Skip to main content
. 2013 Jun 21;8(6):e66936. doi: 10.1371/journal.pone.0066936

Figure 6. Potassium binding site in PaMurB and its proposed role in catalysis.

Figure 6

A. Structure of the potassium binding site in PaMurB crystal form A. The coordination sphere is formed by the carboxamide oxygen of NADP+ nicotinamide in addition to two side chain oxygens and two main chain oxygens from the protein. The potassium ion (gold sphere) and its Fo-Fc omit difference density contoured at 5.0 σ (green mesh) are shown. B. The active site potassium ion assists in substrate orientation and binding. Superimposition of the PaMurB crystal form A structure and the EcMurB-UNAGEP complex (PDB code 2MBR) based on FAD atomic coordinates shows that the C2-C3-C4 locus of NADP+ nicotinamide (in cyan) spatially overlap with the enolpyruvyl group of UNAGEP (in green). Both substrate moieties are bound to Glu-335 and the backbone amine of Ser-239. The nicotinamide C4n atom (cyan sphere), which transfers a hydride to the isoalloxazine N5 atom, coincides with the enolpyruvyl C3e (green sphere), which receives the hydride during the second half-reaction. The geometric relation of the C4n atom to the isoalloxazine is indicated. In synergy with the isoalloxazine ring, Glu-335 and Ser-239, the potassium ion positions NADPH and UNAGEP such that the substrate carbons are in the optimal position for hydride transfer.