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Differentiating lymphomas and glioblastomas is important for proper treatment planning. A number of works have been proposed
but there are still some problems. For example, many works depend on thresholding a single feature value, which is susceptible
to noise. In other cases, experienced observers are required to extract the feature values or to provide some interactions with the
system. Even if experts are involved, interobserver variance becomes another problem. In addition, most of the works use only one
or a few slice(s) because 3D tumor segmentation is time consuming. In this paper, we propose a tumor classification system that
analyzes the luminance distribution of the whole tumor region. Typical cases are classified by the luminance range thresholding
and the apparent diffusion coefficients (ADC) thresholding. Nontypical cases are classified by a support vector machine (SVM).
Most of the processing elements are semiautomatic. Therefore, even novice users can use the system easily and get the same results
as experts. The experiments were conducted using 40 MRI datasets. The classification accuracy of the proposed method was 91.1%
without the ADC thresholding and 95.4% with the ADC thresholding. On the other hand, the baseline method, the conventional
ADC thresholding, yielded only 67.5% accuracy.

1. Introduction

The purpose of this study is to present an objective and
accurate tumor classification system that considers the lumi-
nance distribution of the whole 3D tumor region. Dif-
ferentiating lymphomas and glioblastoma by noninvasive
ways is an important problem because they require different
chemotherapy regimens. For example, if the tumor is highly
suspected to be lymphomas, stereotactic biopsy is usually
recommended to confirm the diagnosis. If the tumor is highly
suspected to be glioblastoma, craniotomy would be chosen.
Chemotherapy regimens are different for the two tumors, as
well.

Therefore, a number of works have been proposed. For
instance, Toh et al. [1] proposed the ADC thresholding and
the ADC ratio thresholding. The distribution of the ADC

values was also discussed in [2]. Makino et al. [3] proposed
standard uptake value (SUV) thresholding. In [4], a relative
regional cerebral blood volume ratio was proposed. Calli
et al. [5], on the other hand, used perfusion and diffusion
MR imaging and introduced four parameters to differentiate
the tumors. In [6], histogram analysis of the normalized
cerebral blood volume in enhancing and perienhancing
lesions was presented. Note that [1–6] do not include any
image processing. Certain feature values are extracted from
input MRIs by hand by experts [1–5] or regions of interest
were specified by experts to generate the histograms [6].
Tumors were simply classified by thresholding using prede-
fined static threshold values in [1–6]. An image-processing-
based system can be found in [7]. In [7], texture analysis using
Gaborwavelet coefficient thresholdingwas proposed, but this
technique also relied on simple thresholding. Thresholding
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Figure 1: Flowchart of the proposed algorithm.
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Figure 2: Concept of ADC and luminance range thresholding.

G
lio

bl
as

to
m

a
Ly

m
ph

om
a

NontypicalTypical

Figure 3: Sample MRIs of lymphomas and glioblastomas.
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Figure 4: Sample images and extracted luminance histograms of typical/nontypical lymphomas/glioblastomas.
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Figure 5: (a) Distribution of the ADC values. (b) Classification performance when ADC thresholding [1] is used. In the sensitivity/specifity
calculation, lymphomas were considered as “positive” and glioblastomas were considered as “negative.”
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Figure 6: (a) Distribution of the luminance range values. (b) Classification performance when range thresholding is used. In the
sensitivity/specifity calculation, lymphomas were considered as “positive” and glioblastomas were considered as “negative.”

feature values is sensitive to noise. It is very easy to find
exceptional cases for such simple thresholding. In addition,
extracting parameters subjectively by the observers induces
an interobserver variance problem. For instance, the ADC
values extracted by experts differ fromobservers to observers.
From this point of view, even the learning-based approaches
which employ a lot of subjective parameters such as [8] would
not become a solution to the aforementioned thresholding-
based approaches. In addition, the analysis is done by using
only a single or a few slices of theMRIs in most cases because
segmenting the whole tumor region needs labor-intensive
user interactions and takes a lot of time. For more robust
and accurate tumor classification, analysis of thewhole tumor
region would be desired. For this purpose, we proposed a
system that employed luminance distribution learning using

the whole tumor region [9]. In the system, the classification
accuracy was up to 87%.

Themethod proposed in this work is (1) objective because
the input from users is as small as possible, (2) accurate by
the combination of the luminance distribution analysis of
the whole tumor region and the two thresholding methods,
and (3) semiautomatic facilitating novice users to use the
system easily. The 3D tumor segmentation and its luminance
distribution analysis within a reasonable processing time
have been made possible by our previous fast segmentation
algorithm [10]. As a result, even novice users can classify the
tumors accurately.

The system without the ADC thresholding is free
of interobserver variances and achieves 91.1% accuracy.
When the subjectively measured ADC value is included,
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Figure 7: Classification performance of the proposed method and the two thresholding-based methods: (a) accuracy, (b) sensitivity, and
(c) specifity.

the classification accuracy can be improved up to 95.4%.
The main concept of our proposed algorithm has already
been presented in [11]. In this paper, more detailed analysis
and comparison are conducted to show the validity of the
proposed method.

The rest of this paper is organized as follows. In Section 2,
the proposed algorithm is described in detail. The experi-
mental results are demonstrated in Section 3, followed by
concluding remarks in Section 4.

2. Proposed Algorithm

It is often reported that the morphological appearance of the
tumor does not allow direct judgments. However, it is also

often observed that the lymphomas tend to have flatter and
lower luminance as compared to glioblastomas and glioblas-
tomas are brighter on the edge and darker in the center [6].
Therefore, glioblastomas have wider dynamic range in their
luminance value. We use these different characteristics in
two ways: one for thresholding using the luminance dynamic
range and the other for the luminance distribution learning
using SVM.

The flow chart of the proposed algorithm is shown in
Figure 1. Firstly, the tumor region is segmented by using our
fast 3D segmentation algorithm [10].The required interaction
is only tumor/nontumor seed setting, which does not require
any expert knowledge. The processing time is about a few
tens of seconds. Though the fast 3D tumor segmentation is
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Figure 8: Classification performance comparison between the subsets of the proposed system: (a) accuracy, (b) sensitivity, and (c) specifity.

not the scope of this paper, we would like to emphasize that
the system was made reasonable because of the quick seg-
mentation. In this stage, moderately accurate segmentation
is enough because the segmentation results are used only
for generating the luminance histograms, not for treatment
design.

Then, the normalized histogram of the luminance of the
tumor is generated automatically using the whole tumor
region. In this paper, the voxel value range was quantized
from 12 bits (4,096 levels) to 8 bits (256 levels) to make the
histograms less sparse. By using the generated luminance
histogram, the luminance rangewhose normalized frequency
is larger than a predefined threshold (0.002 in our study) is
detected.

At the same time, if experts are available, the averageADC
value is measured.The region of interest (ROI), whose area is
set about 50mm2, is decided by the experts. This ADC value
measurement is optional.

According to [1], the ADC values tend to be smaller
for lymphomas and large for glioblastomas. In the same
manner, we found in our investigation that the luminance
ranges are narrower for lymphomas and wider for glioblas-
tomas. Although there are many exceptions as shown in
our experiments, the tumors with very low ADC value
can be regarded as lymphomas and those with very high
ADC value can be regarded as glioblastomas. Therefore,
we separate the typical cases and nontypical cases by using
both the ADC value and the luminance range. Namely, we
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Figure 9: Examples of misclassified cases.

extract the four threshold values from the training data: the
maximum ADC value and the maximum luminance range
of the lymphomas (THADC lym max and THrange lym max), and
theminimumADCvalue and theminimum luminance range
of the glioblastomas (THADC gli min andTHrange gli min).There
are two cases to consider.

(1) THADC gli min≤THADC lym max or THrange gli min≤
THrange lym max (Figure 2(a)).

If the ADC value is smaller than THADC gli min or the
luminance range is narrower than THrange gli min, the tumor
is regarded as a typical lymphoma. On the other hand, if the
ADC value is larger than THADC lym max or the luminance
range is wider than THrange lym max, the tumor is regarded as
a typical glioblastoma. Otherwise, the tumor is regarded as a
nontypical case and classified by SVM,which is trained by the
luminance histograms in the training dataset.

(2) THADC gli min > THADC lym max and THrange gli min >
THrange lym max (Figure 2(b)).

If the ADC value is smaller than THADC lym max or the
luminance range is narrower than THrange lym max, the
tumor is regarded as a typical lymphoma. On the other
hand, if the ADC value is larger than THADC gli min or
the luminance range is wider than THrange gli min, the
tumor is regarded as a typical glioblastoma. Those between
THADC gli min and THADC lym max and between THrange gli min
and THrange lym max are regarded as nontypical (unknown)

cases and classified by SVM. This case rarely happens when
the number of training data is large enough.

Note that the thresholding is used to extract typical
cases. Therefore, the problem of thresholding-based method
pointed out in Section 1 does not arise in this case. In addition,
the four threshold values are decided automatically from
the training dataset. Preliminary experiments to set proper
threshold values are not needed.

The advantage of the proposed system is that the ADC
measurement can be omitted if experienced observers are
not available. In this case, the required interaction from the
users is only seed setting for the segmentation.The histogram
generation, range thresholding, and classification using SVM
can be done automatically. Therefore, anyone can reproduce
the same results. Though a histogram-based approach was
proposed in [6], the histograms were generated only from
ROIs specified by the observers, not from the whole tumor
region. And the classification was still based on thresholding
a single parameter that was extracted from the histograms.

3. Experimental Results

3.1. Experimental Setup. We retrospectively reviewed theMR
images of 40 patients with histologically proved glioblas-
tomas (𝑛 = 20) and lymphomas (𝑛 = 20). All tumors
were pathologically proved. The resolutions of structural
MRIs and ADC maps were 256 × 256 × 160 and 128 ×
128 × 22, respectively. There were 22 male and 18 female



8 Computational and Mathematical Methods in Medicine

0.020.010 0.03 0.04 0.05
60

70

90

80

100

Threshold for luminance range thresholding

Ac
cu

ra
cy

 (%
)

(a)

60

70

90

80

100

Se
ns

iti
vi

ty
 (%

)

0.020.010 0.03 0.04 0.05
Threshold for luminance range thresholding

(b)

60

70

90

80

100

Sp
ec

ifi
ty

 (%
)

0.020.010 0.03 0.04 0.05
Threshold for luminance range thresholding

(c)

Figure 10: Classification performance as a function of the luminance range threshold: (a) accuracy, (b) sensitivity, and (c) specifity.

patients, and their ages ranged from 12 to 91 years, with a
mean of 65 years and a median of 69 years. Typical and
nontypical cases are included in the dataset. The number of
typical/nontypical cases is not listed here because it is hard
to define typicalness/nontypicalness. Some example images
are shown in Figure 3. As shown in the figure, some of the
lymphomas and glioblastomas look very similar to each other
andhard to differentiate just by looking at theMRIs.TheADC
values were measured by a neuroradiologist with 19 years’
experience (T. Hirai). A linear kernel [12] was used if not
mentioned otherwise.

In Figure 4, typical and nontypical cases of lymphoma
and glioblastoma and their luminance histograms are shown.
As discussed in Section 3, the luminance histograms of
lymphoma tend to have narrower luminance range and those
of glioblastomas tend to have wider luminance range.

3.2. Classification Performance of Conventional Single Value
Thresholding. Figure 5 demonstrates the distribution of the
ADC values of lymphomas and glioblastomas (Figure 5(a))
and the differentiation performance as a function of the
threshold value (Figure 5(b)). It is observed that the ADC
values of the lymphoma and those of the glioblastomas

overlap each other and therefore the ADC thresholding [1]
does not work well. The best accuracy was only 67.5% when
the threshold was 0.8–1.0 × 10−3mm2/s, which is slightly
better than the chance level (50%).

The distribution of the luminance range values and
classification accuracy by simple thresholding are shown in
Figure 6. It is shown that the luminance range thresholding
can classify lymphomas and glioblastomas better than the
ADC thresholding [1]. The best classification accuracy is
82.5%. However, this is the result of fine tuning of the two
parameters: the threshold value for the range extraction
and the threshold value for classification (luminance range
thresholding). The classification performance is sensitive to
these threshold values and therefore this approach is not
practical.

3.3. Classification Performance of Our Proposed Algorithm. In
the experiments in this subsection, 𝑘(𝑘 = 1–19) samples per
class were randomly selected for the training and the rest were
used for the testing.Thehistograms of the typical tumorswere
also included in the training. This procedure was repeated
1,000 times and the average performance is presented. This



Computational and Mathematical Methods in Medicine 9

50 10 15 20
0

20

60

80

40

100

The number of training samples per class

Ac
cu

ra
cy

 (%
)

Gaussian kernel
Chi-square kernel
Linear kernel

Histogram intersection kernel

(a)

50 10 15 20
0

20

60

80

40

100

The number of training samples per class

Se
ns

iti
vi

ty
 (%

)

Gaussian kernel
Chi-square kernel
Linear kernel

Histogram intersection kernel

(b)

50 10 15 20
0

20

60

80

40

100

The number of training samples per class

Sp
ec

ifi
ty

 (%
)

Gaussian kernel
Chi-square kernel
Linear kernel

Histogram intersection kernel

(c)

Figure 11: Performance comparison between four kernels: (a) accuracy, (b) sensitivity, and (c) specifity.

random-sampling-based evaluation was employed because
the threshold values depend on the training samples.

The classification performance of our proposed method
is shown in Figure 7 and it is compared with those by näıve
ADC thresholding and luminance range thresholding. When
the luminance distribution learning using SVM is not used,
nontypical (or unknown) cases cannot be handled.Therefore,
the threshold values for the ADC thresholding (THADC)
and the luminance range thresholding (THrange) were set as
follows:

THADC =
THADC gli min + THADC lym max

2
,

THrange =
THrange gli min + THrange lym max

2
.

(1)

It is observed that the classification accuracy of the ADC
thresholding is up to 66% and that of the luminance range
thresholding is 72%–76%. On the other hand, the proposed
method achieves 95.4% when 𝑘 = 19. Besides, our proposed
method outperforms the other two methods when 𝑘 is equal
to or larger than 5.

Figure 8 shows the classification performance when the
subset of our proposed method is used. It is interesting
to note that even the SVM-only approach (i.e., only the
SVM trained with the luminance histograms was used) can
achieve 83.3% accuracy when 𝑘 = 19. This is significantly
better than the ADC thresholding [1]. The luminance range
thresholding + SVM method yields 91.1% accuracy. Since
this method does not require any experiences or knowledge
of the tumors, no interobserver variance exists and even
novice users can get the same performance. It is also observed
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that the luminance range thresholding outperforms the other
approaches when the training samples are less. The best
performance (95.4%) was achieved when all the features are
used. Namely, the typical cases were classified by using both
the ADC thresholding and the luminance range thresholding
and the nontypical cases were classified by the SVM using
the luminance histogram. The performance of the ADC
thresholding + SVM [9] was 87.1%.

The example images which were misclassified are shown
in Figure 9. The neuroradiologist could not classify them
correctly just by looking at the images and ADC values.
Therefore, these mistakes are reasonable and show the lim-
itation of our proposed method.

The dependence on the luminance range threshold is
demonstrated in Figure 10. The best classification perfor-
mance is observed at th = 0.002. As the threshold value
shifts from its optimal value, the classification performance
is degraded gradually. However, the classification accuracy is
over 90% even when th = 0.001 or th = 0.003, showing the
robustness of the proposed method.

It is well known that SVMs using a Chi-square kernel
or histogram intersection kernel work better than Gaussian
or linear kernel when the feature vector is histogram based.
Therefore, the four kernels are compared in Figure 11. In our
framework, the linear kernel was the best. It should also be
noted that the linear kernel was the fastest in training.

4. Conclusions

Luminance distribution analysis using the whole tumor
region has been developed for differentiating lymphomas
and glioblastomas. The typical tumors were classified by
the luminance range thresholding. And the nontypical cases
were learned and classified by SVM using the luminance
histogram. Since subjective measurement of the parameters
was not needed, the system was easy to use even for novice
users and there was no interobserver variance. The combi-
nation of the luminance range thresholding and the SVM-
based classification achieved 91.1% accuracy. Besides, when
the ADC value measured by an expert was added in the
thresholding, the accuracy was improved up to 95.4%.
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