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Abstract

Mechanisms by which autophagy promotes cell survival or death are unclear. We provide 

evidence that C18-pyridinium ceramide (C18-Pyr-Cer) treatment, or endogenous C18-ceramide 

generation by ceramide synthase 1 (CerS1) expression mediates autophagic cell death, 

independent of apoptosis in human cancer cells. C18-ceramide-induced lethal autophagy was 

regulated via microtubule-associated protein 1 light chain 3 beta lipidation (LC3B-II) and 

selective targeting of mitochondria by LC3B-II-containing autophagolysosomes (mitophagy) 

through direct interaction between ceramide and LC3B-II upon Drp1-dependent mitochondrial 

fission, leading to inhibition of mitochondrial function and oxygen consumption. Accordingly, 

expression of mutant LC3B with impaired ceramide binding, as predicted by molecular modeling, 

prevented CerS1-mediated mitochondrial targeting, recovering oxygen consumption. Moreover, 

knockdown of CerS1 abrogated sodium selenite-induced mitophagy, and stable LC3B knockdown 

protected against CerS1-C18-ceramide-dependent mitophagy and blocked tumor suppression in 

vivo. Thus, these data suggest a novel receptor function of ceramide for anchoring LC3B-II-

autophagolysosomes to mitochondrial membranes, defining a key mechanism for the induction of 

lethal mitophagy.
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Autophagy is a self-digestion process of cytoplasmic components, such as damaged 

mitochondria, by double-membrane autophagosomes1,2. In mammals, Atg8 homologue 

LC3B-I is conjugated with phosphotidylethanolamine (PE), forming LC3B-II and resulting 

in the maturation of autophagosomes, which associate with lysosomes to form 

autophagolysosomes3. Autophagy promotes cell survival during starvation4 or it can 

progress to cell death5 (lethal autophagy). However, the mechanisms by which autophagy 

promotes or inhibits cell survival are unclear. Therefore, we sought to resolve this autophagy 

paradox by defining mechanisms involved in lethal autophagy induction.

Ceramide is a bioactive sphingolipid that mediates cell death6,7. Recently, mammalian 

ceramide synthases 1-6 (CerS1-6) have been discovered8, which regulate the de novo 

generation of ceramides with specific fatty acid chain lengths8. For example, CerS1 and 

CerS6 preferentially generate C18- and C16-ceramide, respectively9,10. CerS1-6-generated 

ceramides play distinct biological roles11-13, and CerS1/C18-ceramide has emerged as tumor 

suppressor in preclinical and clinical studies14-16.

Although a role for ceramide and other sphingolipids in autophagy induction has been 

reported17-19, mechanisms of ceramide signaling in the regulation of lethal autophagy have 

not been described. Here, we show that C18-ceramide induces lethal autophagy via selective 

targeting of mitochondria by LC3B-II-containing autophagolysosomes (mitophagy) through 

direct interaction between ceramide and LC3B-II on mitochondrial membranes. The 

interaction is regulated downstream of Drp1-mediated mitochondrial fission, leading to 

caspase-independent cell death. Accordingly, CerS1/C18-ceramide was necessary and 

sufficient for induction of lethal mitophagy and tumor suppression in vivo. Thus, these data 

provide a mechanistic link between ceramide signaling and lethal autophagy, defining a key 

component of the survival versus lethal autophagy paradox.

Results

C18-ceramide mediates autophagy-induced cell death

To define whether C18-ceramide regulates survival or lethal autophagy, multiple HNSCC 

cell lines were treated with a ceramide analogue, containing a pyridinium tether in the 14C-

sphingosine backbone, D-e-14C18-pyridinium ceramide bromide (C18-Pyr-Cer; Fig. 1a), 

which accumulates in mitochondria due to the positive charge localized within the 

pyridinium ring 20,21. The role of C18-Pyr-Cer in inducing LC3B-lipidation (LC3B-II) in the 

absence or presence of a pancaspase inhibitor Z-VAD or the formation of autophagosomes 

was determined using western blotting and transmission electron microscopy (TEM), 

respectively. C18-Pyr-Cer (10 μM, 24 hr) induced LC3B-II formation in UM-SCC-22A 

cells, and Z-VAD had no effect on this process compared to vehicle-treated controls (Fig. 

1b), suggesting a caspase-independent autophagy induction. C18-Pyr-Cer-mediated 

autophagy in UM-SCC-22A cells was also visualized by TEM, which showed that ceramide 

treatment increased the formation of autophagosomes compared to controls (Fig. 1c). 

Moreover, C18-Pyr-Cer mediated LC3B-II formation in multiple other HNSCC cell lines 

(SCC-1, SCC-22b, OSCC-3, or SCC-24b, and SCC-11b) compared to controls 

(Supplementary Results, Supplementary Fig. 1a).

Sentelle et al. Page 2

Nat Chem Biol. Author manuscript; available in PMC 2013 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To define the role of C18-Pyr-Cer-induced autophagy in mediating cell survival or death, we 

knocked down autophagy-related genes ATG3 and ATG7 and determined their effects on 

cell death. Atg3 and Atg7 knockdown using siRNAs (Supplementary Fig. 1b), prevented 

cell death in response to C18-Pyr-Cer compared to non-targeting scrambled (Scr) siRNA-

transfected controls (Fig. 1d). Moreover, C18-Pyr-Cer induced LC3B-II formation in wild-

type (wt), but not in ATG5-/- mouse embryonic fibroblasts (MEFs) compared to controls 

(Supplementary Fig. 1c). Importantly, the loss of Atg5, which prevented LC3B-lipidation, 

protected ATG5-/- MEFs from C18-Pyr-Cer-induced cell death compared to wt controls 

(Fig. 1e). Then, we examined whether C18-Pyr-Cer mediates cell death in Bax/Bak-/-23 and 

caspase 3/7-/-24 double knockout (dko) MEFs compared to controls. C18-Pyr-Cer induced 

death similarly in wt, Bax/Bak-/- and caspase 3/7-/- dko MEFs compared to wt (Bax+/+/Bak

+/+) and caspase 3+/-/caspase7+/- controls (Fig. 1f). Thus, these data suggest that C18-Pyr-

Cer mediates caspase-independent cell death via inducing lethal autophagy.

C18-ceramide targets autophagolysosomes to mitochondria

Because cationic Pyr-Cer analogues accumulate preferentially in mitochondria20,21, we 

determined whether C18-Pyr-Cer induces mitophagy. First, potential co-localization between 

mitochondria and autophagolysosomes was visualized by confocal microscopy using UM-

SCC-22A and UM-SCC-22B cells stained with MitoTracker Green (MTG), which 

covalently binds polarized mitochondrial matrix proteins, and LysoTracker Red (LTR), 

which detects autophagolysosomes25,26. C18-Pyr-Cer induced targeting of mitochondria by 

autophagolysosomes; MTG and LTR co-localization (yellow) was detected compared to 

controls, indicating the induction of mitophagy (Fig. 2a and Supplementary Fig. 1d-e). Next, 

we examined whether targeting mitochondria by C18-Pyr-Cer also alters mitochondrial 

function using the SeaHorse XF24 to measure the oxygen consumption rate (OCR). C18-

Pyr-Cer (1-4 h) reduced the oxygen consumption rate (Supplementary Fig. 2a) compared to 

controls, indicating mitochondrial dysfunction. Treatment of UM-SCC-22A cells with an 

inactive dihydro-ceramide analogue, C18-dihydro-Cer-14-piperidine, (Fig. 2b) was not 

efficient in inducing mitophagy (Supplementary Fig. 2b) or inhibiting OCR (Fig. 2b) when 

compared to C18-Pyr-Cer. It should be noted that C18-dihydro-Cer-14-piperidine slightly 

increased MTG/LTR co-localization (Supplementary Fig. 2b) and decreased OCR (Fig. 2b) 

compared to vehicle treated controls, possibly due to its desaturation to generate active Pyr-

Cer in these cells. Moreover, inhibition of lysosomal function using bafilomycin (10 nM) 

had no effect on the co-localization of MTG and LTR in response to C18-Pyr-Cer 

(Supplementary Fig. 2c). Thus, these data suggest that C18-ceramide induced targeting of 

mitochondria by autophagolysosomes (mitophagy)26, consistent with the inhibition of 

mitochondrial function without altering lysosomal flux.

Endogenous CerS1/C18-ceramide mediates lethal mitophagy

We then examined the roles of endogenously generated C18-ceramide by tetracycline (tet) 

induction of wt-CerS1-V5 versus the catalytically inactive mutant-CerS1-V5 (His183Ala27), 

confirmed by western blotting (Fig. 3a), in the regulation of ceramide generation, LC3B-II 

formation and mitochondrial function in UM-SCC-22A cells. Endogenous ceramide 

measurement using LC/MS/MS showed that induction of wt-CerS1-V5 selectively increased 

the generation of C18-ceramide, but not C12-C26-ceramides, compared to non-induced 
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controls, whereas expression of the catalytically inactive mutant of CerS1 had no effect on 

C18-ceramide generation (Fig. 3b). Accordingly, CerS1/C18-ceramide induction (+tet) but 

not the mutant CerS1 resulted in LC3B-II formation, as detected by increased endogenous 

LC3B-II (Fig. 3a) and LC3B-GFP punctate formation28 (Fig. 3c) compared to controls. 

Moreover, wt-CerS1 but not the His138Ala-CerS1 decreased OCR (Fig. 3d) and increased 

co-localization of mitochondrial MTG (green) and autophagolysosomal LTR (red) staining 

(Fig. 3e), indicating mitophagy. Consistent with inducing mitophagy, wt-CerS1 but not the 

His138Ala-CerS1 reduced ATP generation compared to controls (Fig. 3f). Importantly, 

shRNA-dependent stable knockdown of LC3B, which abrogated its lipidation compared to 

Scr-shRNA controls (Supplementary Fig. 2d), prevented ATP reduction in response to wt-

CerS1 expression (Fig. 3g). These data suggest a novel role for tumor suppressor 

CerS1/C18-ceramide29 in inducing lethal mitophagy.

To determine whether CerS1/C18-ceramide induction is necessary for mediating lethal 

mitophagy, we treated UM-SCC-22A cells with a known lethal mitophagy inducer sodium 

selenite (SS)30 and examined its effects on LC3B-II formation, mitophagy and 

mitochondrial function in the presence of Scr or CerS1 siRNAs. Treatment with SS (5 μM, 3 

hr), which increased CerS1 mRNA significantly (about 12-fold, p<0.05; Supplementary Fig. 

3a), induced LC3B-GFP punctate formation, whereas CerS1 knockdown (Supplementary 

Fig. 3b) almost completely prevented LC3B-II formation in response to SS compared to Scr-

siRNA transfected cells (Supplementary Fig. 3c). Moreover, SS increased mitophagy at 3-5 

h, as detected by co-localization of MTG and LTR staining compared to controls 

(Supplementary Fig. 3d). Accordingly, SS significantly decreased OCR (about 80%, p<0.05) 

compared to controls, whereas CerS1 knockdown abrogated the inhibition of OCR by SS 

(Supplementary Fig. 3e). These data indicate that endogenous CerS1/C18-ceramide plays a 

key role in SS-mediated mitophagy.

CerS1/C18-ceramide induces LC3B-II-ceramide interaction

Next, we investigated whether CerS1-induced ceramide is localized in mitochondria or ER 

by confocal microscopy using anti-ceramide31 (Enzo Life Sciences) and anti-Tom20 or anti-

calreticulin antibodies, respectively. Interestingly, CerS1-induced ceramide in UM-

SCC-22A cells was almost exclusively localized within mitochondrial outer membrane (Fig. 

4a) but not in the ER (Supplementary Fig. 4a). We also assessed whether CerS1-induced 

mitochondrial ceramide was co-localized with the CFP-LC3B on mitochondrial membranes 

by confocal microscopy using anti-ceramide (green), anti-CFP (blue) and MTR (red). 

Remarkably, CerS1 induced the co-localization of ceramide, LC3B and MTR, with an 

apparent increase in the formation of white punctates, compared to non-induced controls 

(Fig. 4b). Mutant-CerS1, which does not generate C18-ceramide, did not result in the co-

localization of ceramide-LC3B-mitochondria compared to controls (Fig. 4c). Thus, these 

data suggest that CerS1-induced ceramide stress mediates co-localization of endogenous 

ceramide and LC3B-II within mitochondria, consistent with lethal mitophagy.

To explore the role for mitochondrial localization of ceramide in inducing mitophagy, we 

treated UM-SCC-22A cells with C16-Pyr-Cer, which is also known to mainly accumulate in 

mitochondria, and measured its effects on mitochondrial function compared to an inactive 
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analogue, dihydro-C16-Pyr-Cer (Supplementary Fig. 4b). C16-Pyr-Cer inhibited 

mitochondrial function compared to controls, whereas inactive dihydro-C16-Pyr-Cer did not 

efficiently decrease OCR when compared to C16-Pyr-Cer (Supplementary Fig. 4c). The 

conversion of dihydro-C16-Pyr-Cer to C16-Pyr-Cer by DES was also observed, which 

slightly decreased mitochondrial function compared to vehicle-treated controls 

(Supplementary Fig. 4c).

We determined the roles of CerS6 expression, which mainly generates C14/16-ceramides, on 

mitophagy induction. CerS6 induction had no significant effects on LC3B-II formation, 

MTG/LTR staining or OCR as compared to non-induced controls (Supplementary Fig. 5a-

c). Interestingly, we did not detect any localization of CerS6-generated endogenous 

ceramides within mitochondria, visualized by confocal microscopy using anti-ceramide and 

MTG (Supplementary Fig. 5d). These data are consistent with distinct biological functions 

of CerS6-generated endogenous ceramides in the regulation of ER-Golgi membrane 

integrity and ER-stress responses29, but not in lethal mitophagy. Overall, these data suggest 

that mitochondrial localization of ceramide, rather than its fatty acid chain length, plays 

important roles in mitophagy induction. These data also suggest a selective role for 

CerS1/C18-ceramide or Pyr-Cer analogues, which accumulate within mitochondria, in the 

induction of lethal mitophagy.

LC3B-II binds ceramide

We explored the mechanisms by which CerS1/C18-ceramide stress induces mitophagy. 

Ceramide-protein interaction plays various important metabolic and biological roles, such as 

ceramide-CERT32 binding in the generation of sphingomyelin, ceramide-KSR33 binding for 

kinase regulation or ceramide-I2PP2A/SET34 binding for PP2A activation. Therefore, we 

examined whether LC3B interacts with ceramide. The structure of the ceramide-binding 

domain of CERT35 suggested that the hydrophobicity and the size of the residues formed 

within the StART domain play a role in ceramide binding48. The globular domain of 

LC3B36 is structurally similar to the recently solved CERT StART domain23,31,35 

(Supplementary Fig. 6a). Therefore, we hypothesized that the central globular domain of 

LC3B, containing Phe52 and Ile35 residues, might be involved in ceramide-binding.

To examine whether CerS1-generated C18-ceramide interacts with LC3B, we labeled UM-

SCC-22A cells, stably expressing wt-CerS1, with biotin-sphingosine (B-Sph), which is 

acylated to form biotin-C18-ceramide upon induction of CerS1. Then, biotin-ceramide-

interacting proteins were pulled-down using avidin-conjugated columns, eluted and 

separated by SDS-PAGE. Interaction of LC3B with ceramide was then examined by western 

blotting using the anti-LC3B antibody. Data revealed that LC3B-II (14 kDa) but not the non-

lipidated LC3B-I binds biotin-C18-ceramide upon CerS1 induction, compared to non-

induced or biotin-labeled controls (Supplementary Fig. 6b).

To define whether LC3B-ceramide interaction plays any roles in the regulation of 

mitophagy, we generated point mutations on residues present in the putative ceramide-

binding hydrophobic pocket of LC3B (Supplementary Fig. 7a-b) and examined their effects 

on ceramide binding, mitophagy and mitochondrial function. Homology modeling, using 

CERT-ceramide complex structure, revealed the Ile35 and Phe-52 as potential ceramide 
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binding residues within the hydrophobic pocket of LC3B (Supplementary Fig. 7a-b). 

Gly12037 is the site for C-terminal lipidation of LC3B with PE37 (Supplementary Fig. 7a 

and c), which is required for the formation of double-membrane autophagosomal vesicles. 

Therefore, we expressed wt, Gly120Ala, Ile35Ala or Phe52Ala-LC3B proteins, containing 

N-terminal FLAG tags in UM-SCC-22A/Tet-CerS1 cells and examined their interaction 

with endogenous C18-ceramide or C18-Pyr-Cer. The FLAG-wt-LC3B associated with 

endogenous C18-ceramide and C18-Pyr-Cer (Fig. 5a) compared to controls. In contrast, 

mutations of the Ile35Ala and Phe52Ala significantly reduced the interaction between LC3B 

and unlabeled endogenous C18-ceramide (∼50 and 90%, p<0.05) or C18-Pyr-Cer (∼80 and 

95%, p<0.05) compared to that of wt-LC3B (Fig. 5a). Thus, these data suggest that the Ile35 

and Phe52 residues of LC3B are involved in C18-ceramide binding.

To determine if LC3B-II selectively binds ceramide based on specific fatty acid chain 

length, UM-SCC-22A/Tet-CerS1 cells were transfected with wt-LC3B-FLAG and labeled 

with exogenous 17C-sphingosine38 (17C-Sph), containing 17C-backbone instead of the 

natural sphingosine with 18C, which is used as a probe to detect 17C18-ceramide 

versus 17C16-ceramide, respectively (Supplementary Figs. 8 and 9). After 

immunoprecipitation (IP) using an anti-FLAG antibody in the absence/presence of CerS1 

induction (-/+ tet), LC3B-II-FLAG-interacting lipids were extracted, and 17C-Sph, 17C-S1P 

and 17C12-26-ceramides were measured. The data showed that LC3B-FLAG strongly 

associated with CerS1 generated 17C18-ceramide but not with 17C14-,20-,22-ceramides 

or 17C-S1P in response to CerS1 induction (Supplementary Figs. 8a,b and 9a,b). In addition 

to endogenous C18-ceramide, LC3B-II also associated with 17C16-ceramide, 17C24-ceramide 

and 17C-sphingosine in response to CerS1 induction (Supplementary Figs. 8a-c, 9a,b). These 

data are consistent with the binding preference of CERT, which interacts with multiple 

ceramide species, such as C16-and C18-ceramides35. Importantly, mutation of LC3B with 

Ile35Ala or Phe52Ala significantly abrogated endogenously generated 17C18-,16-,24-

ceramide and 17C-Sph binding (Supplementary Figs. 8a-c, 9a,b). Thus, these data indicate 

that LC3B binds endogenously generated C18-ceramide as well as C16- and C-24-ceramides 

and sphingosine in response to CerS1 expression.

LC3B lipidation is necessary for ceramide binding

Interestingly, binding of C18-ceramide and C18-Pyr-Cer (Fig. 5a) or 17C18,-16-,24-ceramides 

and 17C-Sph in response to CerS1 induction with the Gly120Ala-LC3B was also decreased 

compared to wt-LC3B, suggesting that the lipidation of LC3B with PE plays an important 

role for its binding to ceramide (Fig. 5 and Supplementary Figs. 8,9). This was also 

consistent with the lack of significant in vitro binding between C18-Pyr-Cer and purified wt-

LC3B protein, which was not lipidated when expressed in E-coli (data not shown).

Accordingly, we determined whether induction of CerS1 influenced the lipidation of wt and 

mutant forms of LC3B in UM-SCC-22A cells. CerS1/C18-ceramide increased the lipidation 

of wt-LC3B, forming LC3B-II, but not the Gly120Ala mutant of LC3B compared to non-

induced controls (Fig. 5b). Interestingly, mutation of the Ile35Ala or Phe52Ala did not 

prevent the lipidation of LC3B in response to CerS1/C18-ceramide induction compared to 

controls (Fig. 5b). Thus, these data suggest that while the lipidation of the Gly120 residue is 
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important for C18-ceramide interaction, alteration of ceramide binding has no detectable 

effect on LC3B-II formation.

We then explored the structure of LC3B and ceramide interaction with unmodified and PE 

modified LC3B in computational docking simulations. Structural analyses suggested that 

putative binding regions of PE and ceramide are localized on the opposite sites of LC3B 

(Supplementary Fig. 7a). We therefore created a model of PE modified LC3B to explore 

potential interactions (Supplementary Fig. 10a.b). Initial analysis of the LC3B structure 

suggested that it contains a hydrophobic groove that is the most likely site for intramolecular 

interaction between ceramide/LC3B or PE/LC3B. We then compared the docking of 

ceramide to unmodified and PE-modified LC3B (Supplementary Fig. 10a,b). The results of 

the unmodified LC3B docking simulations revealed that among the top 30 poses, none 

interacted on the face near Phe52, and the vast majority of the docking poses lie in close 

proximity to Gly120, the PE modification site (Supplementary Fig. 10a). In contrast, 

docking of ceramide to the PE modified LC3B increased interaction of ceramide at the 

Phe52 site (Supplementary Fig. 10b). Thus, these data support that PE and ceramide bind on 

the opposite sites of LC3B, and that LC3B-PE lipidation is important for LC3B-ceramide 

interaction.

Mitochondrial C18-ceramide-LC3B-II induces mitophagy

We then examined whether ceramide and LC3B-II interaction played any role in targeting or 

localization of autophagosomes to mitochondria and regulation of mitochondrial function. 

We ectopically expressed FLAG-tagged wt and mutant LC3B proteins, while endogenous 

LC3B expression was downregulated using siRNAs that target the 5′ untranslated region of 

LC3B mRNA in UM-SCC-22A/Tet-CerS1 cells. Confocal microscopy revealed that upon 

expression of the wt-FLAG-LC3B with wt-CerS1 induction, FLAG-LC3B punctuates were 

formed, which were mainly co-localized with the mitochondrial outer membrane protein 

Tom2039 compared to non-induced controls (Fig. 6a). However, CerS1/C18-ceramide 

induction had no effect on the lipidation of the Gly120Ala mutant of LC3B or its 

localization (Fig. 6a). In addition, the Phe52Ala-LC3B mutant formed puncta, indicatingits 

lipidation, but it did not co-localize with Tom20 in response to wt-CerS1 induction 

compared to controls (Fig. 6a). Thus, these data suggest that although C18-ceramide 

interaction is dispensable for the lipidation of LC3B, interaction between ceramide and 

LC3B plays important roles to target LC3B-II-containing autophagolysosomes to 

mitochondria. In addition, CerS1/C18-ceramide decreased OCR in the presence of intact 

endogenous LC3B expression (in Scr siRNA transfected cells) compared to non-induced 

controls (Fig. 6b). However, siRNA-mediated knockdown of endogenous LC3B prevented 

the inhibition of OCR in response to CerS1 induction (Fig. 6b). Remarkably, OCR inhibition 

was recovered upon reconstitution of the FLAG-wt-LC3B expression after CerS1 induction 

in response to siRNA-mediated knockdown of endogenous LC3B (Fig. 6b). In contrast, 

upon downregulation of endogenous LC3B expression using siRNAs, the expression of 

Phe52Ala-LC3B was not able to recover OCR inhibition in response to CerS1 induction 

(Fig. 6b). Thus, these data suggest that ceramide and LC3B-II interaction plays key roles in 

mitochondrial dysfunction upon mitophagy in response to CerS1/C18-ceramide induction.

Sentelle et al. Page 7

Nat Chem Biol. Author manuscript; available in PMC 2013 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ceramide-induced mitophagy requires mitochondrial fission

Because ceramide stress induced LC3B-II/ceramide binding on mitochondrial membranes, it 

was important to dissect whether mitochondrial fusion and/or fission39 play roles in 

CerS1/C18-ceramide-mediated mitophagy. Therefore, we examined the effects of genetic 

loss or siRNA-mediated knockdown of mitofusion-1/2 or Drp139,40, known regulators of 

fusion or fission processes, respectively, on ceramide-induced mitophagy. C18-Pyr-Cer 

inhibited OCR in mitofusion-1/2-/- dko MEFs, similar to wt controls, suggesting that 

mitochondrial fusion is dispensable in this process (Supplementary Fig. 11a). However, 

knockdown of Drp1 almost completely prevented ceramide-mediated mitochondrial 

dysfunction in UM-SCC-22A cells (Fig. 6c). Knockdown of Nix or p62 had no effect on 

OCR in response to ceramide (Fig. 6c). Consistent with these data, Drp1 knockdown 

inhibited the targeting of mitochondria by autophagolysosomes in response to C18-Pyr-Cer 

(Supplementary Fig. 11b). Remarkably, knockdown of Drp1 also attenuated mitochondrial 

outer membrane localization of ceramide in response to CerS1 induction compared to 

controls (Fig. 6d and Supplementary Fig. 12a-c). Thus, these data suggest that ceramide-

induced mitophagy is regulated downstream of Drp1-mediated mitochondrial fission, whose 

knockdown alters mitochondrial localization of ceramide on the outer membrane, preventing 

LC3B-II/ceramide-mediated mitochondrial targeting of autophagolysosomes.

CerS1/C18-ceramide/LC3B axis mediate tumor suppression

We determined whether LC3B-II-mediated autophagy played any role in the regulation of 

CerS1/C18-ceramide-dependent tumor suppression. First, endogenous LC3B expression was 

stably knocked down using shRNA expression in UM-SCC-22A/Tet-CerS1 cells, which 

prevented CerS1-mediated LC3B-II formation compared to controls (Supplementary Fig. 

2d). Importantly, stable knockdown of LC3B also prevented inhibition of OCR in response 

to CerS1 induction (Fig. 7a). Accordingly, CerS1/C18-ceramide significantly inhibited UM-

SCC-22A/Tet-CerS1 xenograft-generated tumors (∼6-fold, p<0.01) compared to non-

induced controls (Fig. 7b). However, shRNA-mediated knockdown of LC3B expression 

abrogated tumor suppression in response to CerS1/C18-ceramide induction (Fig. 7b). It was 

also noted that in the absence of ceramide stress, LC3B-mediated autophagy seemed to 

promote tumor survival and growth, and knockdown of LC3B reduced tumor growth (Fig. 

7b). In contrast, LC3B knockdown was protective against CerS1/ceramide-mediated tumor 

suppression (Fig. 7b). Thus, these data suggest a biological role for LC3B and mitophagy in 

the regulation of CerS1/C18-ceramide-dependent tumor suppression in vivo.

Discussion

In this study, we investigated the roles and mechanisms involved in the regulation of 

autophagy paradox by ceramide stress. Our data suggest that CerS1/C18-ceramide 

selectively mediates lethal autophagy, which is Bax/Bak- and caspase-independent, by 

inducing mitophagy. We discovered that CerS1/C18-ceramide or C18-Pyr-Cer induces 

LC3B-PE lipidation, forming LC3B-II, which then binds ceramide on the mitochondrial 

membrane upon Drp1-mediated mitochondrial fission, targeting autophagolysosomes to 

mitochondria and leading to lethal mitophagy and tumor suppression (Fig. 7c). We believe 
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that this is one of the first mechanistic links to explain the autophagy paradox, defining how 

lethal autophagy is regulated by ceramide signaling.

Autophagy can induce survival or death in the same cell type based on different stress 

conditions, which is context dependent. For example, H2O2 mediates autophagy, which is 

pro-survival in Bax/Bak DKO MEFs41, whereas etoposide42 induces caspase-independent 

autophagic cell death in these cells. Our data indicate that C18-ceramide mediates non-

apoptotic lethal autophagy, which is Bax/Bak- or caspase-independent.

Sphingolipids are known to induce autophagy, which usually protects cells from death in 

response to serum starvation or inhibition of nutrient uptake43. In contrast, ceramide 

mediates autophagy, which results in cell death in response to therapeutic treatments in 

various human cancer cells6. In this study, CerS1 expression, generating mainly C18-

ceramide, mediated localization of ceramide on the mitochondrial outer membrane, leading 

to mitophagy, whereas CerS6 expression, which mainly generates C16-ceramide, had no 

effect on mitochondrial localization of ceramide or mitophagy. However, C16-Pyr-Cer, 

which localizes to mitochondria, induced mitophagy. These data suggest that different 

subcellular localization of endogenous ceramides rather than their fatty acid chain lengths 

plays a key role in mediating their distinct biological functions. These data are in agreement 

with a recent study, which showed that mitochondrial membrane accumulation of C16-

ceramide regulates Bax translocation to mitochondrial membranes, leading to apoptosis in 

response to SMase induction or radiation31.

Ceramide-LC3B-II interaction appears to involve the central hydrophobic domain of the 

protein, which was somewhat structurally homologous to the ceramide-binding StART 

domain of CERT35. The binding selectivity of LC3B was also similar to CERT, which is 

known to bind C18- and C16-ceramides35. The Ile35 and Phe52 residues localized within this 

hydrophobic domain of LC3B were identified as important for ceramide binding. 

Interestingly, our data also indicated that PE-conjugation (lipidation) of LC3B also 

influences ceramide-LC3B-II interaction, because binding of the Gly120Ala-LC3B (non-

lipidated mutant) to ceramide was reduced compared to wt protein. Structural analysis and 

computational simulations indicated that the putative PE and ceramide interaction sites 

within LC3B might be on opposite faces of the protein, and that PE might mask a low 

affinity potential ceramide binding site, shifting binding kinetics to the Phe52 site. This 

hypothesis, however, needs to be further evaluated. Moreover, ceramide induced LC3B 

lipidation, which was independent of ceramide-LC3B binding. Previous studies suggested 

that ceramide inhibits protein kinase B, upregulates Beclin17, and disrupts Bcl-2-Beclin 

association via JNK1-dependent Bcl-2 phosphorylation18, leading to Beclin-dependent 

LC3B lipidation and autophagy17. However, mechanisms by which ceramide signaling 

induces LC3B lipidation in HNSCC cells remain unknown.

Interestingly, knockdown of Drp1, which is a known inducer of mitochondrial fission39,40, 

prevented mitophagy and inhibited mitochondrial membrane localization of ceramide in 

response to CerS1 expression. Thus, these data suggest that ceramide-mediated mitophagy, 

which requires LC3B-II formation and ceramide-LC3B-II binding on mitochondrial 

membranes, is regulated downstream of Drp1-mediated mitochondrial fission. Drp1-
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mediated mitochondrial fission is known to induce LC3B lipidation and mitophagy, which 

requires Parkin/Pink1 or Bnip3 function39,40-42,45. However, the involvement of ceramide as 

one of the factors that targets LC3B-II-containing autophagolysosomes to mitochondria via 

ceramide/LC3B-II interaction upon Drp1-induced fission is new.

Overall, these data define at least one key component of the autophagy paradox: LC3B-II-

autophagosomes targeting to mitochondrial membranes via C18-ceramide-LC3B-II 

interaction regulates lethal mitophagy. These data should help to clarify the role of ceramide 

as a possible receptor for mitochondrial targeting of LC3B-II/autophagosomes, which is 

linked to HNSCC tumor suppression in response to induction of CerS1/C18-ceramide. These 

data, by uncovering at least one specific mechanism of how tumor suppressor function of 

CerS1/C18-ceramide is regulated via lethal mitophagy, might impact the development of 

therapeutics against various human cancers.

Methods

Ultra structure analysis by TEM

Cells grown in the absence/presence of C18-Pyr-Cer or tet for induction of CerS1 expression 

were fixed in 2% glutyraldehyde in 0.1M cacodylate following removal of culture medium. 

After post-fixation in 2% osmium tetroxide, specimens were embedded in epon 812, and 

sections were cut orthogonally to the cell monolayer with a diamond knife. Thin sections 

were visualized in a JEOL 1010 transmission electron microscope, as described25.

Laser scanning confocal microscopy

Cultured cells were incubated with 500 nM of MTG or MTR in DMSO for 30 min at 37 °C 

for covalent labeling of the mitochondria, as described25,26,44. Co-localization of LTR with 

mitochondria was assessed from fluorescent confocal images of green-fluorescing MTG and 

red-fluorescing LTR using a 63 × N.A. 1.4 planapochromat oil immersion lens with pinholes 

set to 1.0 Airy unit in both the red and green channels. LTR and MTG were excited with 

543-nm light from a HeNe laser and 488-nm light from an argon laser, respectively, with 

laser intensities attenuated to 0.05%. Emitted fluorescence was divided by a 545-nm 

dichroic reflector and passed through 500–530 nm band-pass and 560 nm long-pass barrier 

filters to measure green and red fluorescence, respectively25,26,45.

Measurement of OCR

Oxygen consumption rate (OCR) in the absence/presence of tet-induction or Pyr-Cer was 

measured in 1xDMEM supplemented with 10% FBS and 1% penicillin/streptomycin using a 

Seahorse XF24 (Seahorse Biosciences) as described by the manufacturer. Respiration was 

expressed as pmol O2/min.

Ceramide-LC3B binding assays

Association between ceramide and LC3B (wt and mutants) were performed as we described 

previously34. In summary, cells grown in the absence/presence of tet for induction of CerS1 

or CerS6 expression, were labeled with 10 μM biotin-labeled B-Sph (Avanti) for 6-18 hr to 

generate the biotin-labeled endogenous ceramides. After that, equal amount of cell lysate 
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(1-2 mg of total protein) for each sample was applied to avidin column, and ceramide-bound 

proteins were eluted using 2 mM of biotin solution, and concentrated using Centricon 

(Sigma) for further analysis by SDS-PAGE. The association of wt- and mutant LC3B-FLAG 

proteins with endogenous ceramides with/without CerS1 induction, in the absence/presence 

of 17C-Sph to generate 17C12-26-ceramides38, were measured using LC/MS/MS38 after IP 

using the anti-FLAG antibody. Inorganic phosphate (Pi) was used as an internal control.

Other methods

See Supplementary Methods online for descriptions of reagents, cell lines and culture 

conditions, plasmids, siRNA and shRNA transfections, mutagenesis of LC3B, molecular 

modeling/docking simulations, measurement of ATP generation, assessment of xenograft-

driven tumor growth in vivo, and statistical analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Exogenous C18-Pyr-Cer (C18PC) induces autophagic cell death. (a) C18-Pyr-Cer. (b) 
Effects of C18-Pyr-Cer on the lipidation of LC3B (LC3B-II) were examined by western blot 

in the absence or presence of a pan caspase inhibitor Z-VAD compared to vehicle-treated 

controls (lanes 1-2 and 3-4, respectively). Full blots can be found in Supplementary Figure 

13. (c) Formation of double-membrane autophagosomal vesicles in the absence or presence 

of C18-Pyr-Cer was visualized by TEM (left and right panels, respectively). Higher 

magnification of TEM visualization is shown in lower panels. Scale bars represent 10 

microns (top) and 500 nm (bottom). (d) Effects of siRNA-mediated knockdown of Atg3 or 

Atg7 on cell death in the absence or presence of C18-Pyr-Cer were determined compared to 

controls transfected with Scr siRNAs using trypan blue exclusion assay. (e) Roles of C18-

Pyr-Cer in the regulation of lethal autophagy were assessed after treatment of MEFs isolated 

from wt (ATG5+/+) versus ATG5-/- k/o mice with C18-Pyr-Cer. (f) Effects of C18-Pyr-Cer 

on caspase-dependent or –independent cell death were determined in MEFs isolated from 

Bax-/-/Bak-/- (dko) or caspase3-/-/7-/- (dko) mice compared to cells isolated from wt (Bax

+/+/Bak+/+) or caspase3+/-/7+/- mice, used as controls. Data shown are an average of at 

least three experiments ± s.d. (*P <0.05).
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Figure 2. 
C18-Pyr-Cer mediates targeting of autophagolysosomes to mitochondria and the inhibition 

of mitochondrial function. (a) Targeting of autophagolysosomes to mitochondria in the 

absence or presence of C18-Pyr-Cer (C18PC) at 2 h in UM-SCC22A cells was examined by 

visualizing the co-localization of MTG and LTR using live cell imaging and confocal 

microscopy. Scale bars represent 10 microns. (b) Effects of C18-dihydro-Cer-14-piperidine 

(Dihydro-C18PC, left panel) on OCR were measured using the SeaHorse compared to C18-

Pyr-Cer (C18PC) and vehichle-treated controls (right panel). Data shown are an average of 

at least two independent experiments performed in duplicates ± s.d. (*P <0.05).
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Figure 3. 
Induction of endogenous C18-ceramide by CerS1 expression mediates lethal mitophagy. (a) 
Effects of induction of wt-CerS1 versus its catalytically inactive mutant, which cannot 

generate C18-ceramide, expression (containing V5 tags) on the formation of LC3B-II were 

determined by western blot (first panel, +/-tet, respectively). Successful induction of wt- and 

mutant-CerS1 expression was confirmed using the anti-V5 antibody. Beta-actin was used as 

a loading control. Full blots can be found in Supplementary Figure 13. (b) Generation of 

endogenous C18- and C18:1-ceramides in response to wt-CerS1 compared to the mutant-

CerS1 induction was measured by LC/MS/MS. (c) Effects of wt-CerS1/C18-ceramide 

induction (+tet) on GFP or LC3B-GFP lipidation were visualized using confocal microscopy 

compared to non-induced controls (-tet). Scale bars represent 10 microns. (d) Roles of wt-

CerS1/C18-ceramide versus the catalytically inactive mutant-CerS1 induction (+tet) in the 

regulation of mitochondrial function was assessed by measuring oxygen consumption rate 

using the SeaHorse, compared to non-induced controls (-tet). (e) Targeting mitochondria 

with autophagolysosomes in the absence or presence of wt-CerS1/C18-ceramide (-/+ tet, 

repectively) was visualized by co-localization of MTG and LTR using confocal microscopy. 

(f) Effects of wt and mutant CerS1 (-/+ tet) on ATP generation. Scale bars represent 10 

microns. (g) Effects of wt-CerS1 (-/+ tet) on ATP generation in the absence or presence of 

shRNA-mediated knockdown of LC3B were measured. Data shown are an average of at 

least three experiments ± s.d. (*P <0.05).
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Figure 4. 
Mitochondrial localization of CerS1-generated C18-ceramide induces targeting of 

mitochondria by LC3B-II-containing autophagosomes. (a) Subcellular localization of 

ceramide, generated by wt-CerS1 induction (+tet), in mitochondria were visualized by 

colocalization of ceramides and mitochondria using anti-ceramide and anti-Tom-20 

antibodies, respectively, using confocal microscopy. (b-c) Mitochondrial targeting of LC3B-

II and C18-ceramide, generated by induction of wt-CerS1 (b) versus the catalytically inactive 

mutant CerS1 (c) expression (+tet) was visualized by co-localization of ceramide (green), 

LC3B-CFP (blue) and MitoTracker Red (MTR) using anti-ceramide antibody and confocal 

microscopy. Non-induced cells (-tet) were used as controls. Scale bars represent 10 microns.
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Figure 5. 
C18-ceramide interacts with LC3B via lipid-protein association. (a) Binding of wt-, 

Ile35Ala-, Phe52Ala- or Gly120Ala-LC3B-FLAG proteins with endogenous C18-ceramide, 

generated in response to wt-CerS1 induction (upper panel) or exogenous C18-Pyr-Cer (lower 

panel) were measured using LC/MS/MS after pull-down using anti-FLAG antibody-

conjugated beads. Data shown are an average of at least three experiments ± s.d. (*P <0.05). 

(b) Effects of CerS1/C18-ceramide induction on the lipidation of wt-, Ile35Ala-, Phe52Ala- 

or Gly120Ala-LC3B-FLAG proteins were examined by western blott. Non-induced cells (-

tet) were used as controls. Beta-actin was used as a loading control. Full blots can be found 

in Supplementary Figure 13.
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Figure 6. 
C18-ceramide-LC3B-II interaction on mitochondrial membranes is regulated downstream of 

Drp1-mediated mitochondrial fission. (a-b) Effects of Gly120Ala and Phe52Ala 

conversions, which perturbed C18-ceramide-binding of LC3B, on targeting mitochondria by 

LC3B-containing autophagosomes (visualized by confocal microscopy using anti-FLAG 

and anti-Tom-20 antibodies; a) or mitochondrial function (measurement of oxygen 

consumption OCR; b). (c) Roles of siRNA-mediated knockdown of p62, NIX and Drp1 in 

the alteration of OCR in the absence or presence of CerS1/C18-ceramide induction (-/+Tet) 

were measured using the SeaHorse. Data shown are an average of at least three experiments 

± s.d. (*P <0.05). (d) Effects of siRNA-mediated knockdown of Drp1 on the localization of 

ceramide within mitochondrial membranes were visualized using the co-localization of anti-

ceramide (red) and anti-Tom20 (green) antibodies under confocal microscopy, in the 

absence or presence of CerS1/C18-ceramide induction (-/+ Tet) compared to Scr-siRNA-

transfected controls (right and left, upper and lower panels, respectively). Scale bars 

represent 10 microns in (a) and (d).
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Figure 7. 
C18-ceramide-LC3B interaction induces lethal mitophagy and subsequent tumor suppression 

in vivo. (a-b) Roles of shRNA-mediated stable knockdown of endogenous LC3B expression 

in the regulation of mitochondrial function (a), or UM-SCC-22A xenograft-derived tumor 

growth in the absence/presence of wt-CerS1/C18-ceramide induction (-/+ tet) were 

determined using the SeaHorse, or measurement of tumor volumes in the flanks of SCID 

mice (n=6/group), respectively. Data shown are an average of at least three experiments ± 

s.d. (*P <0.05). (c) Mechanism by which C18-ceramide induces lethal autophagy involves, 

at least in part, the lipidation of LC3B, forming LC3B-II, and interaction of LC3B-II and 

ceramide on mitochondrial membranes upon Drp1-mediated mitochondrial fission, which 

targets autophagolysosomes to mitochondria for lethal mitophagy.
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