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Abstract
We have performed molecular dynamics (MD) simulations on a set of 9 unfolded conformations
of the fastest-folding protein yet discovered, a variant of the villin headpiece subdomain (HP-35
NleNle). The simulations were generated using a new distributed computing method, yielding
hundreds of trajectories each on a timescale comparable to the experimental folding time, despite
the large (10,000-atom) size of the simulation system. This strategy eliminates the need to assume
a two-state kinetic model or to build a Markov state model. The relaxation to the folded state at
300 K from the unfolded configurations (generated by simulation at 373 K) was monitored by a
method intended to reflect the experimental observable (quenching of tryptophan by histidine).
We also monitored the relaxation to the native state by directly comparing structural snapshots
with the native state. The rate of relaxation to the native state and the number of resolvable kinetic
timescales both depend upon starting structure. Moreover, starting structures with folding rates
most similar to experiment show some native-like structure in the N-terminal helix (helix 1) and
the phenylalanine residues constituting the hydrophobic core, suggesting that these elements may
exist in the experimentally relevant unfolded state. Our large-scale simulation data reveal kinetic
complexity not resolved in the experimental data. Based on these findings, we propose additional
experiments to further probe the kinetics of villin folding.

Introduction
The quest to determine how proteins can fold quickly, despite a vast number of possible
conformations, has driven the search for ever faster-folding proteins. This pursuit has
produced many notable examples of microsecond and submicrosecond folders whose
kinetics have been characterized both experimentally1; 2; 3; 4; 5; 6; 7; 8; 9 and
computationally.4; 10; 11; 12; 13; 14; 15; 16; 17 These studies attempt to address such
issues as the existence of a “speed limit” to folding3; 6; 8 and the proposition of barrierless
folding.7; 18; 19

Fast-folding proteins are a prime target for computational study, as the engineered folding
time scales begin to overlap with time scales easily studied with molecular simulation.
However, in order for simulation to capture the complexity of microsecond-scale folding
kinetics, many microsecond-long simulation trajectories are desired. Simulation of a
statistically significant number of protein-folding events on these timescales requires an
enormous amount of computational effort. Because of computational restrictions, previous
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studies have limited either the number of simulations,20 the timescales of the individual
trajectories simulated,11; 13; 21; 22 or the physical detail of the models.10; 12; 15; 16; 17

Recently, the submicrosecond folding of a mutant form of the chicken villin headpiece
subdomain2 has been described.23 The swift folding of this protein (HP-35 NleNle) is the
result of replacing lysine at sites 24 and 29 with norleucine residues. Folding was found to
be remarkably fast, with a characteristic time faster than one microsecond. An accurate
computational prediction of HP-35 NleNle folding could complement experimental
observations in a number of ways, not least in the ability to examine folding in greater detail
and under a more flexible set of conditions.

The fast folding of HP-35 NleNle opens the door to new possibilities computationally, as the
experimental folding timescale found is now in reach even for individual trajectories.
Recently, we have released high-performance, multiprocessor client software to our
distributed computing project, Folding@home.24 This innovation allows us to obtain
trajectories much longer than achieved by a typical single-processor client, in the same
amount of wall clock time. This increase is achieved by using a message-passing interface
(MPI) version of GROMACS25; 26 to use multiple cores within a given machine to speed a
single molecular dynamics simulation by about three times. Additionally, the processors in
the subset of the Folding@home client pool utilized for such calculations are roughly three
times faster than typical processors in the client pool. This leads to an approximate order-of-
magnitude longer simulations than were previously possible. Thus, hundreds of
microsecond-length trajectories can now be routinely obtained. With such data, protein
folding kinetics may be modeled without the need to assume two-state thermodynamics11;
13; 21; 22 and without the construction of Markov state models (MSMs).27; 28; 29; 30; 31;
32

In the past few years, discrete-state master equation or Markov chain models have had some
success at modeling the long-time statistical dynamics of proteins. In these models, a
number of metastable conformational states are identified. The intrastate dynamics are much
faster than interstate dynamics such that the states visited by a system over time form a
discrete Markov chain. Transition rates between the states are estimated from molecular
dynamics simulations. If the model is shown to self-consistently recapitulate the statistical
dynamics of the trajectories it was constructed from, and if it obeys the Markov property, it
can be used to simulate the statistical evolution of conformational dynamics over much
longer times than the lengths of the individual trajectories from which it is constructed.
Spectroscopic signals can be computed directly from linear combinations of the
“spectroscopic signatures” of each state, and so direct comparisons of relaxation in
simulation with experimental spectra can be made.

In this paper, we describe the results from several hundred individual molecular dynamics
trajectories, hundreds of which exceed 1 μs in length. Because of the length of these
trajectories, we are not forced to assume two-state thermodynamics. Furthermore, because
we collect dozens of trajectories from each of 9 starting configurations, we are able to show
heterogeneous kinetic behavior without building computationally expensive models such as
MSMs in order to address the general kinetic characteristics of the simulations. The
trajectories described here each started from one of nine unfolded conformations (generated
with 373-K simulations) or from the experimental crystal structure; we follow the relaxation
of the unfolded structures towards nativelike structures at 300 K. The relaxation was
characterized separately for trajectories generated from particular starting configurations.
The results have allowed us to make several predictions as to the key structural elements
necessary for the folding of HP-35 NleNle, as well as comment on the apparent low barrier
to folding observed in experiments.
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Results and Discussion
Simulation statistics

For this report, we generated 410 separate trajectories started from 9 unfolded conformations
(shown in Figure 1; their structural characteristics are summarized in Tables 1 and 2)
generated by simulation at 373 K, and 120 separate trajectories started from the
experimental crystal structure. The trajectories started unfolded consist of 354 μs of
simulation (average trajectory length 863 ns) and those of the folded state consist of 121 μs
of simulation (average about 1 μs). In total, these data represent about 54 machine-years of
wall-clock computation. Each unfolded configuration generated at least 44 individual
trajectories. The lengths of trajectories from each unfolded configuration were averaged; the
shortest average length was 752.6 ns. Of the trajectories generated from unfolded states, 171
reached at least 1 μs; of trajectories generated from the folded configuration, 48 reached at
least 1 μs. Trajectories started from the unfolded and folded configurations reached 2 μs 16
times and 10 times, respectively. Each starting structure except one generated at least two
trajectories which reached the folded state; the exception did not produce folding trajectories
despite producing 46 trajectories. (We consider a structure to be “folded” according to a
sixfold definition involving simultaneous presence of the three helices and the three contacts
between the Phe residues; see Methods.)

Heterogeneity in folding based on starting structure
Two of the starting structures (4 and 7) folded much faster than the others. Only one other
starting structure, structure 8, was observed to fold to a significant extent. Five of the
remaining structures generated trajectories which briefly visited configurations deemed to be
folded by our structural metric. Starting structure 1 did not generate trajectories observed to
visit this state at all. In light of this, we have decided to examine the kinetics of structures 4,
7, and 8 separately from the other starting structures. We analyze the others (0, 1, 2, 3, 5,
and 6) as a distinct group, henceforth denoted as Γ for brevity.

In the spirit of experiments on HP-35 NleNle, we first assessed folding by a surrogate
spectroscopic method: the distance between W23 and H27 (Figures 2a-d). In each case, the
kinetic traces fit better to double exponential functions than to single exponential functions
(the results of the curve fits are summarized in Table 3, along with 95 % confidence
intervals for the predicted rates). The rates from these fits are similar for starting structures 4
and 7; structure 4 (Figure 2a) generates trajectories for which the W-H distance relaxes with
timescales of 543 and 34 ns, whereas structure 7 trajectories (Figure 2b) display W-H
distance relaxation rates of 351 ns and 60 ns. On the other hand, structure 8 (Figure 2c) and
the slow-folding group Γ (Figure 2d) have W-H distance relaxation rates roughly an order of
magnitude longer in the long time scales, at 2,272 ns and 1,589 ns, respectively. However,
the fast time scale of W-H distance relaxation for these starting structures is similar to those
observed in trajectories generated from starting structures 4 and 7, at 36 ns for structure 8
and 47 ns for the structures Γ.

The relaxation of the starting configurations to nativelike structures is shown in Figures 3a-
d. Starting structures 4 and 7 generate trajectories in which folding is fast, although the
nature of the folding kinetics is different for each. Folding in trajectories started from
structure 4 (Figure 3a) exhibits single rather than double exponential kinetics, with a 746-ns
time scale. (Indeed, a double exponential fit of these data out to 1 μs yields two identical
time scales [within error] with similar amplitudes.) On the other hand, structure 7 has the
expected double exponential behavior (Figure 3b), with a long time scale of 417 ns and a
short time scale of 41 ns. The two long folding time scales of structures 4 and 7 (746 ns and
417 ns, respectively) cannot be distinguished when curve fitting the trajectories from
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structures 4 and 7 together, suggesting that structure 7 can either relax to the native state in
46 ns, or relax to a state like which folds, like structure 4, on a submicrosecond time scale.

The folding from structure 8 (Figure 3c) and from the group of structures Γ (Figure 3d) is
dramatically different from the folding from structures 4 and 7. There were few folding
events sampled in these trajectories, indicating the presence of long (multi-microsecond)
folding times of 4,618 ns for structure 8 trajectories and 4,167 ns for trajectories generated
by group Γ structures (Table 3) according to single exponential fits. Linear fitting has been
used in the past21; 22 to estimate the folding rate from trajectories as much as 100 × shorter
than the folding time scale, as a good first-order approximation to the exponential function is
1 – exp(–kt) ≈ kt for small kt. In the present case, the data fit better to a straight line than to
single exponential functions; the linear fits indicated relaxation times of 8,102 ns for
structure 8 trajectories and 17,130 ns for group Γ trajectories. For comparison, we calculated
a maximum likelihood estimator (MLE) 11; 13 for the folding rates of structure 8 and of
structures Γ. The MLE yielded a folding time of 7,365 (± 3,294) ns for structure 8, in
reasonable agreement with the rate from the curve fit. However, for structures Γ, this
method predicted the folding time to be 45,181 (± 11,666) ns, much slower than the ∼4 μs
time scale from the curve fit. We regard the MLE as a more reliable means to estimate a
folding rate than the curve fitting, but this procedure assumes a two-state (single
exponential) model so was not used for the rest of the data.

The rates we report here must be considered in light of the physical limitations of the model.
For example, the viscosity of TIP3P water is anomalous33; 34 such that rates obtained using
this model may be too fast compared to experiment.35 Despite this problem, the apparent
double exponential relaxation of the surrogate spectroscopic signal is in qualitative
agreement with experiment.

To what degree does box size influence the results?
These simulations were designed to mimic those from the landmark Duan-Kollman
trajectory of the villin headpiece subdomain.20 However, while the simulation box
(including the protein and 3,036 water molecules) is slightly larger than that publication, we
observed the presence of unphysical extended states in 3 % of the conformations in our
simulations in which the protein molecule interacts with its periodic image. To assess the
degree of impact of these unphysical extended states, we resolvated our starting structures in
larger boxes of ∼20,000 atoms total. These new systems were equilibrated and used to
generate folding trajectories as described above. This generated ∼400 trajectories of 200 ns.
From these simulations and the simulations in the ∼10,000-atom system we computed the
probability of reaching the folded state within the first 200 ns. We have calculated the
mutual information between the probability of folding in the first 200 ns (random variable
X), and either box size (random variable S) or starting configuration (random variable C).
The mutual information between two random variables is a measure of the information
contained in each about the other36 and is defined as the difference of informational entropy
H(X) of the first random variable (in this case X) and the conditional informational entropy
H(X|Y) of the first random variable given the value of the second:
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Treating each starting state as equally likely (  for each) and each box size as equally

likely (  for each), we compute the mutual information values as being

This is to be compared with the mutual information between folding in the first 200 ns and a
hypothetical random variable K that completely determines X, such that

as estimated from this data. Therefore, the starting configuration is influential in determining
whether a given trajectory will fold in the first 200 ns, while the box size plays essentially
no role. Kinetic plots for the 20,000-atom system, equivalent to those presented in this
paper, are available in the Supplementary Materials.

Possible discrepancies between folding and surrogate spectroscopic relaxation
For starting structures 4 and 7, the rates of W-H distance relaxation and the rate of folding
agree to within a factor of two. For starting structure 8 and the grouped structures Γ, the 95
% confidence intervals for W-H distance relaxation and folding overlap. While this is an
overly conservative measure of statistical significance,37 the error estimates that we report
for our curve fits (Table 3) underestimate the error because they do not consider the time
correlation structure of the data. Despite the lack of a statistically demonstrable difference,
in every case the estimated W-H distance relaxation rate is faster than the corresponding
folding relaxation. One possible explanation for this finding is that helix 3 (the helix
containing W23 and H27) folds faster than the remainder of the protein. If this were true, the
W-H distance (and corresponding experimental measurements of quenching of tryptophan
fluorescence) would report on the folding of this helix alone, independently of the folding of
the entire protein.

Most strikingly, in trajectories starting with structures 8 and Γ the estimated rate of W-H
distance relaxation is about 2-3 × faster than the estimated rate of folding. In structure 8, the
W-H distance relaxes with a time constant of 2,272 ns, but folding occurs in ∼4 μs by the
structural metric. For the group Γ of slowly folding starting structures (0, 1, 2, 3, 5, and 6),
the difference is even more pronounced, with a 1,589-ns relaxation time for the surrogate
spectroscopic signal and a ∼4 μs time scale for folding. On the other hand, trajectories from
the two fast-folding starting structures 4 and 7, the surrogate spectroscopic signal relaxes at
a rate similar to the folding rate (Table 3).

There is also a very fast (<100 ns) time scale associated with folding for starting structure 7,
and not merely the folding of helix 3. The folding of structure 7 on time scales faster than
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100 ns indicates that experimentally observed fast time scales could correspond to folding,
rather than merely a helix-coil transition.

Several experimental observables indicate that collapsed, unfolded states are not confused
with the native state in these experiments. In particular, tryptophan fluorescence in
equilibrium unfolding studies of HP-35 NleNle coincides thermodynamically with the
fluorescence frequency shift and circular dichroism data.38 Even so, we believe that the
existence of unfolded states spectroscopically indistinguishable from the folded state is still
a legitimate concern deserving of a more detailed treatment using both computational and
experimental techniques. Building a Markov state model27; 28; 29; 30; 31; 32 from our
simulation data may help to decide whether folding rather than helix 3 formation is fast.
Experiments probing the nature of the equilibrium unfolded states would address the
problem directly. We would be interested to learn the results of kinetic experiments using
additional probes, or locating the same spectroscopic probe on a different portion of the
protein.

On the existence of multiple long timescales in HP-35 NleNle folding
The longer time scales of multiple microseconds that we observe in the 10,000-atom
simulations generated from starting structures 8 and Γ are not reported in experiments on
HP-35 NleNle. Because the folding rates for structures 4 and 7 are more similar to the
experimentally measured folding rate than are the folding rates for structures 8 and Γ, we
surmise that experiments may be observing transitions between the native state and unfolded
states similar to our structures 4 and 7, distinct from unfolded states similar to structure 8
and structures Γ. We propose that starting configurations 4 and 7 contain significant
structure similar to the unfolded state observed in experiments, whereas the remaining
structures do not. On the other hand, transitions between the native state and unfolded states
similar to structures 8 and Γ are not observed.

What structure is present in starting configurations 4 and 7 leading them to fold more
quickly than the others? Both of these structures contain helix 1, which contains some
structure in the unfolded state of wild-type HP-35.39; 40 Structure in the unfolded state has
been implicated as being conducive to fast folding in other proteins, including engrailed
homeodomain.41; 42 In contrast to structures 4 and 7, structures 0 and 1 contain helix 1 but
do not fold rapidly (indeed, structure 1 trajectories do not visit the native state at all); that
structures 0 and 1 contain helix 1 but fold slowly indicate that our understanding of the
importance of helix 1 is incomplete.

The characteristics of structure 8 may provide an important clue to explain fast folding in
structures 4 and 7. Although structure 8 folds slowly, the number of folding trajectories it
generates distinguishes it from group Γ. Structure 8 contains nativelike distances for all three
core phenylalanine residues (Table 2), a characteristic lacking in the other starting
structures. Still, structures 4 and 7 both contain the longest-range core contact, F6-F17,
which is absent in structures 0 and 1. Indeed, this is the only one of the three core contacts
that slow-folding structure 0 does not contain. In addition, the F10-F17 contact appears in
structure 4, and the F6-F10 contact appears in structure 7. The phenylalanine residues of the
hydrophobic core of the folded protein have been shown to be vital for the formation of the
native structure of wild-type villin.43 Our results indicate that these three contacts are
important not only for structure but for the fast folding of this system.

Thus we propose that experiments are probing transitions between the native state and
structures that contain helix 1 and the F6-F17 core contact, and probably at least one of the
other core phenylalanine contacts. The 5-K laser T-jump does not significantly perturb states
which are more unfolded (for example, those lacking helix 1 and with a disassembled
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hydrophobic core) from equilibrium so that the slow, multi-microsecond transitions between
these unfolded states and the native state are not observed. Fast folding of HP-35 NleNle
would then predominantly consist of folding helices 2 and 3 and completing the
hydrophobic core.

In contrast, our 373 K simulations have generated a high proportion of unfolded
configurations separated from the native state by multi-microsecond time scales because
they do not contain helix 1 and because they lack a sufficient number or type of core
hydrophobic contacts. In addition, the 373-K simulations were run at the constant volume
generated by pressure equilibration at 300 K, so it is possible that high-pressure effects are
contributing to additional unfolding relative to the unfolded state probed in experiments. We
have generated only two configurations containing helix 1 and the F6-F17 contact and which
therefore relax to the native state on submicrosecond time scales. This picture suggests
further simulations and experiments designed to speed the folding of this protein, namely by
generating stabilizing mutations to helix 1 and by replacing the F6-F17 contact with a more
stable structure such as a disulfide link. Furthermore, we believe that folding time scales on
the order of 10 μs should be detectable in appropriately designed experiments on this
system.

Conclusions
In spite of rapid folding of HP-35 NleNle, we have detected a great degree of kinetic
heterogeneity in these simulations. In the past, simulations with atomic detail and explicit
solvent have, at best, been able to generate trajectories one-tenth the length of the timescales
probed.11; 13; 21; 22 An early approach for understanding the kinetics in these sorts of
simulations was to assume a two-state kinetic model. With short trajectories, this allowed us
to make the approximation f(t) = 1 – exp[–kt] ≈ kt to estimate one rate, which supposedly
dominates the kinetics at these short times. It may be tempting to suppose a two-state kinetic
model for the fast folding of HP-35 NleNle from the outset, but this predetermines the
kinetic behavior that one can observe. Because HP-35 NleNle folds so rapidly, and because
we may now trivially obtain hundreds of trajectories longer than 1 μs, we opt for direct
examination of the folding kinetics on the microsecond timescale. Observing the system this
way, we note extremely fast time scales (<100 ns) for folding, which had previously been
supposed to be merely helix-coil transitions.23 There are also folding processes (and other
relaxations) occurring on roughly a 1 μs time scale, consistent with the experimental report
of submicrosecond folding in this protein. Last, we have observed long time scales for
folding in our simulations that have not previously been detected in experiments. The
presence of these long time scales not only underscores the need of simulation studies to
identify the unfolded states similar to those in experiment, but also suggests a useful
direction for future experiments on this system.

While we have attempted to compare our simulation results with experiment through a
comparison of relaxation timescales, signal-to-noise limitations prevent us from reproducing
the laser T-jump protocol directly. In principle, one could reproduce the laser-induced
temperature jump protocol exactly, by equilibrating at the initial temperature and heating the
solvent to the final temperature. However, the limited length and number of the trajectories
we can produce from such an initial equilibrated system would generate a net change in the
number of folded trajectories (upon temperature jump) on the order of, or smaller than, the
stochastic fluctuations of the native population.

Finally, the issues raised here suggest that care may be needed in the interpretation of
experimental data. For example, data with apparent single-exponential kinetics could
conceal a complex heterogeneity in dynamics, masked by the nature of the experimental
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observables or the timescales examined. These matters are more naturally decomposed with
simulation; however, simulation methods are still maturing and a quantitative comparison
with experiment is still vital in this area. Thus, it remains clear that a tight coupling of
simulation with experimental validation will be critical for discerning the complex nature of
how proteins fold.

Methods
Comparison between experimental and computational conditions

In the experimental studies on HP-35 NleNle23, a laser-induced 5-K temperature jump was
applied to a solution of protein in buffer at 343 K. Then, transport between folded and
unfolded states was assessed spectroscopically through the quenching of a native tryptophan
(W23) by an engineered histidine residue (N27H). To enable this quenching assay,
experiments were performed at low pH, so that His27 was protonated. The authors reported
a remarkable 730 (±50)-ns folding time for this protein at 361 K and predicted a folding
time of ∼720 ns at 300 K.

The high melting temperature of HP-35 NleNle makes laser T-jump experiments
challenging at 300 K; on the other hand, this regime is trivial to simulate. In addition, the
detail available from computer simulations obviates the need for spectroscopic probes, so
that the folding process may be examined at neutral pH. Directly reproducing the T-jump
experiment would present several challenges for simulation, the first of which is that the
expected number of folding events, even in microsecond-long trajectories, is smaller than
the expected fluctuations in the population of the folded state. Instead, we generated for this
study unfolded structures of villin HP-35 NleNle during 2-ns simulations at 373 K. We then
simulated these thermally denatured structures at 300 K in order to observe many folding
events (in addition, the chosen force fields were parameterized for simulations near this
temperature). We also chose not to protonate the histidine residue. Additional simulations
closer to the conditions studied experimentally are in progress.

System Setup
The crystallographic structure of HP-35 NleNle23 (PDB structure 2F4K) was used as the
starting point for this study. Multiple coordinates had been given for some atoms in the
structure, but the first coordinate for each atom was utilized in all cases. The pdb was
converted to GROMACS25; 26 coordinate and topology files with the GROMACS utility
pdb2gmx (version 3.3). Hydrogen atoms in the structure were ignored; new protons were
added by pdb2gmx. The AMBER2003 force field,44 ported for use with GROMACS, was
used. For norleucine, most parameters were assigned in analogy to AMBER2003 parameters
for lysine and leucine; previously reported values45 were used for the charges. The structure
was subjected to a preliminary energy minimization step using the steepest descents method,
with 1.5 nm cutoffs for neighborlists, Coulombic interactions, and Van der Waals
interactions, until achievement of a maximum force of less than 100 kJ mol-1 nm-1. The
structure was solvated in an octahedral box of dimensions 4.240 nm × 4.969 nm × 4.662 nm
with 1,306 TIP3P water molecules, bringing the total system size to 9,684 atoms. An
additional energy minimization step was performed on the system after solvation.

Simulation parameters
For molecular dynamics simulations, the SHAKE46 and SETTLE47 algorithms were used
with the default GROMACS 3.3 parameters to constrain bond lengths. Periodic boundary
conditions were employed. To control temperature, protein and solvent were coupled
separately to a Nosé-Hoover thermostat48; 49 with an oscillation period of 0.5 ps. The
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system was coupled to a Parrinello-Rahman barostat50; 51 at 1 bar, with a time constant of
10 ps, assuming a compressibility of 4.5 × 10-5 bar-1.

Preliminary equilibration
The solvated system was equilibrated at 300 K through 1 ns of molecular dynamics, using 2-
fs time steps, with the protein coordinates frozen (i.e., not updated) and water bond lengths
constrained. Initial velocities were assigned randomly from a Maxwell-Boltzmann
distribution. A grid-based neighborsearch to 0.8 nm was conducted every 10 steps. The
linear center-of-mass motion of the protein and solvent groups were removed every 10 steps.
A cutoff at 0.8 nm was employed for both the Coulombic and Van der Waals interactions.

Starting states
The equilibrated native state was used both as the starting point of native state simulations
and as the starting point of simulations at 373 K to generate thermally denatured structures.
The latter were nine 10-ns simulations of 1-fs time steps, starting with the native structure, at
373 K, with velocities assigned randomly from a Maxwell-Boltzmann distribution, and
constant system volume. All bond lengths were constrained. Otherwise, the parameters were
as described for the 300-K equilibration described above. The final structures from these
373-K simulations were used as the starting point for folding studies (at 300 K). These
structures were equilibrated at 300 K for 10 ns (using 2-fs time steps) at constant volume,
with the protein coordinates fixed. During these simulations, the long-range electrostatic
forces were treated with a reaction field assuming a continuum dielectric of 78, and the Van
der Waals was treated with a switch from 0.7 to 0.8 nm. The neighborlist was shortened to
0.7 nm in order to improve the computational performance of the system.

The thermally denatured structures generated by simulation at 373 K are shown in Figure 1.
A great deal of the native structure was lost during the 373 K simulations, although a
surprising degree of nativelike structure remains in the initial structures (Tables 1 and 2).
For instance, unfolded structures 0, 1, 4, and 7 had C-α RMSD measures for helix 1
consistent with the native state simulations. Two unfolded configurations, 5 and 6, contained
none of the structure we assess in Tables 1 and 2. None of the unfolded structures had a C-α
RMSD or a number of native contacts consistent with the folded simulations. The
characteristics of the unfolded structures, compared to fluctuations observed in the native
simulations, are summarized in Table 2.

Simulation of native and unfolded states
Molecular dynamics simulations at 300 K were run on an MPI-enabled version of the
GROMACS molecular dynamics engine ported for the Folding@home distributed
computing platform. Random initial velocities were assigned to the atoms from a Maxwell-
Boltzmann distribution at 300 K. Otherwise, the parameters were as described for the second
300-K equilibration described above.

Analysis of trajectories
The apparent time scales of “folding” should depend on what observables we choose to
follow. Here, we chose to follow both the evolution of a surrogate spectroscopic metric and
the fraction of trajectories in the folded state. First, we generated a surrogate for the
spectroscopically observable quenching of tryptophan 23 by histidine 27. (We count the N-
terminal leucine as residue 1, as do Kubelka et al., in contrast with the pdb structure file
counting this as residue 42.) If the distance between W23 and H27 was less than 7.25 Å (the
average distance in native state simulations, plus one standard deviation), then a
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configuration was considered to contain this contact such that tryptophan fluorescence
would be quenched.

Second, we analyzed folding by monitoring the collective relaxation of a set of structural
elements to nativelike configurations. We computed the root mean-square displacement
(RMSD) of each helical α-carbon in the snapshot from an energy-minimized native state
structure. We also computed the distances between the three phenylalanine residues, F6,
F10, and F17, which comprise the hydrophobic core in the folded structure. A structure was
considered to be folded by the structural metric if it met the following criteria:

1. C-α RMSD of helix 1 less than 1.56 Å

2. C-α RMSD of helix 2 less than 0.33 Å

3. C-α RMSD of helix 3 less than 0.85 Å

4. F6-F10 ring centroid distance less than 7.17 Å

5. F6-F17 ring centroid distance less than 6.76 Å

6. F10-F17 ring centroid distance less than 6.55 Å.

The values listed in (1)-(6) are the average over native state simulations, plus one standard
deviation, such that each criterion is consistent with fluctuations of the native state. The
helical residues were considered to be residues 4-10 for helix 1, residues 15-19 for helix 2,
and residues 23-32 for helix 3. We also followed the folding of the helices through criteria
(1), (2), and (3); this data is presented in the Supplement. The criteria used here for the
folded state definition differ from some of our previous studies which use C-α RMSD
metrics of the entire protein.14 We chose a different set of criteria in order to capture the
formation of both secondary and tertiary structure. However, the average C-α RMSD of
conformations considered to be folded by the sixfold definition is about 3.4 Å, consistent not
only with fluctuations of the C-α RMSD in the native state simulations (3.5 Å average,
standard deviation 0.8 Å) but also with previous simulations which used nativelike values
for the C-α RMSD of 3-4 Å.52

To understand the dynamics in our trajectories, we determined the fraction of trajectories at
each time point satisfying criteria related to the Trp-His distance or the structural metric. For
example, for the structural definition of the folded state, we determined the fraction of
trajectories satisfying all of criteria (1)-(6) as a function of time. The fraction of trajectories
satisfying each definition was fit to single or double exponential equations using the
software package Igor Pro (WaveMetrics, Inc., Lake Oswego, OR). The fitting procedure
was weighted by the inverse of a reweighted standard deviation, given by:

where st is the reweighted standard deviation at time t, nt is the number of trajectories
satisfying the relevant definition at time t, and nt

total is the total number of trajectories
reaching at least t. The software reported 95 % confidence intervals for each fitting
parameter. Iterative fits were performed using a convergence criterion of Δχ2 ≤ 0.001. In
order to ensure that our curve fitting procedures were robust, we only fit the first
microsecond of simulation data.
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Figure 1.
Starting structures for simulations of HP 35 NleNle, generated by thermal denaturation at
373 K. The backbone ribbon is colored from red at the N-terminus to blue at the C-terminus,
and the core hydrophobic residues F6, F10, and F17 are shown in light blue licorice. Note
the presence of nativelike elements in the starting structures: contact of the core hydrophobic
residues in structures 4, 7, and 8, and the turns of helix 1 in structures 0, 1, 2, 4, and 7.The
images were generated using VMD.53
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Figure 2.
Trp23-His27 distance relaxation (surrogate spectroscopic signal) for trajectories started in
(a) structure 4, (b) structure 7, (c) structure 8, and (d) the grouped structures Γ (i.e., all other
structures, 0, 1, 2, 3, 5, and 6). A configuration was considered to have a nativelike W-H
distance if the W23-H27 distance was less than 7.5 Å. Green-data, solid line-exponential
fits. Error bars representing the reweighted standard deviation of the data (see text) are
drawn at 10 ns and every 100 ns thereafter.
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Figure 3.
Folding according to structural metric for trajectories started in (a) structure 4, (b) structure
7, (c) structure 8, and (d) the grouped structures Γ (i.e., all other structures, 0, 1, 2, 3, 5, and
6). A configuration was considered to be folded if it contained all three helices and all three
core hydrophobic contacts to within nativelike fluctuations (see text). Green-data, solid line-
exponential fits. Error bars representing the reweighted standard deviation of the data (see
text) are drawn at 10 ns and every 100 ns thereafter.
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