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Abstract
Despite the successful identification of several relevant genomic loci, the underlying molecular
mechanisms of schizophrenia remain largely unclear. We developed a computational approach
(NETBAG+) that allows an integrated analysis of diverse disease-related genetic data using a
unified statistical framework. The application of this approach to schizophrenia-associated genetic
variations, obtained using unbiased whole-genome methods, allowed us to identify several
cohesive gene networks related to axon guidance, neuronal cell mobility, synaptic function and
chromosomal remodeling. The genes forming the networks are highly expressed in the brain, with
higher brain expression during prenatal development. The identified networks are functionally
related to genes previously implicated in schizophrenia, autism and intellectual disability. A
comparative analysis of copy number variants associated with autism and schizophrenia suggests
that although the molecular networks implicated in these distinct disorders may be related, the
mutations associated with each disease are likely to lead, at least on average, to different
functional consequences.

A pressing challenge of human genetics is to combine diverse diseaserelated genetic
variations to illuminate pathways and networks affected in common disorders.
Schizophrenia represents an important example of a common psychiatric disorder in which a
statistically significant contribution to disease susceptibility has now been demonstrated for
different types of genetic variations. Specifically, several genomic loci associated with

© 2012 Nature America, Inc. All rights reserved.

Correspondence should be addressed to D.V. (dv2121@columbia.edu).

Note: Supplementary information is available in the online version of the paper.

AUTHOR CONRIBUTIONS
S.R.G. and J.C. performed computational analysis, interpreted the results and wrote the manuscript. T.S.B. contributed to the
computational analysis. B.X., J.A.G. and M.K. designed the study, contributed data, interpreted the results, and contributed to
functional analysis and manuscript writing. D.V. designed the study, supervised the project, interpreted the results and wrote the
manuscript.

COMPETING FINANCIAL INTERESTS
The authors declare no competing financial interests.

Reprints and permissions information is available online at http://www.nature.com/reprints/index.html.

NIH Public Access
Author Manuscript
Nat Neurosci. Author manuscript; available in PMC 2013 June 21.

Published in final edited form as:
Nat Neurosci. 2012 December ; 15(12): 1723–1728. doi:10.1038/nn.3261.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.nature.com/reprints/index.html


common human polymorphisms have been implicated by genome-wide association studies
(GWAS)1–4, a contribution from de novo and rare copy number variants (CNVs) has been
established5–7, and a significant contribution from de novo single nucleotide variants
(SNVs) was demonstrated in a recent study based on exome sequencing in two populations8.

Biological networks provide a natural framework for integration of diverse genetic
variations associated with such a complex and multifactorial phenotype as schizophrenia9,10.
To identify affected molecular networks, we have developed an algorithm (NETBAG+) that
searches for cohesive clusters of genes perturbed by disease-associated genetic variations
(Fig. 1a). The approach is based on the previously described phenotype network11, which
assigns every pair of human genes a score proportional to the likelihood ratio that these
genes are involved in the same genetic phenotype (Online Methods). The phenotype
network was used previously to identify a functionally cohesive gene cluster perturbed by de
novo CNVs in autism11. The new NETBAG+ approach is able to integrate data from
multiple types of genetic variation: SNVs, CNVs and GWAS-implicated loci. The greedy
search algorithm identifies highly connected gene clusters that are affected by genetic
variations, and the significance of the identified clusters is then established using an
appropriate randomization (Online Methods). Although we and others have previously
developed several methods to identify and analyze disease-related gene networks11–15, to
our knowledge NETBAG+ is the first principled approach for integration of diverse sources
of genome-wide genetic variation under a unified framework. The statistical power of this
integrative approach stems from the convergence of different types of genetic variations on a
set of interrelated molecular processes.

Here we applied the NETBAG+ algorithm to integrate several unbiased whole-genome data
sets associated with schizophrenia. We identified several cohesive gene networks related to
the disorder and characterized their biological and cellular functions. We also investigated
the expression of the network genes in the brain. Finally, we examined the relationship
between the genes forming the identified schizophrenia networks and genes associated with
other neurodevelopmental disorders, such as autism and intellectual disability.

RESULTS
Gene clusters affected by schizophrenia-associated variations

We considered non-synonymous de novo SNVs from recent studies8,16, de novo CNVs from
published genome-wide scans7,17–23 and genomic regions implicated by GWAS1–4,24–28. In
total, this set contained 1,044 genes (159 from non-synonymous de novo SNVs, 712 from de
novo CNVs, 173 from GWAS) from 213 genomic locations. In searching for cohesive gene
clusters, the algorithm was allowed to pick any gene affected by a de novo SNV, any gene in
a de novo CNV (one gene per CNV) or any gene in a GWAS-implicated region (one gene
per region).

On the basis of the aforementioned input data, NETBAG+ identified a significant gene
cluster (P < 0.001) containing in total 47 genes (22 from SNVs, 20 from CNVs, 6 from
GWAS regions) (Fig. 1b). The identified cluster contained two weakly connected
subclusters (subcluster Ia and subcluster Ib). In addition to combining all genetic data
(SNVs, CNVs and GWAS regions), we also performed NETBAG+ searches using different
combinations of genetic variations as the algorithm input (Supplementary Table 1). For
example, we obtained a marginally significant (P = 0.056) cluster using only de novo SNVs
(Fig. 1c); all genes in this cluster were also members of the cluster obtained using the
combined data (cluster I). The highest significance was achieved when all types of genetic
variations were considered together (Supplementary Table 1). Thus, different sources of
genetic variations appear to reinforce each other, increasing the overall cluster significance.
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After masking the genes forming cluster I—that is, removing these genes from the input data
—the NETBAG+ algorithm was able to identify another marginally significant cluster,
cluster II (Fig. 1d, P = 0.071). Notably, cluster I and cluster II included three of the four
genes (LAMA2, TRRAP, DPYD) with recurrent non-synonymous SNVs in the cohort
analyzed in a recent study8 (Fisher’s exact test, one-tailed, P = 0.05), supporting the
NETBAG+ clustering results and also providing more evidence that these genes are
involved in schizophrenia pathophysiology.

In contrast to the results for non-synonymous SNVs and CNVs from schizophrenia patients,
we detected no significant clusters in various control sets (Supplementary Table 1). For
example, there were no significant clusters identified when searching genes affected by de
novo non-synonymous SNVs observed in a control population8, synonymous de novo SNVs
observed in schizophrenia patients8, or non-synonymous de novo SNVs observed in
unaffected siblings of autism patients in two recently published studies29,30. Furthermore,
we identified no significant clusters when the aforementioned sets were combined with de
novo CNVs seen in unaffected siblings of autism patients in another recent study31 (Online
Methods).

Biological processes associated with schizophrenia clusters
To determine functions of genes forming the identified schizophrenia clusters, we used two
computational tools (FuncAssociate32 and DAVID33) that identify over-represented Gene
Ontology (GO) terms in a given gene set. These analyses showed that the genes in cluster I
participate in several important neurodevelopmental processes, such as axon guidance,
neuron projection development, and cell migration and locomotion (Table 1 and
Supplementary Tables 2 and 3). The GO analysis also implicated several cellular pathways,
including signaling through essential second messengers: calcium, cyclic AMP and inositol
trisphosphate. Separate analysis of genes forming subclusters Ia and Ib (Supplementary
Tables 2 and 3) showed that the former was enriched for gene functions related to signaling
and axon guidance, the latter for functions related to neuron mobility and locomotion.

The genes forming cluster II (Supplementary Tables 2 and 3) were enriched for functions
related to chromosomal organization and chromosomal remodeling. Notably, a similar GO
enrichment analysis of all genes affected by non-synonymous de novo SNVs or de novo
CNVs did not identify any significantly enriched functional terms. Thus, the developed
computational approach reveals cohesive functional networks hidden within the genomic
loci affected in schizophrenia.

Temporal expression of genes in schizophrenia clusters
Complementary to curated gene ontology terms, another important descriptor of biological
function is temporal gene expression profile. To investigate brain-related gene expression,
we took advantage of the Human Brain Transcriptome (HBT) database34 and calculated the
median brain expression profiles for the genes forming the identified clusters across 15
developmental stages from embryonic to late adulthood (Fig. 2a; average expression profiles
are shown in Supplementary Fig. 1). The level of brain expression for all genes forming the
identified clusters was significantly higher than expression of all genes in the HBT database
(Wilcoxon rank-sum test, P < 1 × 10−20) and all genes used as the input for NETBAG+ but
not selected by the algorithm (P < 1 × 10−20). Moreover, the expression of the cluster genes
was higher during prenatal than the postnatal developmental stages (P < 1 × 10−20). This
result is in agreement with significant enrichment of nonsynonymous de novo mutations in
genes with high prenatal expression observed in a recent study8, and it suggests that prenatal
genetic insults are particularly important for the etiology of schizophrenia.
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Of note, genes forming subcluster Ia, subcluster Ib and cluster II showed distinct expression
profiles. Subcluster Ia contains many genes with broad brain-related functions that are
essential across all developmental periods. The median gene expression in this subcluster
was very uniform across the developmental stages considered, but with higher levels during
prenatal periods (P = 1 × 10−6). Genes forming cluster II are primarily responsible for
chromosomal organization and remodeling; their expression is likely to be particularly
important during periods of neuronal development and differentiation. Naturally, the median
expression profile for the cluster II genes was much higher in prenatal than postnatal
developmental stages (P < 1 × 10−20). Although the genes forming subcluster Ib also
displayed higher prenatal expression (P = 5 × 10−11), their median expression profile
showed a prominent decrease between early fetal and late mid-fetal stages, approximately
corresponding to the period between 10 and 20 weeks after conception. Several genes
(DOCK1, ITGA6, COL3A1, LAMA2, THBS1) in this subcluster independently showed U-
like expression profiles (Fig. 2b). This observation suggests that in the context of this
subcluster, specific processes occurring early or late in corticogenesis may be predominantly
affected in schizophrenia.

Processes perturbed in schizophrenia-derived neurons
To further validate biological processes implicated by considering diverse genetic variations
associated with schizophrenia, we considered expression data from a recent study35. In that
study, fibroblasts from schizophrenia patients were reprogrammed into pluripotent stem
cells and subsequently differentiated into neurons. The analysis implicated a set of 596
genes with significantly altered expression levels in patient-derived neurons compared to
neurons derived from matched controls.

The functional analysis of the differentially expressed genes with DAVID identified
multiple significant GO terms (Table 2). Many of the identified terms matched the terms
associated with the functional clusters implicated by our analysis of genetic variations
(Table 1): neuronal differentiation, cell migration and motility, axonogenesis, neuron
projection development and differentiation. This suggests that multiple lines of evidence
converge on similar functions and processes.

Relation of schizophrenia clusters to related disorders
As we and others demonstrated previously, genes implicated in diverse psychiatric and
neurological disorders are often closely related in terms of their biological and molecular
function12,13,36. We explored the relationships between the cluster genes (Fig. 1) and genes
previously implicated in schizophrenia, autism and intellectual disability using the strength
of their connections (that is, likelihood ratio scores) in the NETBAG+ phenotype network
(Online Methods). For this analysis, we took each gene in each curated set and calculated its
connectivity strength to the schizophrenia cluster genes. We then compared the distribution
of these connectivities to the connectivities between the schizophrenia cluster genes and all
genes sequenced in a recent study8 (Fig. 3 and Table 3). This analysis demonstrated that
genes in cluster I were strongly related to two curated sets of schizophrenia-implicated
genes37–39 (Wilcoxon rank-sum test, P = 3 × 10−4 and P = 9 × 10−12). We also observed a
significant relationship (P = 1 × 10−6) to a curated set of genes associated with intellectual
disability40. As expected, we found no significant relationship to either of two control sets8:
synonymous schizophrenia de novo SNVs (P = 0.9) or de novo SNVs in unaffected controls
(P = 0.3).

This observation raises a question: how can mutations in related and overlapping genes lead
to different clinical phenotypes? Although a detailed understanding of this question will
certainly require extensive clinical and biological research, we decided to gain an initial
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insight by focusing on a distinct phenotype previously considered by us and others: growth
of dendrites and dendritic spines. Most excitatory glutamatergic synapses in the human brain
are formed on dendritic spines, and their structural aberrations have been implicated in
several psychiatric and neurological disorders41,42. Likely impact on the growth of dendrites
or dendritic spines by a gene in a CNV can be investigated on the basis of the corresponding
dosage change—a deletion or a duplication. Using this approach, we previously noted that
CNVs associated with autism should primarily lead to an increase in spine or dendritic
growth11. Notably, a similar analysis in schizophrenia based on known mutant phenotypes
for CNV-associated cluster genes (Supplementary Table 4) revealed the opposite effect (Fig.
4): a majority of schizophrenia-associated CNVs should lead to a decrease in growth of
dendrites or spines. A spine density increase in autism43 and decrease in schizophrenia44

was observed in postmortem brain analyses. We note that many mutations leading to a
decrease in spine density were also observed in autism45, and an increase in spine density
can actually lead to weaker synaptic connections, for example due to immature spine
morphology46. Clearly, changes in spine and dendritic growth are not the only factors
contributing to distinct clinical phenotypes. Nevertheless, our analysis does suggest that
mutations associated with different neurodevelopmental disorders may lead, at least on
average, to different functional consequences.

DISCUSSION
It is worthwhile to consider the genes forming the identified clusters not only as a network
of binary interactions (Fig. 1) but also in the context of relevant signaling pathways (Fig. 5).
Individual components of the presented network are active in diverse developmental and
functional contexts, such as cell motility, axonal guidance and synaptogenesis. Several
conceptual signaling levels can be delineated in the network. The first layer is formed
primarily by a diverse array of receptors and channels, ranging from receptors involved in
axonal guidance (such as ephrins and DCC) to ionotropic and metabotropic neurotransmitter
receptors (such as CHRNA7 and HTR7). The second signaling layer is formed by cellular
kinases, phosphatases and GTPases that are, either directly or indirectly, regulated by the
first signaling layer. The third layer consists of regulatory (such as CREB) or structural
(such as Cofilin) proteins involved in neurite outgrowth, synaptogenesis and synaptic
plasticity. In addition to the aforementioned horizontal layers, several well-defined top-
down pathways that were previously discussed in connection with schizophrenia and other
brain-related diseases can be recognized47,48. These include the reelin, WNT and insulin
signaling pathways; pathways involving Akt and phosphatidylinositol 3-OH kinase, MAP
kinase, and mTOR signaling; and the protein kinase C and protein kinase A pathways.
Considering the remarkable diversity of the implicated molecular circuits, it is likely that
many hundreds of genes (>800, according to a recent estimate8) may ultimately contribute to
the etiology of schizophrenia.

Although genetic variations considered here differ in their type and origin, in combination
they perturb a complex but interrelated set of molecular processes. This functional
convergence allows the presented integrative approach to identify the cohesive functional
networks. A similar convergence, resulting from common biological mechanisms underlying
disease phenotypes, should also occur in many other human disorders. If this is indeed the
case, it is likely that genetic data collected using unbiased whole-genome approaches and
analyzed by proper computational methods will soon reveal the underlying molecular
networks for a significant fraction of common human maladies, thus realizing an important
goal of the human genome project.
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ONLINE METHODS
Schizophrenia-associated genetic variation

We used three types of genetic variation: 159 non-synonymous de novo SNVs from two
recent studies8,16, de novo CNVs from several previous analyses7,17–23 and 14 genomic
regions that were implicated by SNPs (P < 5 × 10−8) in recent genome-wide association
studies1–4,24–28 (GWAS). We considered all genes affected by non-synonymous de novo
SNVs, all genes that overlap the de novo CNVs events according to the human genome
NCBI build 36 and—following previous studies—all genes overlapping a region 250 kb in
either direction from SNPs implicated by GWAS; similar results were obtained using
calculations with distances of 100 kb and 450 kb from GWAS-implicates SNPs
(Supplementary Table 1). In total, our set contained 1,044 genes from 213 genomic regions:
159 from SNVs, 712 from CNVs, and 173 from loci implicated by GWAS.

Phenotype network
The NETBAG+ algorithm is based on our previously described phenotype network11 in
which all pairs of human genes are connected by weighted edges proportional to the
likelihood that the genes share a genetic phenotype. These likelihood scores are based on a
naive Bayesian integration of various protein-function descriptors. The functional
descriptors used to build the phenotype network are: shared annotations in Gene Ontology
(GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), protein domains from the
InterPro database, tissue expression from the TiGER database; direct protein-protein
interactions, or shared interaction partners in a number of databases (BIND, BioGRID, DIP,
HPRD, InNetDB, IntAct, BiGG, MINT and MIPS); phylogenetic profiles and chromosomal
co-clustering across sequenced genome49.

NETBAG+ algorithm
Genes affected by the considered genetic variations were mapped to the phenotype network.
Clusters were assigned a score based on a weighted sum of their edges11, representing the
likelihood that all cluster genes participate in the same genetic phenotype. Starting from
each input gene, a greedy search algorithm was used to find high-scoring clusters of every
size. A cluster significance was determined based on a distribution of cluster scores obtained
by applying the same greedy search algorithm to randomized data. To generate random data
sets, we selected genes with average connection strengths in the phenotype network similar
to the corresponding disease-associated input genes. This ensures that overall connectivity
of disease genes does not drive cluster significance. The average connection strength was
calculated by averaging the 20 strongest edges from a particular gene to all other network
genes. For a cluster of a given size, we assigned a size-specific P-value based on randomized
clusters of the same size. To correct for multiple hypothesis testing (due to considering
clusters at multiple sizes), we considered the best P-value from each random trial regardless
of cluster size and used this distribution to assign a corrected (global) P-value to the size-
specific P-value. Throughout the paper, we used this corrected P-value to characterize
cluster significances. We ignored clusters with five genes or less to ensure that our analysis
was not influenced by very small gene clusters with strong connections.

Cluster functional analysis
To establish specific biological functions associated with the schizophrenia clusters, we used
two computational tools, FuncAssociate and DAVID, to find over-represented GO terms.
For clarity, we only show GO terms associated with fewer than 350 human genes
(Supplementary Table 2 for FuncAssociate and Supplementary Table 3 for DAVID). In the
tables, we report P-values corrected for multiple hypothesis testing.
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Expression changes in schizophrenia-derived neurons
We considered expression data from a recent study35. In that study fibroblasts from
schizophrenia patients and controls were reprogrammed into pluripotent stem cells and
subsequently differentiated into neurons. This analysis implicated a set of 596 genes with
significantly altered expression levels in patient-derived neurons.

Likely impact of CN V events on dendrites and dendritic spines
To assess the impact of cluster genes associated with de novo CNVs on the growth of
dendrites and dendritic spines, we performed a literature analysis. CNV polarity (deletion or
duplication) allowed us to determine a likely change in the corresponding gene dosage.
CNV-associated genes were taken from either the schizophrenia clusters identified in the
present study or the autism cluster identified in our previous work11. For the two genes with
both duplication and deletion events (CRKL and PIAS3), we used the reported CNV
frequency5 in both disorders to determine the predominant polarity associated with each
disease. The information about CNV-associated genes, polarities and phenotypes reported in
the literature is provided in Supplementary Table 4.

Validation and analysis of the identified clusters
In order to validate the NETBAG+ phenotype network, the identified clusters and the
associated biological functions, we performed several additional analyses.

First, we demonstrated that the phenotype network and scoring method can be used to rank
genes responsible for a diverse set of genetic phenotypes. For this task, we considered
known disease genes from the OMIM database, excluding diseases that were used in
training of the phenotype network, diseases with less than three associated genes and
diseases with somatic mutations such as cancer. In total, we considered 74 genetic
phenotypes with 338 associated genes (Supplementary Table 5). For each gene in the test
set, we randomly selected 99 decoy human genes with comparable network connectivity.
We then ranked these 100 genes on the basis of the strength of connections in the phenotype
network to the remaining OMIM genes responsible for the same phenotype. The results of
this prioritization test showed that the phenotype network and the scoring method perform
well in ranking disease genes. The correct gene was ranked as the top gene (out of 100
genes) in 39% of the cases, in the top three in 53% of the cases and in the top ten in 66% of
the cases (Supplementary Fig. 2). This demonstrates that the network and the scoring
method are not specific to schizophrenia or brain disorders and perform well across diverse
phenotypes.

Second, we examined direct protein-protein interactions between genes in the identified
clusters annotated in BioGRID, HPRD and DIP (Supplementary Fig. 3). We performed a
commonly used permutation test to understand whether clusters identified in our analysis
were more densely connected than in structurally equivalent random networks. To generate
structurally equivalent random networks, the real protein-protein network was permuted by
swapping known interaction pairs, while conserving the number of connections (degree) of
each gene. Thirteen known interactions exist between the 47 genes in cluster I, and five
interactions exist between the 42 genes in cluster II. After permutation, there were fewer
interactions on average, 8.74 (P = 0.11, Z-score = 1.36) for cluster I and 2.8 (P = 0.17, Z-
score = 1.21) for cluster II. Consequently, there is only a marginal significance for the inter-
connectivity of the genes forming the clusters in the real network compared to random
networks. This result illustrates that integrative methods (such as NETBAG+) are more
powerful in establishing the significance of functional connectivities in disease clusters
compared to protein-protein interactions alone.
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Third, we applied our algorithm to an independent set of schizophrenia-related CNVs. This
set contained rare inherited CNVs, which are more likely to contain a smaller fraction of
causative events, and de novo CNVs associated with childhood-onset schizophrenia (COS)6.
Overall, the independent set included 48 CNV events (35 inherited and 13 de novo COS
events) containing in total 244 genes. Using this set, NETBAG+ detected a small, but
marginally significant (P = 0.05), cluster of ten genes (Supplementary Fig. 4). We used
DAVID to identify GO terms associated with the alternative cluster (Supplementary Table
3). This analysis showed that the alternative cluster is associated with many biological and
cellular functions that are also associated with the clusters identified in our main analysis:
insulin receptor signaling, axonogenesis, regulation of cell mobility and locomotion, neuron
morphogenesis and differentiation, and neuron projection development. Consequently, the
alternative set of CNVs provides an independent confirmation that multiple functions
identified in the paper are indeed likely to be affected in schizophrenia.

Finally, we performed a manual literature review of all 159 genes with de novo SNVs from
recent studies8,16. Brief functional descriptions (obtained primarily from GenBank and
NCBI) for these genes are shown in Supplementary Table 6. Using the literature
information, we observed that our clusters are enriched in genes with known brain and
neuronal functions. Specifically, the identified clusters contained 26 genes (out of 56 in
total) with brain or neural functions (Fisher’s exact test P = 10−4, Barnard’s exact test P = 2
× 10−5).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The NETBAG+ approach and the identified schizophrenia gene clusters. (a) The NETBAG+
algorithm: different types of genetic variations are mapped to a phenotype network (pale
gray) in which every pair of genes is assigned a score proportional to the likelihood ratio
that those genes share a genetic phenotype. Strongly interconnected clusters (dark gray) are
identified among disease-associated genes. Cluster scores are based on the weighted sum of
edges between all genes in the cluster; this score is proportional to the likelihood that all
cluster genes share the same phenotype. Cluster significance is then established by an
appropriate randomization (Online Methods). (b) Cluster results from the combined set of
schizophrenia-associated genetic variations: genes from de novo CNVs are in blue, genes
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from non-synonymous de novo SNVs are in light green and genes from GWAS-implicated
regions in dark red. Edge widths are proportional to the strength of the likelihood score
between the two genes, and node sizes are proportional to the gene’s contribution to the
overall cluster score (Online Methods). For simplicity, only the strongest two edges from
each gene are shown. Cluster I was the best cluster from the combined set of all
schizophrenia genetic variations (P < 0.001). (c) The best cluster found when using only
genes affected by non-synonymous de novo SNVs (P = 0.056). (d) Cluster II, the best
cluster from the combined set of all schizophrenia genetic variations when the genes
forming cluster I were removed from the input data (P = 0.071).
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Figure 2.
Temporal gene expression profiles in the brain across developmental stages for genes
forming the identified clusters. Gene expression data were obtained from the Human Brain
Transcriptome database (http://hbatlas.org/). Median expression levels for each gene were
quantile normalized values and log2-transformed across all samples. (a) Temporal profiles of
the median gene expression for the schizophrenia clusters shown in Figure 1. Temporal
profiles of the average gene expression are shown in Supplementary Figure 1. Error bars
represent s.e.m. across all applicable genes. (b) Temporal expression profiles for individual
genes forming subcluster Ib. Five genes in this subcluster (DOCK1, ITGA6, LAMA2,
THBS1 and COL3A1) independently exhibited U-shaped expression profiles; that is, high
expression during embryonic development followed by a decrease in early or mid-fetal
development and then an increase during late fetal development or infancy. Error bars
represent s.e.m. across samples.
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Figure 3.
Distributions of connectivity strengths between schizophrenia clusters and genes previously
implicated in schizophrenia and other related disorders. (a) Distributions of connectivity
strengths between cluster I and disease sets. (b) Distributions of connectivity between cluster
II and disease sets. The x axes show corresponding likelihood scores in the NETBAG+
phenotypic network. Disease sets shown in the figure are an autism network from the
analysis of de novo CNVs11, a curated set of autism genes40, two lists of schizophrenia
genes37–39 and a list of intellectual disability genes40. The distributions were smoothed
using a Gaussian kernel. Vertical dashed lines indicate the median connectivity strength
between the schizophrenia clusters identified in the present study and all human genes
sequenced in a recent study8.
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Figure 4.
Likely impact of genes from de novo CNVs in autism and schizophrenia on growth of
dendrites or dendritic spines. Using the dosage changes (deletion or duplication) for CNV-
associated genes in the schizophrenia and autism11 clusters, we explored available literature
for phenotypes related to growth changes of dendrites or dendritic spines. This analysis
showed that whereas de novo CNVs in autism primarily lead to an increase in growth of
dendrites or dendritic spines, de novo CNVs in schizophrenia lead, on average, to the
opposite effect. The difference in the phenotypic impact for the two disorders was
significant (Fisher’s exact test, two-tailed, P = 0.01; Barnard’s exact test, two-tailed, P =
0.007). Genes that were considered in the analysis, their corresponding CNVs and predicted
functional impact are provided in Supplementary Table 4.
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Figure 5.
Genes forming cluster I in the context of cellular signaling pathways. Proteins encoded by
cluster genes are shown in yellow, and those corresponding to other relevant genes that were
present in the input data but not selected by the NETBAG+ algorithm are shown in cyan.
Proteins and signaling molecules that were not part of the input data but were previously
implicated in schizophrenia are circled in red. ER, endoplasmic reticulum; IP3,
inositol-1,4,5-trisphosphate; PIP3, phosphatidylinositol-1,4,5-trisphosphate.
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Table 1

GO terms associated with cluster I

N X Padj GO identifier GO term

FuncAssociate

16 326 <0.001 GO:0007411 Axon guidance

11 335 <0.001 GO:0040012 Regulation of locomotion

7 108 <0.001 GO:0000187 Activation of MAPK activity

8 193 <0.001 GO:0001666 Response to hypoxia

9 295 <0.001 GO:0030334 Regulation of cell migration

9 333 <0.001 GO:0051960 Regulation of nervous system development

8 289 0.001 GO:0019932 Second-messenger-mediated signaling

6 132 0.001 GO:0008286 Insulin receptor signaling pathway

8 307 0.001 GO:0050767 Regulation of neurogenesis

7 227 0.001 GO:0071375 Cellular response to peptide hormone stimulus

6 155 0.001 GO:0010975 Regulation of neuron projection development

7 253 0.002 GO:0045664 Regulation of neuron differentiation

3 16 0.015 GO:0035004 Phosphatidylinositol 3-kinase activity

4 54 0.018 GO:0051896 Regulation of protein kinase B signaling cascade

5 119 0.021 GO:0007204 Elevation of cytosolic calcium ion concentration

4 58 0.024 GO:0007190 Activation of adenylate cyclase activity

7 323 0.046 GO:0032870 Cellular response to hormone stimulus

6 217 0.048 GO:0048011 Nerve growth factor receptor signaling pathway

DAVID

7 107 8.85E-05 GO:0007411 Axon guidance

8 169 8.94E-05 GO:0030334 Regulation of cell migration

9 256 1.09E-04 GO:0031175 Neuron projection development

8 184 1.33E-04 GO:0000165 MAPKKK cascade

8 193 1.70E-04 GO:0007409 Axonogenesis

9 339 6.14E-04 GO:0048666 Neuron development

6 96 6.47E-04 GO:0009894 Regulation of catabolic process

7 163 9.33E-04 GO:0030425 Dendrite

9 342 0.001 GO:0043005 Neuron projection

7 183 0.001 GO:0006874 Cellular calcium ion homeostasis

GO annotation terms that were over-represented among genes in cluster I (Fig. 1b) on the basis of the analysis with FuncAssociate32 and

DAVID33. N is the number of cluster genes annotated with a given GO term and X is the total number of human genes with that GO annotation.
Padj values in the table represent P-values adjusted for multiple hypothesis testing by the Benjamini-Hochberg procedure in DAVID and using

simulations32 in FuncAssociate. Repetitive and broad GO terms—that is, terms associated with many human genes—are not listed in the table; for
a full list of all significant terms, see Supplementary Tables 2 and 3.
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Table 2

GO terms associated with expression changes in neurons derived from schizophrenia patients (DAVID)

N X Padj GO identifier GO term

18 166 0.01 GO:0050767 Regulation of neurogenesis

22 244 0.01 GO:0000904 Cell morphogenesis involved in differentiation

20 192 0.011 GO:0051960 Regulation of nervous system development

16 133 0.013 GO:0045664 Regulation of neuron differentiation

22 256 0.018 GO:0031175 Neuron projection development

19 209 0.025 GO:0048667 Cell morphogenesis involved in neuron differentiation

18 193 0.027 GO:0007409 Axonogenesis

23 307 0.03 GO:0048870 Cell motility

23 307 0.03 GO:0051674 Localization of cell

24 342 0.032 GO:0043005 Neuron projection

16 159 0.039 GO:0030424 Axon

9 59 0.039 GO:0050769 Positive regulation of neurogenesis

In a recent study35 fibroblasts from schizophrenia patients and controls were reprogrammed into pluripotent stem cells that were subsequently

differentiated into neurons. The table shows GO terms identified by DAVID33 that are enriched among 596 genes with significantly altered
expression levels in schizophrenia-derived neurons. N is the number of cluster genes annotated with a given GO term and X is the total number of
human genes with that GO annotation. Padj values in the table represent P-values adjusted by Benjamini-Hochberg procedure in DAVID.

Repetitive and broad GO terms (that is, terms associated with many human genes) are not listed in the table; for a full list of all significant terms,
see Supplementary Tables 2 and 3.
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Table 3

Connectivity strengths between schizophrenia clusters and other disease sets

Gene sets Number of genes P-value to cluster I P-value to cluster II

Autism set 1, based on CNV cluster from previous analysis11 45 3 × 10−10 0.0006

Autism set 2, based on a literature review40 36 6 × 10−5 0.02

Schizophrenia set 1, based on a meta-analysis37 42 0.0003 0.16

Schizophrenia set 2, based on a meta-analysis38,39 75 1 × 10−11 0.019

Intellectual disability set, based on a literature review40 110 2 × 10−6 0.0003

Synonymous schizophrenia de novo SNVs from a recent study8 25 0.9 0.7

De novo SNVs in unaffected controls from a recent study8 18 0.3 0.2

Statistical significance of functional relationship between schizophrenia clusters and genes previously implicated in schizophrenia and related
disorders. Each P-value in the table quantifies the difference of two distributions: the distribution of connectivity strengths between a schizophrenia
cluster and a given gene set, and the distribution of connectivity strengths between the schizophrenia cluster and all human genes sequenced in a
recent study8. The NETBAG+ phenotypic network was used to calculate the connectivity strengths between each pair of genes. P-values were
calculated using the Wilcoxon rank-sum test. Corresponding distributions are plotted in Figure 3.
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