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Due to the lack of success in small-diameter (<6 mm) prosthetic vascular grafts, a variety of strategies have
evolved utilizing a tissue-engineering approach. Much of this work has focused on enhancing the en-
dothelialization of these grafts. A healthy, confluent endothelial layer provides dynamic control over homeo-
stasis, influencing and preventing thrombosis and smooth muscle cell proliferation that can lead to intimal
hyperplasia. Strategies to improve endothelialization of biodegradable polymeric grafts have encompassed both
chemical and physical modifications to graft surfaces, many focusing on the recruitment of endothelial and
endothelial progenitor cells. This review aims to provide a compilation of current and developing strategies that
utilize in situ endothelialization to improve vascular graft outcomes, providing a context for the future directions
of vascular tissue-engineering strategies that do not require preprocedural cell seeding.

Introduction

Coronary artery disease is a leading cause of death
and morbidity worldwide.1 Angioplasty and stenting

procedures are used in cases of limited occlusion. For more
occluded vessels, bypass surgery is required in *250,000
patients per year.2 Autologous transplantation of conduits
such as saphenous veins and mammary arteries is often used
in cases necessitating arterial bypass. Patients requiring by-
pass surgery, however, may not have vessels available due to
disease or previous surgery. Synthetic, nondegradable ves-
sels have been used in such cases. Success rates in large-
diameter grafts (>6 mm) have been satisfactory with patency
rates of 95% after 5 years.3 Conversely, the patency rate
of small-diameter grafts ( < 6 mm) was reported to be only
30% in the same study.3 Other studies demonstrated patency
rates such as 0% to 25% after only weeks or months of
implantation in various animal models.4–6 Complications
resulting from noncompliance, thrombogenicity, intimal
hyperplasia, aneurysms, and calcium deposition contribute
to these low patency rates.7–9 While much graft research has
focused on coronary artery bypass procedures, the need
for small-diameter vascular grafts extends far beyond coro-
nary artery disease. Each year, over 500,000 patients are
found to have end-stage renal disease and 8 million with
peripheral artery disease,2 prompting research into small-
diameter grafts for hemodialysis access and peripheral artery
bypass.10,11

To improve the long-term patency and functionality of
small-diameter grafts, biodegradable grafts have emerged
over the years as a chief solution to the complications asso-
ciated with commonly used biologically stable materials such
as poly-tetrafluoroethylene (PTFE) or Dacron. The focus of
biodegradable grafts is to promote native tissue ingrowth and
replacement of the graft while the scaffold material degrades
over a sustained period of time necessary for adequate vessel
repair and growth. Tissue-engineering approaches to the
problem of developing small-diameter, biodegradable vascu-
lar grafts have been numerous. Approaches aim to achieve
acceptable patency rates through the development of grafts
that best mimic or promote the extracellular environment and
mechanical properties of native blood vessels. A tissue-
engineered, small-diameter vascular graft is based on three
basic principles: (1) base scaffold matrix; (2) biofunctional
molecules; (3) cells (seeded or recruited in vivo).

To promote a fully functional native tissue replacement,
grafts must promote the establishment of cellular and tissue
organization similar to a native vessel. A blood vessel con-
tains three identifiable layers called the tunica intima, the
tunica media, and the tunica adventitia, from the lumen
outward. Endothelial cells (ECs) make up the monolayer
intimal lining, often called the endothelial layer or endothe-
lium. Smooth muscle cells (SMCs) are predominately located
in the media, while the adventitia primarily consists of fi-
broblasts.7 Of these vessel layers, the primary focus is to
establish the endothelium on a graft due to the endothelial
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layer’s crucial role in vascular biology. The endothelial layer
provides dynamic control of interactions with blood flowing
through the vessel, maintaining hemostasis by regulating
inflammation, permeability, thrombosis, and fibrinolysis.13,14

Establishment of a healthy endothelium on an implanted
graft is thought to be crucial in the prevention of complica-
tions such as reduced patency due to intimal hyperplasia and
thrombogenicity. The endothelium plays a direct role in the
regulation of the coagulation cascade and thus thrombosis.15

While intimal hyperplasia is caused by the ingrowth of
SMCs, the endothelium plays a crucial role in regulating
SMC growth from the media layer. Inflammation and
thrombosis, both regulated by the endothelium, can trigger
intimal hyperplasia. A healthy endothelium also has the ca-
pability to inhibit excess SMC proliferation and migration.16

Although prevention of intimal hyperplasia is crucial to en-
dothelialization, the media layer does play an integral role in
endothelialization. Mechanical stability provided by the
medial layer can prevent anastomosis, while extracellular
matrix (ECM) production and remodeling can further pro-
mote the development of neovessel tissue and support en-
dothelial growth.17,18

Many strategies for seeding cells on vascular grafts have
been developed to establish a complete endothelium before
implantation. Even when these strategies are successful, the
hurdles of cell seeding may limit clinical applicability, dras-
tically increase graft costs, and/or require a lengthy amount
of time.19,20 Obtaining an adequate number of mature ECs
for proper cell seeding may be difficult without causing
donor-site morbidity.21 Instead of relying on autologous or
allogous cell seeding for the production and implantation of
vascular grafts, many current small-diameter, vascular graft
strategies incorporate biofunctional molecules or compo-
nents to mobilize autologous cells within the vasculature to
the graft postimplantation.22,23

This review will focus on current and developing strate-
gies to promote the adhesion, differentiation, and prolifera-
tion of ECs and endothelial progenitor cells (EPCs) to form a
complete endothelium on biodegradable, small-diameter,
vascular grafts in situ. We have chosen to focus on polymeric
grafts due to their relative ease of production, ability to be
tuned for mechanical properties, and availability of surface
modification techniques. Techniques of surface modification
will be reviewed, examining chemical and topographical
factors that contribute to successful endothelialization and
how such strategies have or can be applied to biodegradable,
small-diameter grafts. In addition, alternative strategies,
treatments, and concepts will be covered that can be applied
to promote endothelialization of such grafts. This review
will attempt to provide a framework useful for combining
these approaches in the ultimate development of a bio-
degradable, small-diameter vascular graft that can effec-
tively enhance and expedite the endothelialization process
postimplantation.

Targeted Cells for In Situ Endothelialization

Endothelial cells

EC adhesion and proliferation are vital to the establish-
ment of a thromboresistant cellular layer and the prevention
of intimal hyperplasia by inhibiting SMC growth into the
inner lumen of a vascular graft.24,25 If ECs are not seeded on

the graft, migration and adhesion of ECs occur in one, or a
combination, of several manners. ECs may migrate over the
anastomosis site of the graft from the neighboring vessel
structure. ECs may also migrate through pores in the graft
via ingrowth of capillaries.26 However, EC ingrowth beyond
the anastomosis site into the graft is often restricted to 1–
2 cm.7 Thus, relying on the passive migration of neighboring
ECs may be insufficient for expedited endothelialization of
an implanted graft.

Endothelial progenitor cells

Circulating EPCs may also contribute to the endo-
thelialization of the graft via adhesion, proliferation, and
differentiation into ECs. EPCs were first identified in 1997 as
a population of cells capable of neovascularization derived
from the bone marrow.27 EPCs appear to play a significant
role in vascular homeostasis and blood vessel formation.28–30

EPCs are capable of expressing various EC characteristics
and markers such as CD31, vascular endothelial (VE) cad-
herin, vascular endothelial growth factor receptor-2 (VEGFR-
2), and von Willebrand factor (vWF).27,31,32 These markers
contribute to vascular permeability, cell–cell adhesion, and
controlling other cellular responses during neovasculariza-
tion. It has been suggested that EPCs migrate to ischemic
tissues and sites of vascular injury to promote neovascular-
ization and vessel healing, responding to hemodynamics and
chemical stimuli to differentiate into mature endothelial
phenotype cells.33–35 Endothelial injury coagulation activa-
tion and platelet response provide mobilization and homing
of EPCs. Among EPCs, distinct populations have been
identified: early-outgrowth and late-outgrowth cells. The
early-outgrowth EPCs, though exhibiting several endothelial
markers, are unable to form vascular structures, though they
have been found to impact homeostasis and neoangiogen-
esis.36,37 Late-outgrowth EPCs both display endothelial
markers and have been found to form vessel structures.36

Despite their differences when cultured alone, these two
populations of EPCs have been found to interact synergisti-
cally to promote neovascularization.38 Despite the unclear
nature of neighboring ECs versus EPCs in endothelial repair,
research still suggests that administration of EPCs can lead to
enhanced vascular function.39 Besides contributing to the
endothelium through proliferation and differentiation, EPCs
also release soluble factors that enhance the migration of
ECs.40 A basic schematic demonstrating these pathways of
EPC and EC migration can be observed in Figure 1. Optimal

FIG. 1. Paradigms of endothelialization of vascular grafts.
Endothelial cells (ECs) migrate from neighboring tissues over
the anastomosis, while endothelial progenitor cells (EPCs)
respond to functionalized vascular graft surfaces. EPCs
adopt an EC phenotype, under influence of shear stress,
growth factors, and immobilization to the graft surface.
Color images available online at www.liebertpub.com/teb
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endothelialization of a small-diameter vascular graft may be
achieved through utilization of EPC mobilization, homing,
adhesion, and differentiation into ECs.

EPC Homing, Mobilization, and Migration

EPCs circulate the bloodstream in relatively low abun-
dance in normal, physiological conditions, so graft designs
utilizing the accelerated endothelialization potential of these
cells must incorporate methods of increased mobilization of
EPCs.41

Growth factor incorporation

Growth factors such as VEGF,42 stromal cell-derived
factor-1 (SDF-1),43 and granulocyte colony-stimulating factor
(G-CSF)44 have been found to increase mobilization of EPCs
from the bone marrow and used in vascular graft applica-
tions. Nerve growth factor (NGF) has also been found to
promote EPC migration in vitro and mobilization and hom-
ing in vivo to a collagen-modified decellularized blood vessel
matrix.45 NGF was bound to the blood vessels, resulting in
significantly increased endothelialization and patency rates
in a mouse model.45 Recently, brain-derived neurotrophic
factor (BDNF) has been found to enhance graft patency rates
in rats when bound to small-diameter tissue-engineered blood
vessels.46 BDNF was found to increase EPC mobilization and
capture in vitro and in vivo. VEGF production was found to
have been increased twofold in BDNF-treated cultures with
EPCs, which demonstrated the paracrine effects that contrib-
ute to the enhanced mobilization and migration of EPCs due
to BDNF. In vivo, EPC migration to BDNF-modified grafts
experienced a fivefold increase over control grafts.

While not studying biodegradable grafts, improved en-
dothelialization and reduced thrombosis were demonstrated
for two commercially available polyester grafts (Gelsoft�

from Vacutek� and POLYMAILLE� C from Perouse Medi-
cal).43 Grafts were coated with fibronectin and, subsequently,
homing factor SDF-1a to promote homing and adhesion
of hematopoietic stem cells and EPCs. Significantly, less
thrombotic material accumulated on both grafts after coat-
ing, and EC coverage of the grafts was almost doubled
compared to the uncoated controls. In addition, tests
demonstrated increased proliferation, differentiation, and
homing of EPCs due to BDNF. Star poly(ethylene glycol)
(PEG)–heparin hydrogels were modified by immobilizing a
novel, biased-like SDF-1 derivative to mobilize EPCs.47 The
SDF-1 derivative (AAV-[S4V]-SDF-1a) was found to be more
effective at increasing EPC migration compared to SDF-1a.
Research into the use of growth factors for EPC homing,
mobilization, and migration has been increasingly robust.
Future work may include tuning the presentation of these
growth factors by combining several factors immobilized on
a graft, controlling their release in the case of soluble factors,
and varying local concentrations of the factors on the graft’s
surface.

External treatments

Treatments exogenous to vascular grafts can augment
endothelialization through paracrine effects, resulting in in-
creased mobilization of EPCs. Increased EPC circulation and
vessel healing have been found by administering treatments

such as atorvastatins48 and erythropoietins.49,50 Providing an
exogenous erythropoietin delivery to mice to improve
transplanted EPC survival to treat myocardial infarctions
was found to be effective.50 Not only was the survival of
transplanted EPCs supported, but there was an increase in
autologous EPC mobilization as well. Such methods of mo-
bilizing EPCs may be used in conjunction with adhesion and
homing mechanisms on grafts to expedite endothelialization.

In some vascular graft applications, treatments involving
these EPC mobilization stimulants have led to increased EPC
presence in the bloodstream and endothelialization of luminal
graft surfaces. The benefits of combining atorvastatin treat-
ment (30 mg/d) in a canine model were observed in the im-
proved patency of implanted expanded poly-
tetrafluoroethylene (ePTFE) grafts.51 Atorvastatin therapy in-
creased the amount of circulating EPCs, while improving EPC
adherence and migration on the grafts. With the therapy, a
discontinuous EC monolayer was established on the grafts
after 4 weeks in treated canines, and a completely confluent
EC monolayer was achieved after 8 weeks of implantation.
Control animals without atorvastatin treatment displayed
only a thin acellular tissue on luminal graft surfaces.

While these treatments have been administered externally,
one study demonstrated the safety and efficacy of antibiotic
delivery in polyester vascular grafts coated with hydro-
xypropyl-b-cyclodextrin (BPbCD).52 The BPbCD is a cage
molecule with a hydrophilic exterior and a hydrophobic in-
terior suitable for encapsulating drugs or other bioactive
molecules. The group showed that the BPbCD-based poly-
mer coating sustained degradation and antibiotic activity,
showed no significantly detrimental effects on native tissues,
and showed an overall efficacy in a canine model. This
drug delivery system could be adapted to release an EPC-
mobilizing drug such as atorvastatin or a mobilizing and
homing growth factor such as VEGF. Such a system could
eliminate the need for external treatments, while increasing
the effective endothelialization of the graft of the graft.

Adhesion and Proliferation

Biofunctional molecules

Adhesion and supported proliferation of ECs and EPCs are
essential to graft endothelialization. As previously mentioned,
ECs may migrate from neighboring tissues to the graft. EPC
adhesion may be a more complex process. A current model of
EPC recruitment involves EPC rolling and adhesion, similar to
leukocytes, followed by migration and differentiation. Adhe-
sion of EPCs to ECs involves adhesive bonds formed by a
variety of adhesive molecule interactions, dependent on the
substrate stiffness and shear flow in the vascular environ-
ment.53 Incorporating molecules into a graft to simulate these
effects has proven to be an effective method of increasing EC
and EPC adhesion and subsequent proliferation.

Antibodies. Immobilization of antibodies has been pur-
sued in a variety of cardiovascular implant applications.
Antibodies targeting markers for ECs and EPCs have been
explored for increasing the adhesion of cells to the inner
lumen of vascular grafts. For EPCs, two identified surface
markers have been utilized in graft applications: CD34 and
kinase insert domain receptor (KDR).22,54 KDR, also known
as VEGFR-2, and CD34 are present in circulating EPCs.
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CD31 antibodies and VEGFR-2 antibodies have been used to
target ECs.55,56

Coating poly(caprolactone) (PCL) grafts with anti-CD31
antibodies has been shown to induce EC-specific binding,
promoting attachment and long-term adhesion of ECs.55

human umbilical vein endothelial cells (HUVEC) adhesion to
the modified graft was found to be 14.9-fold higher than
adhesion to bare PCL films. Cell viability was also higher
over a 5-day experiment. CD31 is also expressed on platelets,
granulocytes, lymphocytes, and monocytes,57–59 which could
cause deleterious immune and inflammation responses when
implanted in vivo.

Anti-CD34 antibodies have been used in a variety of
applications to aid in the endothelialization of vascular
stents.60–63 Anti-CD34 end-grafted to covalently immobilized
PEG on titanium stents to enhance EPC migration and
proliferation to improve endothelialization.62 Similarly, anti-
CD34 antibodies have been immobilized on a heparin/
collagen coating for a stent, accelerating the attachment of
cells and expediting endothelialization.61

While CD34 antibodies bind to EPCs, some debate re-
mains asserting that solely recruiting CD34 cells can be
detrimental to long-term graft patency. CD34 + cells can
differentiate into other cell types, including cardiomyocytes,
ECs, and vascular SMCs.64 Nonspecific adhesion of all
CD34 + cells can lead to problems such as restenosis due to
SMC proliferation from the captured CD34 + population.
Because it is thought a small percent of circulating CD34 +

cells are EPCs,65 recruitment of non-EPC cells to a graft re-
lying on CD34 + capture raises the potential for undesired
cell attachment and graft patency rates.

VEGFRs are located on both the EC and EPC membranes.
A VEGFR-2 (or anti-Flk-1) antibody for the VEGFR has been
utilized through surface immobilization.56 The group found
a 2.5-fold increase in HUVEC capture with the molecule by
orienting it with a G-protein rather than through passive
coating. The anti-FLk-1 antibody was utilized in an attempt
to capture circulating EPCs and ECs.66 The group used a
radial-flow chamber with three regions coated with fibro-
nectin, VEGF, or anti-Flk-1 antibody. Cell spreading was
greatest with fibronectin, followed by VEGF and anti-Flk-1
antibody. Cell adhesion was independent of the bound
protein. However, the group did not orient the anti-Flk-1
antibody binding like the strategy utilized in the previously
mentioned study.56 Passive absorption could lead to a lower
quantity of available antigen-specific binding sites. It is
possible that orienting the anti-Flk-1 antibody could lead to
more promising results for cell adhesion via VEGFR binding
in ECs and EPCs. For example, protection of the antigen-
binding site of an antibody led to an almost 10-fold increase
in number of active sites available for binding compared to
nonprotected, randomly immobilized antibodies in one
study.67 Another study utilized hydrophilic spacer arms for
antibody attachment to increase the activity of antibodies.68

Employing techniques such as these in the immobilization of
antibodies could increase the binding activity and efficiency
on graft surfaces, resulting in better endothelialization rates
over randomly immobilized antibody applications.

Besides the orientation of antibodies, it is also important to
consider an appropriate combination of antibodies or other
factors that will better uniquely encourage EPC attachment.
As described, the incorporation of solely antibodies for CD34

may encourage the attachment of cells inappropriate for
expedited endothelialization. It may be necessary to include
other antibodies or biofunctional molecules to better isolate
and encourage the attachment of EPCs and ECs.

Peptides. ECM proteins have been a popular addition to
vascular grafts, permanent and biodegradable, to mimic
native vessel architecture and achieve enhanced endo-
thelialization.23 Significant evidence exists, supporting the
notion that the ECM regulates EC and EPC function through
integrin interactions.69–72 Laminin type 1 has been utilized in
ePTFE grafts, demonstrating enhanced endothelialization
over unmodified grafts.73 While laminin-derived RGD con-
tinues to be one of the more popular ECM-derived peptides
to enhance endothelialization,74 a variety of other peptide
sequences derived from fibronectin, laminin, and collagen
type I have been incorporated into vascular grafts.

EC adhesion to polyurethane (PU) surfaces was improved
via the cross-linking of elastin-like polypeptide 4 macro-
molecules.75 In addition to the favorable cell morphology
and increased expression of endothelial nitric oxide synthase,
platelet adhesion and activation were reduced compared to
control PU surfaces. ECs and EPCs were shown to have
adhered well to L-selectin and VE-cadherin chimera proteins
that were coated on titanium surfaces.76 Compared to single-
protein-coated and uncoated surfaces, a 50:50 ratio of the
proteins on a coated surface showed the highest HUVEC and
EPC adherence, viability, and proliferation. One group de-
scribed 2.2-mm-diameter electrospun PCL grafts modified
with Nap-FFGRGD via dip coating.77 The surface of the PCL
films was modified by self-assembly of Nap-FFGRGD uti-
lizing a hydrogelator (Nap-FF).78 After 2 and 4 weeks of
implantation in rabbits, a threefold increase in EC coverage
of the luminal side of the grafts was observed compared to
unmodified grafts.77

Besides modifying the surface, an alternative approach is
to incorporate isolated adhesion peptide sequences into the
scaffold material. In a rat model, the accelerated en-
dothelialization of a graft that incorporated the peptide
cysteine-alanine-glycine (CAG) into PCL fibers was demon-
strated.79 CAG peptide was shown to selectively enhance at-
tachment of ECs while rejecting SMC adhesion.80 CAG was
mixed with PCL and electrospun into fibers used to form a
graft with an inner diameter of 0.7 mm. The area of en-
dothelialization of the CAG-PCL grafts compared with PCL
grafts was higher at 1, 2, and 6 weeks after implantation.79

An inherent weakness of peptide modification is the un-
selective nature of peptide-promoted cell adhesion. Se-
quences, such as RGD, allow for the adhesion of a variety of
cell types.74 In one study, CAG was chosen for incorporation
into the graft design based on the results from an array-
based peptide–cell interaction assay methodology.79,81 Ap-
proaches, like this one, to identify EC- and EPC-selective
adhesion peptides or peptide combinations should be em-
ployed to improve small-diameter vascular graft success.
Since most adhesive peptide sequences are nonspecific, it
may be appropriate to include other, more specific biofunc-
tional molecules, such as antibodies or aptamers, to better
encourage EPC and EC adhesion.

In addition to being used for its direct cellular adhesion
interactions, recent research has examined the effectiveness
of biomimetic proteins and peptides to immobilize other
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functional molecules to graft surfaces. For example, dopa-
mine is a key functional group in mussels, which allows the
animals to attach to virtually any material. Researchers have
developed a method of mimicking this behavior through co-
polypeptides containing 3,4-dihydroxyphenylalinine and l-
lysine.82 PCL grafts were also coated with poly(dopamine)
(PDA).83 The PDA-coated PCL nanofibers demonstrated
highly enhanced HUVEC adhesion and viability compared
to unmodified PCL nanofibers. In another study, 3,4-dihy-
droxyphenylalinine and l-lysine co-polypeptide was used to
immobilize anti-CD34 antibodies on a PCL substrate, en-
hancing EC and EPC attachment, growth, and adhesion.63

VEGF was also immobilized through a simple dipping
methodology after PDA was deposited on the surface of
a poly(l-lactide-co-e-caprolactone) (PLCL) film.84 VEGF–
dopamine coatings demonstrated accelerated HUVEC mi-
gration and proliferation compared to dopamine-coated or
uncoated PLCL films. The group also was able to immobilize
basic fibroblast growth factor, demonstrating the versatility
of the PDA immobilization techniques. The technology ap-
pears promising for in situ endothelialization. In vivo studies
will be informative to determine the feasibility of this tech-
nology in the future of small-diameter vascular grafts.

Oligonucleotides and aptamers. Incorporation of nucle-
otides to control cell adhesion has been more recently in-
vestigated. DNA molecules can be synthesized rapidly and
can allow for further graft functionalization via accessible
functional groups.85 In a recent study, DNA–oligonucleotide
coatings were immobilized by adsorption on parylene-
coated ePTFE and polystyrene using vapor deposition.86

Murine EPCs, HUVECs, and adult human ECs were seeded.
Dynamic culture conditions were maintained to apply con-
stant shear stress. All cell groups experienced significantly
enhanced adhesion on the coated surfaces compared to un-
coated graft materials, while also demonstrating low
thrombogenicity in human blood.

Aptamers are ligands consisting of nucleic acids with a
high affinity and specificity to a target. Nucleotide sequences
are isolated through systemic evolution of ligands by expo-
nential enrichment (SELEX) that fold into a three-dimen-
sional (3D) structure with the greatest binding affinity to the
target and were first shown to promote osteoblast cell cap-
ture and adhesion.87 Aptamers with a high affinity for EPCs
have been identified and used to capture porcine EPCs onto
a star-PEG coating. Differentiation of the EPCs into endo-
thelial-like cells was observed within 10 days in vitro.88 Ap-
tamers capturing ECs have been used to coat permanent
coronary stents. Coated stents were implanted in swine with
uncoated cobalt–chromium controls, and polymer-coated
controls. Aptamer-coated stents displayed no apparent ad-
vantages over either of the groups, showing restenosis rates
and neointimal proliferation similar between all groups.89

In vivo studies of these type of modifications would elu-
cidate some of the challenges that oligonucleotide and ap-
tamer functionalization face. Nucleolytic degradation and
DNA’s solubility in aqueous environments may be detri-
mental to the successful EC and EPC adhesion to graft sur-
faces modified with these materials.90,91 The potential to
synthesize highly selective nucleic acid ligands is still an
enormous advantage with oligonucleotide and aptamer
surface modification techniques.

Oligosaccharides and phospholipids. The popularity of
identifying native biomolecules to enhance endothelializa-
tion has included the investigation of grafted oligosaccha-
rides. Sialyl Lexisx has a high affinity for L-selectin present
on circulating EPCs and has been shown to enhance mobi-
lization and recruitment of EPCs.92 Enhanced adhesion of
EPCs utilizing was demonstrated utilizing a Sialyl Lexisx–
collagen matrix in vitro and in a rat model.92 More recently,
hyaluronic acid (HA) oligosaccharide, a glycosaminoglycan
with angiogenic and antithrombogenic properties, chains of
varying lengths were grafted to PU-based films.93 While all
three different lengths of HA proved more effective at lim-
iting platelet adhesion and protein adsorption than PEG- or
heparin-modified PU films, it was found that endothelial
growth on the films was dependent on the molecular weight
of the HA chains. Smaller chains of HA appeared to support
better EC growth.

A 2-methacryloyloxyethyl phosphorylcholine copolymer
was immobilized on the surface of an electrospun poly(ester
urethane)urea graft and subsequently implanted in a rat. A
10-fold decrease in platelet adhesion compared to an un-
coated graft was observed. A confluent layer of cells formed
within the cells, though this was only qualitatively docu-
mented.94 Phosphorylcholine-modified chitosan has also
demonstrated survival and differentiation of EPCs in in-
creased numbers compared to a fibronectin control.95 While
EPC adherence was increased, mesenchymal stem cell ad-
herence was decreased, demonstrating that the modified
chitosan matrix provides a possibly more selective surface
for EPC attachment and proliferation.

The investigation of oligosaccharides and phospholipids
has been less broadly researched than more extensively ap-
plied molecules such as antibodies and peptides. However,
they do offer viable alternatives. While the phospholipid
applications covered here are not EPC-specific, the Sialyl
Lexisx oligosaccharides do offer binding to specific EC and
EPC markers, though these markers are shared with leuko-
cytes that may competitively inhibit EPC binding.

Magnetic molecules. The incorporation of magnetic
molecules into target cell populations has been pursued to
enable the use of a magnet to attract cells to increase cell-
homing efficiency to grafts. Commercially available mag-
netic particles, Dynabeads (Life Technologies), have the
capability of targeting specific molecules, proteins, or cells.
CD31-coated Dynabeads to target HUVECs have been used,
demonstrating a 90% seeding efficiency on a tubular collagen
scaffold in vitro.96 However, using high concentrations of the
beads to increase efficiency results in decreased EC prolif-
eration and metabolic activities.97 Another group demon-
strated the use of magnetic nanoparticles produced by a
bacterium to direct EPCs in a microfluidic environment.98

After cellular uptake of the particles, EPCs were injected into
a microchannel under a controlled flow rate. The study
demonstrated that EPCs could be successfully directed to a
specific location within the channel, successfully targeting
*40% of the labeled EPCs. More recently, enhanced homing
of injected EPCs labeled with bacterium-derived magnetic
nanoparticles was demonstrated in a mouse model.99 EPCs
were magnetically directed toward an ischemic hind limb.
Magnetically homing EPCs demonstrated significantly im-
proved perfusion through the ischemic area compared to
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injection of nonmagnetic EPCs. While such techniques offer
an alternative method of homing EPCs to graft sites, clinical
implementation of magnetic homing would require injected
magnetic particle labeling of an EPC or EC population,
potentially increasing the complexity of preparation for the
grafting procedure.

Topography and physical properties

Cells are influenced by mechanical cues in their environ-
ment. These cues can affect cellular adhesion, proliferation,
differentiation, and morphology.100 As such, surface topog-
raphy of materials has been an important topic in various
cardiovascular prosthetics. To improve stent designs, the
topography of stent surfaces has been examined to improve
endothelialization.101 Such insights and strategies have been
adapted to vascular grafts. One study examined the effects of
nanostructured poly(lactic-co-glycolic acid) (PLGA) sur-
faces.102 Nanostructured surface features were found to sig-
nificantly enhance EC densities compared to microstructured
and untreated PLGA surfaces. Substrate rigidity has been
found to affect cellular differentiation, as well. For example,
one group enhanced the differentiation and proliferation of
ECs from cardiosphere-derived cells (CDCs) by testing
polyacrylamide gels coated with fibronectin with Young’s
modulus values ranging from 8 to 21 kPa.103 When matching
the rigidity of native tissue, greater numbers of CD31 + cells
were present on the substrates after initial seeding of CDCs.
Substrate rigidity appeared to influence the expression of
p190RhoGAP, which promotes VEGFR expression. This
caused a cascade of events known to control endothelial
differentiation. Table 1 provides examples of several strate-
gies implemented by research groups utilizing techniques to
control surface topography and the experimental outcomes.

Fiber alignment. With the popularity of electrospun fiber
designs in vascular grafts, it is crucial to examine the archi-
tecture of such grafts and the resulting effects on endo-
thelialization. It has been thought that the architecture of the
nanofibers can influence cell proliferation, migration, and
differentiation.104–106 In native vessels, fiber architecture
varies by layer. The medial layer consists of a circumferential

orientation, while the intimal layer of ECs is aligned longi-
tudinally with the direction of the blood vessel.104 Creating a
vascular graft with distinctly oriented fiber layers could be
crucial to better endothelialization and long-term graft out-
comes. Recently, electrospun tubular scaffolds with an inner
layer of aligned poly (lactic acid) PLA fibers and an outer
layer of random PCL and PLA fibers were fabricated, in an
attempt to replicate native architecture.107 HUVECs and
SMCs were cocultured on the grafts. HUVECs were oriented
in the direction of the fibers, and SMCs proliferated and
spread throughout the random fibers. Another group
fabricated oriented nanofibrous PCL scaffolds that were
aminolyzed to promote the immobilization of HA for EC
attachment.108 On aligned nanofiber scaffolds, investigations
revealed that nanofiber alignment influenced the pattern of f-
actin organization in HUVECs. Spindle-shaped morphology
and bipolar extension of HUVECs were more significantly
facilitated with aligned nanofibers. Combining aligned na-
nofibers with the HA surface modification promoted a con-
fluent HUVEC monolayer and greater expression levels of
vWF compared to random-oriented unmodified scaffolds
and scaffolds with only HA modification or aligned fibers.
Simply put, it is certainly advantageous to mimic the cellular
orientation present in native tissue via electrospun fibers to
help ensure EPC and EC orientation, proliferation, migra-
tion, and differentiation.

Surface roughness and features. It was found that
nanometer-scale roughness, even at 10–100 nm, could en-
hance HUVEC adhesion and growth.109 Endothelial and
SMC densities were found to be increased on nanostructured
PLGA surfaces.102 Spherical features of 200 nm proved more
beneficial for fibronectin spreading and both SMC and EC
adhesion and growth on a PLGA surface.110 On poly-
dimethylsiloxane (PDMS) films, grooves and ridges (500 nm
in depth) were created in alternating nano- and micron
roughness regions in linear patterns for one study.111 The
space between these grooves ranged from 22 to 80 mm cre-
ated via electron beam physical vapor deposition method on
a flat titanium surface preceding polymer casting. Rat aortic
EC adhesion was most adherent on patterned films with the
greatest spacing in the sample group. Elongation of these

Table 1. Recent Examples of Topographical Features and Methods of Topography Modification

Used to Achieve Enhanced Endothelialization on Vascular Prosthetics

Author Feature(s) Method Result

Dickinson et al.112 Micropillars Lithography Micropillars > 3 mm significantly decrease EC adhesion and
spreading; 1-mm high fibronectin micropillars promoted
EC adhesion and alignment

Le Saux et al.119 Nano- to microscaled
pyramids

Chemical etching Only microscaled pyramids inhibited EC migration when
present with low RGD density on surface; size of pyramids
appeared to control EC adhesion, while RGD density
controlled cell spreading

Wu et al.132 Nanofiber alignment Electrospinning Directed EC alignment on scaffold
Pareta et al.140 Nanoroughness and

surface energy
Plasma deposition Increased EC adhesion until optimal surface energy and

nanoroughness reached followed by decrease in EC
adhesion

Ranjan et al.111 Micropatterned
nanoroughness

Vapor deposition
and mold casting

EC function enhanced on a patterned surface with widest
spacing and greatest surface area of nanoroughness,
compared to narrower spacing and nonpatterned surface

EC, endothelial cells.
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cells was about twice as great as those on nonpatterned
films. According to the results, the optimal adhesion and
elongation can be tuned on a 45-mm spacing micron-rough
and 80-mm spacing nanorough-patterned PDMS films.111

In a recent study, one group modified PDMS with an ar-
ray of micropillars.112 They found that using 1-mm-high mi-
cropillars of fibronectin allowed HUVEC adhesion and
promoted cell alignment when testing a variety of heights
and diameters of pillars. Endothelial colony-forming cells
(ECFCs), a subset of EPCs, and HUVECs were seeded on the
substrates, showing much greater viability with micropillars
of heights 1 and 3 mm than those 6 or 8 mm in height. Cell
spreading was best achieved on micropillars of height 1mm.
Next, diameters and spacing between pillars were tested
ranging from 1 to 0.56 mm and 0.6 to 15mm, respectively. It
was reported that fewer HUVEC extensions were observed
in larger pillars with small spacing (diameters of 2.8 mm with
spacing of 0.8 mm, for example), whereas smaller diameter
micropillars with wider spacing yielded more-pronounced
adhesive protrusions (diameters of 2 mm with spacing of
4 mm). Otherwise, HUVEC adhesion and alignment occurred
on most other substrates. ECFC adhesion and elongation
were optimum on 1–2-mm-diameter pillars. Finally, EC
elongation and alignment were also found to be greater on
PDMS with micropillar arrangements than a stiff SiO2 sub-
strate with a similar topography.

In summary, it is crucial to consider the surface roughness
and features of the vascular graft. It would appear that
patterns with spaces on the scale of *45–80-mm spacing with
features of heights no more than 1–2mm may be optimal for
EC and EPC adhesion, proliferation, and spreading.

Porosity. Porosity has long been an important factor in
vascular graft design. Inflammatory reactions can be insti-
gated by grafts with pore sizes below the so-called critical
porosity size. Example sizes include 1.0 mm for PTFE, 0.8 mm
for cellulose acetate and acrylic copolymer, and 1.2 mm for
mixed esters cellulose.113 Additionally, it has been shown
that the ideal pore size is between 10 and 45 mm to support
EC coverage and reduce fibrous tissue infiltration. ECs could
not bridge pores greater than cell-sized diameters.114 In an-
other study, PU grafts were prepared with an average pore
size between 5 and 30 mm. They found the highest rate of
endothelialization with grafts of pore size 30mm in the ab-
dominal aortas of rats.115 It was thought that ingrowth of
perigraft collagenous tissues aided in the establishment of the
endothelium by presenting an ECM suitable for establishment
of an endothelial layer. The most significant impact of po-
rosity on the rate of endothelialization may be the establish-
ment of these subendothelium tissues that are crucial to native
tissue replacement of a biodegradable small-diameter graft.
While most strategies for endothelialization techniques are
focused on surface features, it is vital to consider the effect
porosity has on cell migration through the graft.

Micropatterning of molecules

Combining the advantages of physical and chemical
modifications of graft surfaces is an important step to induce
expedited endothelialization. For example, it is well estab-
lished that the spatial arrangement and organization of
RGD are crucial to promoting cell adhesion and impacting

the strength of cell adhesion, including in ECs.116–118 In one
study, the effects of nanotopography modification were
compared to RGD binding to a silicon surface. Varying the
size of nano- and microscale pyramids on the material sur-
face appeared to better control the initial adherence of ECs to
the silicon film. However, RGD density better controlled EC
spreading and length of focal adhesions.119 As the authors
indicate, these data point to the possibility that endo-
thelialization may follow a two-step process. It can be in-
ferred that surface features guide the initial adhesion to cells,
and the immobilized molecules predominately influence cell
spreading. Thus, controlling spatial presentation of mole-
cules and surface features may be crucial to optimizing
endothelialization of a small-diameter vascular graft. One
group used micropatterned lanes with selective collagen
type I deposition to control EC and EPC adhesion, en-
couraging cells to form either elongated or cobblestone
morphologies.120 Elongated EPCs and ECs experienced good
ECM deposition and maintained aligned actin skeletal for-
mation. EC deposition of ECM was largely dependent on
morphology; cobblestone patterns produced more collagen
type IV and fibronectin. Elongated EPCs were found to
deposit and remodel significantly more than the elongated
ECs. Another study demonstrated that the patterning of fi-
bronectin supported EPC elongation and subsequent tube
formation.121 Patterning of HUVECs has also been achieved
with micropatterned-immobilized VEGF.122 Through micro-
patterning, EC and EPC adhesion, elongation, and growth
can be more precisely controlled. Optimization of micro-
patterns can lead to a geometrically, chemically, and me-
chanically functional graft that better replicates native blood
vessel architecture and biological cues for endothelialization.

Surface Modification and Graft
Fabrication Techniques

Surface modification and control of small-diameter
vascular grafts are vital to influencing cellular response,
hemocompatibility, and overall success of the graft once
implanted. The modifications influencing cellular responses
to the graft can be broken down into two categories: che-
mical and physical surface modifications. Such modifications
can be controlled via biofunctionalization or through graft
fabrication to control surface architecture.

Biofunctional surface modification

Biofunctionalization surface modification involves immo-
bilizing molecules via methods such as surface coatings and
covalent linking. These techniques involve a chemical change
in the interface between the cells and the material surfaces, to
induce adhesion, proliferation, and differentiation. Table 2
provides examples of several biofunctionalization strategies
implemented by research groups utilizing these techniques.

Passive coating. In one attempt to modify material
surfaces passively, hydrophobins were utilized to modify
PDMS.123 Hydrophobins are a family of fungal proteins
with the ability to self-assemble into amphiphilic mem-
branes.124,125 The molecules self-assembled on the surface of
the PDMS, significantly increasing the hydrophilicity of the
surface.123 Hydrophobins alone have been found to improve
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cell adhesion to materials used for vascular grafts. In one
study, improved cell adhesion was demonstrated on PLGA
scaffolds modified with hydrophobins.126 In addition, the
group demonstrated that collagen immobilization could be
improved on PLGA surfaces modified with hydrophobins. A
technique was recently developed for the immobilization of
anti-CD31 antibodies on electrospun PCL scaffolds by uti-
lizing hydrophobins. Hydrophobin coating improved the
hydrophilicity of the hydrophobic PCL surface, along with
providing immobilization of the anti-CD31 antibody in a
simple and efficient immersion technique. HUVEC adhesion
to the hydrophobin-antibody-modified PCL films was 14.9-
fold higher than uncoated PCL films.55 Hydrophobins pro-
vide a backbone for surface modification that not only allows
the mobilization of cell-specific bound molecules but also
improves cell adhesion to the surface of the material on its
own. This technology could be promising in the develop-
ment of in situ endothelializing grafts. However, studies
have not yet encompassed in vivo studies that would be
highly informational regarding the clinical potential of this
surface modification technique.

Covalently linked. Covalent binding of molecules for sur-
face modification offers the ability to more uniformly distribute
bioactive molecules and functional groups on graft surfaces.
Plasma surface modification has been utilized significantly in
vascular graft engineering to aid in the development of he-
mocompatible, bioactive, and biomimetic graft surfaces, espe-
cially on permanent polymeric grafts.127 However, it is vital to
consider a covalent immobilization technique’s effect on bio-
degradable polymeric grafts. Modification can affect the surface
chemistry and aging of polymers, as well as the effective
function of the attached biomolecule and the stability of their
attachment.128 Vapor-phase grafting has been demonstrated to
initiate covalent VEGF functionalization of grafts on PLLA and

PCL in a nondestructive manner.42 One group covalently
immobilized sulfated silk fibroin to PLGA scaffolds using
g-irradiation, supporting in vitro hemocompatibility and en-
dothelialization.129 Another study examined the effectiveness of
various strategies for biofunctionalizing PCL using ammonia
plasma, oxygen plasma/aminopropyl triethoxysilane (APTE-
SI), and 4,4¢-methylene-bis(phenyl isocyanate)/water to add
terminal amino groups to the PCL.130 An anti-inflammatory
and antithrombogenic drug, acetylsalicylic acid (ASA), and
VEGF were immobilized via an N,N-disucciniidyl carbonate
(DSC) crosslinker. Highest functionality was observed in the
APTESI, group and immobilization of ASA and VEGF was
greatly improved with the DSC crosslinker compared to pas-
sive adsorption. NH3 plasma-activated PCL had the highest
ASA loading, while APTES modification provided the highest
attachment of VEGF. This study makes it clear that choosing
the proper methodology of immobilizing molecules for bio-
functionalization of a graft can be just as important as the
choice of biomolecule. Many covalent techniques have been
proven to be effective for modifying the surface of graft ma-
terials and immobilizing functional molecules to encourage cell
homing and binding. Covalent binding offers good control
over the orientation of the ligands, but it is important to con-
sider the impacts of covalent modification on the biodegradable
graft material, so as to avoid deleterious side effects.

Methods of graft fabrication to control graft architecture

As described, physical surface modification allows the
manipulation of surface characteristics such as roughness,
patterns, features, and overall topography of the material
surface that still consists of the bulk graft material. Methods
of fabricating grafts to utilize the effects outlined in the
Topography and physical properties section on topography,
and physical properties are outlined below.

Table 2. Recent Examples of Molecules and Methods of Immobilization

Used to Achieve Enhanced Endothelialization

Author
Biofunctionalization

molecule Immobilization method Model Effects

Shin et al.84 VEGF PDA/Dipping In vitro VEGF did not produce significantly
more HUVEC adhesion than PDA
alone; VEGF did support
increased CD31 expression

Du et al.108 Hyaluronic acid Covalently bound In vitro Increased HUVEC attachment
Yin et al.63 Anti-CD34 3,4-dihydroxyphenyalinine and

l-lysine co-polypeptide linking
In vitro Attachment and growth of ECs and

EPCs increased
Kuwabara et al.79 CAG peptide Mixed into PCL solution for

electrospinning fibers
Rat Higher rate of confluent

endothelialization of grafts
De Visscher et al.43 SDF-1a Immersed in fibronectin solution,

followed by SDF-1a immersion
Sheep Four times higher fraction of CD34 +

cells adhered; all grafts patent
after 3 months

Williams et al.73 Laminin type 1 Covalently bound Rat Accelerated neovascularization and
endothelialization

Zheng et al.77 Nap-FFGRGD Molecular self-assembly of a
hydrogelator75

Rabbit Threefold increase in endothelial
coverage; 100% patency at 2 and 4
weeks compared to 60% patency
in uncoated grafts

ECs, endothelial cells; EPCs, endothelial progenitor cells; PDA, poly(dopamine), VEGF, vascular endothelial growth factor; HUVEC,
human umbilical vein endothelial cells; CAG, cysteine-alanine-glycine; SDF, stromal cell-derived factor; PCL, poly(caprolactone).
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Solvent casting. To solvent cast a graft, a polymer is
dissolved in a solvent. A porogen may be added to the so-
lution, and then the solution is added to a 3D mold. After the
solvent is evaporated, the porogen may be leached, resulting
in somewhat controlled porosity. The configuration of the
mold enables some control over surface topography. Porous
PU scaffolds were developed by one group using solvent
casting and subsequent salt leaching. Porosity uniformity
was controlled via centrifugation.131 While solvent casting is
not the most prevalent method of graft fabrication and
physical surface control, it is a simple and relatively easy
method of fabrication. Still, other methods, such as electro-
spinning and even stereolitheography, may enable more
precise control over fabricating grafts to mimic the native
architecture of the vascular ECM.

Electrospinning. Fabrication of electrospun grafts to mi-
mic the native ECM is an important consideration in small-
diameter vascular grafts. An increasingly investigated area
of graft fabrication is the control of nanofiber orientation.
Nanofibrous PCL scaffolds were fabricated in aligned and
random orientations, followed by surface modification with
HA.108 Importantly, to align the PCL nanofibers, the rotating
drum for collecting the fibers was operated at a high speed of
rotation (2000 rpm) to generate well-aligned fibers. A low
speed of rotation (20 rpm) produced random PCL nanofibers.
Another study demonstrated the feasibility of controlling
nanofiber layers in a PCL vascular graft by altering the ro-
tation of the nanofiber collector and the electric field during
the electrospinning process.132 This enabled the fabrication of
interspaced layers aligned circumferentially, axially, and as a
controlled mixture of orientations. Such studies demonstrate
the expanding capabilities of electrospun vascular grafts.
Electrospinning offers robust material selection, low cost,
simplicity, high surface-to-volume ratios, and favorable,
controllable porosity.133–136 With these advantages, electro-
spinning is a proven framework allowing for the improved
endothelialization of vascular grafts through precise fiber
alignment and organization.

Stereolithography and 3D printing. While elecrospinning
has dominated the present direction of vascular graft pro-
duction, there has been some investigation into controlling
graft fabrication and surface characteristics via techniques
such as stereolithography and 3D printing. As previously
mentioned, architecture of a graft should resemble native
vessel conditions. The nature of electrospun fiber fabrication
necessitates porosity in grafts, which increases the surface
area for cell attachment and allows cell invasion. However,
3D scaffold architecture and porosity can also be controlled
via freeform fabrication techniques as demonstrated by one
group.137 Using microstereolithography, they studied the
internal pore and architecture relationship of a poly(pro-
pylene fumarate) graft intended for bone scaffolding. More
recently, the feasibility of controlling graft architecture
through a 3D computer-aided design was translated for
vascular grafts. Three-dimensional microarchitectural fea-
tures were created using a new stereobiofabrication method
on PEG diacrylate and gelatin methacrylate.138 Another
group printed positive molds for the grafts and poured the
graft material into the molds.139 All materials used were
photocrosslinkable polymers based on urethane diacrylate

monomers. UV light was applied to the filled molds to ac-
tivate crosslinking of the materials. Currently, these tech-
niques are not being widely pursued in the field of vascular
grafts, presumably due to the difficult of adapting such
technologies to graft applications and the relative ease and
low cost of electrospinning. Advances in the technology may
also enable more precise control of graft architecture over
electrospinning, allowing further investigating into better
control of graft surfaces to encourage EC and EPC adhesion,
differentiation, and proliferation.

Chemical vapor deposition. Vapor deposition can be
used to deposit small particles onto graft material surfaces
to create micro- and nanoscale patterns and structures. One
group studied plasma-modified nanostructures on a variety
of polymeric and metallic surfaces.140 The process altered the
nanoroughness and surface energy of the materials, affecting
EC adhesion. E-beam evaporation has been used to generate
surface features on a titanium substrate.141 In addition, vapor
deposition was used to modify surfaces used in a mold for
polymer casting.111

Chemical vapor deposition can also be used to allow for
functionalization of graft surfaces. Surface chemistry can be
altered, or reactive groups can be added, to allow for cova-
lent immobilization of biomolecules to material surfaces.142

One study demonstrated plasma modification to modify a
biodegradable graft material for enhanced endothelializa-
tion.143 The group introduced polyvinyl acetic acid groups to
the PLLA substrate to immobilize fibronectin. Cell adhesion
and proliferation were improved, along with increased cell
retention under shear stress. Chemical vapor deposition has
been more extensively researched in permanent materials,
and this study offers a glimpse of the potential application in
biodegradable, small-diameter grafts.

Controlling EPC Differentiation into EC-Like Cells

Shear stress

In mature blood vessels, ECs are exposed to shear stress
resulting from blood flow. This shear stress affects a variety
of mechanotransduction pathways, including cell alignment
and biochemical functions.144 Shear stress has been found to
induce EPC differentiation into adhesive ECs.145 Recent re-
search indicates that shear stress affects EPCs through the
VEGF-R2 and PI3K/Akt/mTOR signal transduction path-
ways, increasing adhesion, differentiation, migration, and
proliferation of circulating EPCs.146 While shear stress is in-
nately applied due to blood flow, it is important to ensure
that graft designs preserve hemodynamics similar to native
vessels. Fluid dynamic analyses of novel graft architectural
structures or surface patterns should not be neglected.

Chemokines, cytokines, and growth factors

Besides assisting in homing and mobilizing of EPCs,
growth factors are also integral to the differentiation of EPCs
into EC-like cells. SDF-1,147,148 matrix metallopeptidase-9,147

VEGF,149,150 erythropoietin,151 and interleukin-8152 have
been identified for their roles in vascular remodeling, neo-
vasculogenesis, and EPC differentiation. Research is ongoing
to determine other factors that influence EPC differentiation
into EC-like phenotypes and inclusion of these factors in graft
applications. For example, BDNF has been found to support
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EC viability and neoangiogensis, thought to have a significant
regulatory role in EC development.153 BDNF was found to
improve the patency rate of a graft fabricated from decel-
lularized rat carotid arteries when incorporated on the inner
lumen.46 Improved isolation and immobilization of factors
could greatly increase the effectiveness of EPC homing, re-
cruitment, and, most importantly, differentiation to EC-like
phenotypes. Additionally, continued research into the biology
of EPCs is necessary to better understand these pathways and
how these chemokines, cytokines, and growth factors interact
with EPCs to better control EPC response in vivo.

It is important to consider the effects of chemokines, cy-
tokines, and growth factors in environments more similar to
in vivo environments, as well. Static culture studies may not
be representative of the actual effects on EPCs. Exposure to
shear stress has been found to augment EPC differentiation
into EC-like cells on fibronectin and VEGF-bound surfaces,
compared to modified surfaces in static cultures or shear
stress alone. An increase in VEGFR-2 and VE-cadherin ex-
pression indicative of EC differentiation of EPCs augmented
was found on fibronectin-coated surfaces when shear stress
was applied.154 Furthermore, another study demonstrated
that EPC expression of vWF, CD31, and ephribB2 signals,
markers for arterial ECs, were significantly increased on
VEGF-bound surfaces when shear stress was applied.155

Comparing marker expression in these two studies, VEGF-
bound surfaces appeared to better support EPC differentia-
tion under shear stress conditions than fibronectin-bound
surfaces.155 Evaluation of prototype grafts should include
shear stress conditions to better understand EPC differenti-
ation under the influence of various immobilized biofunc-
tional molecules.

Material and surface properties

Material and topographical properties alone have been
found to influence the differentiation of EPCs into EC-like
cells. Recently, it was demonstrated that growth of EPCs on
fibrin displays significantly increased levels of cytokine re-
lease associated with angiogenesis compared to EPCs grown
on fibronectin, though EC marker expression was similar
between both groups.156 It was recently demonstrated that
EPCs produced varying levels of markers influencing EC
function depending on the surfaces on which the cells were
seeded.157 The group-modified titanium surfaces for the
following experimental groups are acid-etched, sand-blasted
and acid-etched, hydrophilic acid-etched, and hydrophilic
acid-etched and sand-blasted. These groups were compared
to cell-culture-compatible plastic and fibronectin-coated
plastic controls. Lower levels of VEGF expression were
measured on acid-etched titanium, while the highest VEGF
expression was found in hydrophilic acid-etched and sand-
blasted. The highest EC endothelial nitric oxide synthetase
expression was also found on hydrophilic acid-etched and
sand-blasted titanium.158 Combining the material properties
encountered by the EPCs along with controlling surface
textures could work to selectively promote EPC growth. A
recent study demonstrated the differentiation of adipocyte-
derived stem cells (ADSC) into ECs, and subsequent
EC marker expression has been found to be significantly
upregulated by nanopographical modification on quartz
substrates with 250-nm ridges and 500-nm grooves.159 While

ADSCs are not a cell type suitable for in situ en-
dothelialization, this study demonstrates the importance of
nanotopography of graft surfaces in differentiation of endo-
thelial lineages. Further work into the effects of nanotopo-
graphy on EPC differentiation could further elucidate this
phenomenon to promote expedited EPC differentiation.
Combining these material and surface property stimuli along
with the presentation of appropriate growth factors can
work to achieve optimal EPC growth and differentiation.

Future Directions and Conclusions

Many strategies have been studied to support in situ en-
dothelialization of small-diameter vascular grafts. Likely, the
optimal vascular graft will incorporate several strategies. The
graft must effectively support EPC mobilizing and homing.
This may be accomplished by presentation and release of a
growth factor like VEGF or G-CSF or an external treatment
such as injection of atorvastatin. The graft surface will need to
have molecules suitable for selective adhesion of EPCs and ECs
while maintaining thromboresistance and hemocompatibility.
Nanotopography can also aid in adhesion of ECs and EPCs,
while affecting cell geometry, growth, and differentiation.
Porosity and hierarchical design of grafts incorporating various
materials will also be necessarily optimized to allow for ade-
quate cell infiltration to support subendothelial tissues to sup-
port EC and EPC growth and differentiation. After the graft
degrades, establishment of these tissues will be crucial to long-
term success of the graft and the new vessel.

Despite the increasing number of small-diameter graft
strategies utilizing EPCs, there is still controversy sur-
rounding the biological nature of these cells. There is no
specific marker that uniquely identifies EPCs, and thus a
variety of EPC subpopulations have been identified under
markers generally presented by EPCs.160 This can make EPC-
specific cell attachment difficult. One group has taken the
stance of abandoning EPCs almost entirely for their en-
dothelialization potential, instead urging research to focus on
the paracrine effects of these cells.161 They maintain that the
ECs are primarily responsible for arterial repair and regen-
erations, and EPC research has not yielded data sufficient for
supporting the idea that EPCs contribute directly to endo-
thelial regeneration. Still, other perspectives offer that a
particular subset of cells that have been labeled EPCs may
have a significant role in vascular repair: ECFCs.160,162 More
research into the unique markers that identify these cells will
be necessary to better take advantage of their endo-
thelialization properties in a small-diameter graft.

Strategies to promote in situ endothelialization of a small-
diameter, biodegradable vascular graft have been robust, but
much work remains to make these techniques clinically
viable. The biology behind in situ endothelialization tech-
niques, especially those utilizing EPCs and, specifically,
ECFCs, should be further investigated. In addition, combi-
natorial methods of graft coating, topography, porosity, and
external treatments should be investigated to optimize graft
environments that enable efficient and thorough endo-
thelialization of graft surfaces.
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