied filter approaches

e.g. using the sequence similarity and the InParanoid bootstrap

score. We showed that for the task of transferring interactions to S.

cerevisiae our approach performs better than commonly applied

filter approaches. Based on these results we assume that the
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performance of the transfer to S. cerevisiae is a lower bound for the

performance of the method for the transfer between phylogenet-

ically closer species.

But still, our observed results are limited with respect to different

aspects:

1. Possible false negatives in the S. cerevisiae network result in

lower transfer consistencies, whereas false positives in the S.

cerevisiae network may result in an overestimation of the

consistency.

2. Our method makes use of interaction data from various sources
like Yeast two Hybrid, or Tandem Affinity Purification and thus

included measured-binary and measured-predicted binary inter-
actions. We only address the interaction transfer on a general
level and currently only consider binary-interactions. Our
method will benefit from further discrimination of protein
interactions e.g. discrimination between transient or permanent
protein interactions, or the pre-identification of conserved protein
complexes. And thus, stronger claims on the conservation rate
and also a more complete interaction transfer will be possible.

3. Low-throughput experiments are commonly hypothesis-driven

[4] and involve proteins of particular interest to the researcher

performing the experiments. These low-throughput experi-

ments can also be based on the observation that a conservation

Figure 6. Enriched interactome. The interactomes of 83 eukaryotic species can be increased from currently 321,808 interactions to 1,076,996 pair-
wise interactions using a score threshold of 0.18 and the RFFs with reduced feature set. In the figure the enriched protein interactomes are shown for
all species where at least GO annotations for half of the genes are available. Interactions are transferred from all eukaryotic species to all other species
with available ortholog mappings. The color of the species nodes indicates the average number of interactions per gene and the associated bar chart
indicates the fraction of physical interactions (green), genetic interactions (blue) and other interaction types (red) in the enriched interaction networks
for the respective species. For species with rich annotation information including M. musculus and B. taurus over 40,000 interactions can be
transferred resulting in an average number of interactions per gene larger than 2. For species with sparse annotation information and few ortholog
references to UniProt only a small number of interactions can be transferred. For example for the plants O. sativa and V. vinifera only 0.35 interactions
per gene on average can be obtained.
doi:10.1371/journal.pone.0066635.g006
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in a particular species exists, which could lead to an

overestimation of the consistency and to overfitting.

4. The ortholog and protein annotations quality have a direct

influence on our models. For example KEGG pathway

information, or gene ontology and synonym annotations are

themselves often inferred using homology information ( directly

or indirectly). For example the KEGG databases transfers

pathway information from well studied species based on

manually defined ortholog groups. It is obvious that with

solely transferred annotations our approach can not improve

the prediction performance.

5. We fitted our model for the transfer to S. cerevisiae only. Due to these

reasons, we can not give an accurate estimation on the performance

for the protein interaction transfer to species except for S. cerevisiae.

But we could show that our approach can be applied for the

transfer of interaction to species beyond S. cerevisiae as well. On one

hand, we tested the generalizability of RFF with transferred

interactions to H. sapiens, M. musculus and B. taurus. We showed

that (as expected) transferred interactions from phylogenetically

closer species get higher scores than transferred interactions from

phylogenetic more distant species. Furthermore, we showed that

those features which are most beneficial for the classification of

interaction for the transfer to S. cerevisiae are also most beneficial

for the classification of interactions for other species. On the

other hand, we compared different protein interaction ap-

proaches. We showed for H. sapiens that with our approach the

highest consistency of transferred interactions can be observed

and that 42% of transferred interactions can be explained with

high confidence relations extracted from STRING, InteroPORC,

InterologFinder, BIPS:BIANA or the available experimental inter-

actions. Furthermore, in an experimental setting where we

recomputed the STRING combined edge score for H. sapiens to

mimic a species without experimental knowledge, we showed

that RFF predicts almost the same number of interaction as

STRING, but with our approach more than twice as many

interactions are consistent with the available experimental

protein interaction network.

Therefore, we used RFF to transfer protein interactions to 83

eukaryotic species and we provide a web service for the download

Figure 7. COIN-DB web interface. Screenshot of the web interface for the transferred and scored protein interactions. Transferred and
experimentally validated interactions can be downloaded for 83 eukaryotic species for user specified score thresholds. For species of interest the
transfer profiles can be inspected in detail including the number of interactions (of the different interaction types) and the number of uniquely
transferred interactions, and the expected performance of the transfer.
doi:10.1371/journal.pone.0066635.g007
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and investigation of these transferred interaction networks. Based

on the above discussions, these predictions have to be used with

care, but we are confident that our transferred networks are as

comprehensive and also as accurate as currently possible.
Availability: http://services.bio.ifi.lmu.de/coin-db/.

Supporting Information

Figure S1 Fraction of interactions derived from low and
high-throughput studies. Protein interactions for S. cerevisiae,

H. sapiens, D. melanogaster and S. pombe from iRefIndex[33] classified

into the categories: derived from low-throughput studies (detected

in studies which report between 1 and 10 interactions), derived

from mid-throughput studies (detected in studies which report

between 10 and 100 interactions), derived from mid-high

throughput (detected in studies which report between 100-1000

interactions) and derived from high-throughput studies (detected

in studies which report §1000 interactions).

(PDF)

Figure S2 Interactions by detection method. Protein

interactions by detection method for S. cerevisiae, H. sapiens, D.

melanogaster and S. pombe from iRefIndex[33].

(PDF)

Figure S3 Direct interaction transfer to S. cerevisiae
using different ortholog databases. Transfer consistencies of

a protein interaction transfer from M. musculus, H. sapiens, S. pombe,

C. elegans and D. melanogaster to S. cerevisiae using orthologs from the

databases OMA[45], InParanoid [46], HomoloGene [47], En-

semblCompara[59], TreeFam[64] and eggNog[65] for the all

interaction setting (allI).

(PDF)

Figure S4 Transfer examples. Examples of transferred

interactions which get high and low scores by RFFs including

specific feature values for these interactions and the overall feature

distribution (the scores are estimated via a cross-validation setting).

(PDF)

Figure S5 Protein interaction scores for the transfer of
interactions to S. cerevisiae. The average transfer scores for

an interaction transfer from M. muscles, H. sapiens, S. pombe, A.

thaliana, C. elegans and D. melanogaster to S. cerevisiae using RFFs in a

cross-validation setting.

(PDF)

Figure S6 Information Gain feature ranking. The feature

importance ranking i.e. the ranking of features, is quite similar

especially for the most important features, whereas the ranking of

the less important feature varies more.

(PDF)

Table S1 Data sources. List of data sources used for this

study.

(XLS)
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5. Gavin AC, Bösche M, Krause R, Grandi P, Marzioch M, et al. (2002)

Functional organization of the yeast proteome by systematic analysis of protein

complexes. Nature 415: 141–147.

6. Ewing RM, Chu P, Elisma F, Li H, Taylor P, et al. (2007) Large-scale mapping

of human proteinprotein interactions by mass spectrometry. Mol Syst Biol 3:

89.

7. Ehlert A, Weltmeier F, Wang X, Mayer CS, Smeekens S, et al. (2006) Two-

hybrid protein-protein interaction analysis in arabidopsis protoplasts: establish-

ment of a heterodimerization map of group c and group s bzip transcription

factors. Plant J 46: 890–900.

8. Uetz P, Pankratz MJ (2004) Protein interaction maps on the fly. Nat Biotechnol

22: 43–44.

9. Michaut M, Kerrien S, Montecchi-Palazzi L, Chauvat F, Cassier-Chauvat C, et

al. (2008) Interoporc: automated inference of highly conserved protein

interaction networks. Bioinformatics 24: 1625–1631.

10. Rhodes DR, Tomlins SA, Varambally S, Mahavisno V, Barrette T, et al. (2005)

Probabilistic model of the human protein-protein interaction network. Nat

Biotechnol 23: 951–959.

11. Turinsky AL, Razick S, Turner B, Donaldson IM, Wodak SJ (2010) Literature

curation of protein interactions: measuring agreement across major public

databases. Database (Oxford) 2010: baq026.

12. Friedel CC, Zimmer R (2009) Identifying the topology of protein complexes

from affinity purification assays. Bioinformatics 25: 2140–2146.
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